On a Coupled Fixed Point Theorem for a Mapping Satisfying a Contraction Of Rational Type in Partially Ordered S-Metric Space

${ }^{* 1}$ Mashina M. S., ${ }^{2}$ Zakariyya, A and ${ }^{3}$ Umar, U. I.
${ }^{1,2,3}$ Department of Mathematics, Federal College of Education, Zaria
Email: mohsanmash@gmail.com

Abstract

In this paper, the concept of S-metric is used as a generalizion of the ordinary metric space to obtain a coupled fixed point result for a mapping satisfying a contraction of rational type in partially ordered S-metric space. Since such results has already been proved in ordinary metric space, similar procedure was followed in stating and proving our result in the setting of S-metric space. The result presented here modify and generalize the existing result of Circ et al (2012) which was stated in partially ordered metric space.

Keywords: Coupled fixed point, contractive condition, partially ordered set, rational type, S-metric space

INTRODUCTION

A mapping $T: X \rightarrow X$ has a fixed point if there exist $x \in X$ such that $T x=x$ The Banach contraction principle (or Banach's theorem) states that every contraction mapping defined on a complete metric space has a unique fixed point. That is for a complete metric space (X, d) and a mapping $T: X \rightarrow X$ satisfying $d(T x, T y) \leq \alpha d(x, y)$ for all $x, y \in X$ with $0<\alpha<1$, then T has unique fixed point. Some authors like Agarwal et al. (2008), Ariza-Ruiz \& Jimnez-Melado (2009), and Harjani \& Sadrangani (2009). have expanded, developed and established Banach's contraction principle in many ways.

Bhaskar \& Lakshmikantham (2006) presented the concept of coupled fixed point and and some important concepts as follows

Definition 1: Suppose that (X, d) is a complete metric space and (X, \leq) is a partially ordered set. For the product space $X \times X$, and $(x, y),(u, v) \in X \times X,(u, v) \leq(x, y) \Leftrightarrow x \geq u, y \leq v$.

Definition 2: Suppose $F: X \times X \rightarrow X$ and (X, \leq) is a partially ordered set. Then F has the mixed monotone property if F is
monotone non decreasing in x, that is for any $x, y, x_{1}, x_{2} \in X$,

$$
x_{1}, x_{2} \in X, x_{1} \leq x_{2} \Rightarrow F\left(x_{1}, y\right) \leq F\left(x_{2}, y\right)
$$

and
monotone non increasing in y, that is for any $x, y, y_{1}, y_{2} \in X$,

$$
y_{1}, y_{2} \in X, y_{1} \leq y_{2} \Rightarrow F\left(x, y_{1}\right) \geq F\left(x, y_{2}\right) .
$$

[^0]Definition 3: Let $F: X \times X \rightarrow X$. An element $(x, y) \in X \times X$ is called a coupled fixed point of F if
$F(x, y)=x \quad$ and $\quad F(y, x)=y$
Since then some authors like Lakshmikantham \& Ciric (2009), Mehta and Joshi (2010) and Ciric et al. (2012) have demonstrated some results on coupled fixed point in partially ordered metric space using various forms of contractive condition.
Harjani et al. (2010) proved a fixed point theorem for mapping satisfying a contractive condition of rational type in partially ordered metric space stating the following theorem.

Theorem 1 (Harjani et al. (2010)): Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T: X \rightarrow X$ be a continuous and non decreasing mapping such that

$$
d(T x, T y) \leq \alpha \frac{d(x, T x) \cdot d(y, T y)}{d(x, y)}+\beta d(x, y)
$$

for $x, y \in X, x \neq y$ and for some $\alpha, \beta \in[0,1)$ with $\alpha+\beta<1$. If there exists $x_{0}<T x_{0}$, then T has a fixed point.

Motivated by the result of Harjani et al. (2010) (Theorem 1) Circ et al. (2012) established and proved Theorem 1 using the concept of coupled fixed point as follows

Theorem 2: Let (X, \leq) be a partially ordered set and suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let $T: X \times X \rightarrow X$ be a continuous and mapping which has the mixed monotone property such that for some $\alpha, \beta \in[0,1) \forall x, y, u, v \in X, x \neq$ $u, v \neq y$, we have

$$
d(T(x, y), T(u, v)) \leq \alpha \frac{d(x, T(x, y)) \cdot d(u, T(u, v))}{d(x, u)}+\beta d(x, u)
$$

with $\alpha+\beta<1$. Then T has a coupled fixed point.
For many years now, to modify and extend a domain to a more general space has been a keen and vigorous research in fixed point theory. A number of generalizations of metric space have been stated in several ways by some authors. For example, 2-metric space introduced by Gähler (1963), D-metric space by Dhage (1992) G-metric space Mustafa \& Sims (2006) and D^{*} metric space by Sedghi et al (2007).
Sequel to these generalizations, Sedghi et al (2012) presented a new generalization of ordinary metric space as follows.

Definition 4: Let X be a nonempty set. An S-metric space on X is a function $S: X^{3} \rightarrow[0, \infty)$ such that for each $x, y, z, a \in X$, the following conditions are satisfied.

1. $S(x, y, z) \geq 0$ for all $x, y, z \in X$
2. $S(x, y, z)=0$ if and only if $x=y=z$
3. $S(x, y, z) \leq S(x, x, a)+S(y, y, a)+S(z, z, a)$

The pair (X, S) is called an S-metric space.
Immediate examples of an S-metric space are presented by Sedghi et al (2012) as follows.
Example 1: Let $X=\mathbb{R}^{n}$ and $\|$.$\| a norm on X$. Then $S(x, y, z)=\|x+z-2 x\|+\|y-z\|$ is an S-metric on X.

Example 2: Let $X=\mathbb{R}^{2}$ and d an ordinary metric on X. Then $S(x, y, z)=d(x, y)+d(x, z)+$ $d(y, z)$ is an S-metric on X.
Again Sedghi et al (2012) stated the following important definitions and lemma as follows

Definition 5: Let (X, S) be an S-metric space.

1. A sequence $\left\{x_{n}\right\}$ converges to x if for each $\epsilon>0$ there exist $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, S\left(x_{n}, x_{n}, x\right)<\epsilon$ for all $x \in X$. That is if and only if $S\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow$ ∞ and write $\lim _{n \rightarrow \infty} x_{n}=x$.
2. $\left\{x_{n}\right\}$ is called a Cauchy sequence if for each $\epsilon>0$, there exist $n_{0} \in \mathbb{N} \in$ such that for each $n, m \geq n_{0}, S\left(x_{n}, x_{n}, x_{m}\right)<\epsilon$.
3. (X, S) is said to be complete if every Cauchy sequence is convergent.

Lemma 1: Let (X, S) be an S-metric space. Then $S(x, x, y)=S(y, y, x)$
Using the notion of S-metric space, concept of coupled fixed point, we extended and generalized the result of Circ et al. (2012) and proved a coupled fixed point theorem for mapping satisfying a contractive condition of rational type in partially ordered S-metric space.

MAIN RESULT

The result and proof in this section is a modification of Theorem 2 using similar procedures in the setting of S-metric space.

Theorem 3: Let (X, \leq, S) be a partially ordered complete S-metric space. Let $T: X \times X \rightarrow X$ be a continuous mapping which has the mixed monotone property such that

$$
\begin{equation*}
S\left(T(x, y),(T(x, y), T(u, v)) \leq p \frac{S(x, x, T(x, y)) \cdot S(u, u, T(u, v))}{S(x, x, u)}+q S(x, x, u)\right. \tag{1}
\end{equation*}
$$

$\forall x, y, u, v \in X, x \neq u, y \neq v$, and for some $p, q \in[0,1)$ with $p+q<1$, then T has a coupled fixed point.

Proof: Suppose that $x_{0} \leq T\left(x_{0}, y_{0}\right)$ and $y_{0} \geq T\left(y_{0}, x_{0}\right)$ for some $\left(x_{0}, y_{0}\right) \in X \times X$.
In general, $x_{n+1}=T\left(x_{0}, y_{0}\right)$ and $y_{n+1}=T\left(y_{0}, x_{0}\right)$
For $x_{2}=T\left(x_{1}, y_{1}\right)$ and $x_{2}=T\left(x_{1}, y_{1}\right)$
We now set

$$
\begin{aligned}
& T^{2}\left(x_{0}, y_{0}\right)=T\left(T\left(x_{0}, y_{0}\right), T\left(y_{0}, x_{0}\right)\right)=T\left(x_{1}, y_{1}\right)=x_{2} \\
& T^{2}\left(y_{0}, x_{0}\right)=T\left(T\left(y_{0}, x_{0}\right), T\left(x_{0}, y_{0}\right)\right)=T\left(y_{1}, x_{1}\right)=y_{2}
\end{aligned}
$$

Following this, and from Definition 2, we write

$$
\begin{aligned}
& x_{1}=T\left(x_{0}, y_{0}\right) \leq T\left(x_{1}, y_{1}\right)=T^{2}\left(x_{0}, y_{0}\right)=x_{2} \\
& y_{1}=T\left(y_{0}, x_{0}\right) \geq T\left(y_{1}, x_{1}\right)=T^{2}\left(y_{0}, x_{0}\right)=y_{2}
\end{aligned}
$$

Hence for $n \geq 1$

$$
\begin{aligned}
& x_{n+1}=T^{n+1}\left(x_{0}, y_{0}\right)=T\left(T^{n}\left(x_{0}, y_{0}\right), T^{n}\left(y_{0}, x_{0}\right)\right) \\
& y_{n+1}=T^{n+1}\left(y_{0}, x_{0}\right)=T\left(T^{n}\left(y_{0}, x_{0}\right), T^{n}\left(x_{0}, y_{0}\right)\right)
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& x_{0} \leq T\left(x_{0}, y_{0}\right)=x_{1} \leq T^{2}\left(x_{0}, y_{0}\right)=x_{2} \leq \cdots \leq T^{n}\left(x_{0}, y_{0}\right)=x_{n} \leq \cdots \\
& y_{0} \geq T\left(y_{0}, x_{0}\right)=y_{1} \geq T^{2}\left(y_{0}, x_{0}\right)=y_{2} \geq \cdots \geq T^{n}\left(y_{0}, x_{0}\right)=y_{n} \leq \cdots
\end{aligned}
$$

Putting $(x, y)=\left(x_{n}, y_{n}\right),(u, v)=\left(x_{n-1}, y_{n-1}\right)$, using equation (1) and lemma 1 we get
$S\left(x_{n+1}, x_{n+1}, x_{n}\right)=S\left(T\left(x_{n}, y_{n}\right), T\left(x_{n}, y_{n}\right), T\left(x_{n-1}, y_{n-1}\right)\right.$

$$
\leq p \frac{S\left(x_{n}, x_{n}, T\left(x_{n}, y_{n}\right)\right) \cdot S\left(x_{n-1}, x_{n-1}, T\left(x_{n-1}, y_{n-1}\right)\right)}{S\left(x_{n}, x_{n}, x_{n-1}\right)}+q S\left(x_{n}, x_{n}, x_{n-1}\right)
$$

$$
=p \frac{S\left(x_{n}, x_{n}, x_{n+1}\right) . S\left(x_{n-1}, x_{n-1}, x_{n}\right)}{S\left(x_{n}, x_{n}, x_{n-1}\right)}+q S\left(x_{n}, x_{n}, x_{n-1}\right)
$$

$$
\begin{equation*}
=p S\left(x_{n}, x_{n}, x_{n+1}\right)+q S\left(x_{n}, x_{n}, x_{n-1}\right) \tag{2}
\end{equation*}
$$

$S\left(x_{n+1}, x_{n+1}, x_{n}\right) \leq\left(\frac{q}{1-p}\right) S\left(x_{n}, x_{n}, x_{n-1}\right)$

In a similar fashion and using equation (1), we get
$S\left(y_{n+1}, y_{n+1}, y_{n}\right) \leq\left(\frac{q}{1-p}\right) S\left(y_{n}, y_{n}, y_{n-1}\right)$
Thus from equation (2) and (3)
$S\left(x_{n+1}, x_{n+1}, x_{n}\right)+S\left(y_{n+1}, y_{n+1}, y_{n}\right) \leq\left(\frac{q}{1-p}\right)\left(S\left(x_{n}, x_{n}, x_{n-1}\right)+S\left(y_{n}, y_{n}, y_{n-1}\right)\right)$
Or by lemma 1

$$
\begin{align*}
S\left(x_{n}, x_{n}, x_{n+1}\right)+ & S\left(y_{n}, y_{n}, y_{n+1}\right) \\
& \leq\left(\frac{q}{1-p}\right)\left(S\left(x_{n-1}, x_{n-1}, x_{n}\right)+S\left(y_{n-1}, y_{n-1}, y_{n}\right)\right) \tag{4}
\end{align*}
$$

Let

$$
\begin{aligned}
& I_{n}=S\left(x_{n+1}, x_{n+1}, x_{n}\right)+S\left(y_{n+1}, y_{n+1}, y_{n}\right) \\
& A=\left(\frac{q}{1-p}\right)
\end{aligned}
$$

By equation (4), we get

$$
\begin{equation*}
I_{n} \leq A I_{n-1} \leq A^{2} I_{n-1} \leq \cdots \leq A^{n} I_{0} \tag{5}
\end{equation*}
$$

If $I_{n}=0$, then $\left(x_{0}, y_{0}\right)$ is a coupled fixed point of T
For $I_{n} \neq 0$, then for each $m \in \mathbb{N}$ we get by equation (5) and applying condition 3 of Definition 4,

$$
\begin{aligned}
& S\left(x_{n}, x_{n}, x_{n+m}\right)+S\left(y_{n}, y_{n}, y_{n+m}\right) \\
& \quad \leq\left(2 S\left(x_{n}, x_{n}, x_{n+1}\right)+S\left(x_{n}, x_{n}, x_{n+1}\right)+2 S\left(y_{n}, y_{n}, y_{n+1}\right)+S\left(y_{n}, y_{n}, y_{n+1}\right)\right) \\
& \quad \leq\left(2 S\left(x_{n}, x_{n}, x_{n+1}\right)+2 S\left(x_{n}, x_{n}, x_{n+1}\right)+2 S\left(y_{n}, y_{n}, y_{n+1}\right)+2 S\left(y_{n}, y_{n}, y_{n+1}\right)\right) \\
& +\cdots+\left(2 S\left(x_{m-2}, x_{m-2}, x_{m-1}\right)+S\left(x_{m-1}, x_{m-1}, x_{m}\right)\right) \\
& \quad+\left(2 S\left(y_{m-2}, y_{m-2}, y_{m-1}\right)+S\left(y_{m-1}, y_{m-1}, y_{m}\right)\right) \\
& \quad \leq\left(2 S\left(x_{n}, x_{n}, x_{n+1}\right)+2 S\left(x_{n}, x_{n}, x_{n+1}\right)\right)+\cdots+\left(2 S\left(x_{m-1}, x_{m-1}, x_{m}\right)+2 S\left(y_{m-1}, y_{m-1}, y_{m}\right)\right) \\
& \leq 2\left[I_{n}+I_{n+1}+\cdots+I_{m-1}\right]\left(S\left(x_{0}, x_{0}, x_{1}\right)+S\left(y_{0}, y_{0}, y_{1}\right)\right) \\
& \leq \frac{2 A^{n}}{1-A}\left(S\left(x_{0}, x_{0}, x_{1}\right)+S\left(y_{0}, y_{0}, y_{1}\right)\right)
\end{aligned}
$$

For $A<1$ and taking limit as $n, m \rightarrow \infty$, we have
$S\left(x_{n}, x_{n}, x_{n+m}\right)+S\left(y_{n}, y_{n}, y_{n+m}\right) \rightarrow 0$
Thus $\lim _{n, m \rightarrow \infty} S\left(x_{n}, x_{n}, x_{n+m}\right)=0$ and $\lim _{n, m \rightarrow \infty} S\left(y_{n}, y_{n}, y_{n+m}\right)=0$
This implies $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy sequences.
As (X, S) is a complete S-metric space, there exists $x, y \in X$ such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$
The continuity of T implies that

$$
\begin{aligned}
& x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} T\left(x_{n-1}, y_{n-1}\right)=T\left(\lim _{n \rightarrow \infty} x_{n-1}, \lim _{n \rightarrow \infty} y_{n-1}\right)=T(x, y) \\
& y=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} T\left(y_{n-1}, x_{n-1}\right)=T\left(\lim _{n \rightarrow \infty} y_{n-1}, \lim _{n \rightarrow \infty} x_{n-1}\right)=T(y, x)
\end{aligned}
$$

Thus $x=T(x, y)$ and $y=T(y, x)$.
Hence T has a coupled fixed point.

CONCLUSION

As a generalized metric in 3-tuples, the notion of S-metric was used to state and prove a coupled fixed point theorem for mapping satisfying a contractive condition of rational type in partially ordered S-metric space.
The result presented here modify and generalize Theorem 2 in the frame work of S-metric space.

REFERENCES

Agarwal, R. P., El-Gebiely, M. A., and O'Regan, D. (2008). Generalized contraction in partially ordered metric space. Applied Analysis, 87, 109-116.
Ariza-Ruiz, D. and Jimnez-Melado, A. (2009). A continuation method for weakly contractive mappings under the interior condtions. Fixed Point Theory Application2009. Article ID 809315
Bhaskar, T.G. and Lakshmikantham,V. (2006). Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65, 1379-1393.
Ciric, L., Olatinwo, M.O., Gopal, D. and Akinbo, G. (2012). Coupled fixed point theorem for a mapping satisfying a contractive condition of rational type in partially ordered metric space,
Advances in Fixed Point Theory, 2 (1), 1-8
Dhage, B. C. (1992). Generalized metric space and mappings with fixed point, Bull.Cal.Math. Soc., $84329-336$.
Gähler, S. (1963). 2-metriche raume und ihre toplogische strukture. Maths.Nachr., 26, 115-148.
Harjani, J. and Sadarangani, K (2009). Fixed point theorems for weakly contractive mappings in
partially ordered sets, Nonlinear Analysis: Theory, Methods \& Applications, 71(7)), 34033410.

Harjani, J., Lopez, B. and Sadarangani, K. (2010). A fixed point theorems for mappings satisfying
a contractive condition of rational type on a partially ordered metric space. Abstarct and Applied Analysis, Article ID 190701, 8 pages
Lakshmikantham, V. and Ciric, L. (2009). Coupled fixed point theorems for nonlinear contractions
in partially ordered metric spaces, Nonlinear Anal., 70, 4341-4349.
Mehta, G.J. and Joshi, M.L. (2010). Coupled fixed point theorem in partially ordered complete metric space, Int. J. Pure Appl. Sci. Technol., 1(2), 87-96.
Mustafa, Z. and Sims, B. (2006). A new approach to generalize metric space, J. Roy.nonlinear convex anal. 7, 289-297.
Sedghi,S., Shobe, N. and Zhou, H. (2007). A common fixed point theorem in D^{*}-metric space, Fixed Point Theory Appl., 2007. Article ID 027906.
Sedghi, S., Shobe, N. and Aliouche, A. (2012). A generalization of fixed point theorem in Smetric
space, Mat.Vesinik. 64(3), 258-266

[^0]: *Author for Correspondence
 Mashina M. S., Zakariyya A, Umar U. I., DUJOPAS 8 (2b): 63-67, 2022

