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Abstract 

Histogram of Oriented Gradients (HOG) is an object detection algorithm used to detect people from an 
image. It involves features extraction called ‘HOG descriptor’ which are used to identify a person in 
the image. Several operations are involved in the feature extraction process. Hence performing 
numerous computations in order to obtain HOG descriptors takes some considerable amount of time. 
This slow computation speed limits HOG’s application in real-time systems. This paper investigates 
HOG with a view to improve its speed, modify the feature computation process to develop a faster 
version of HOG and finally evaluate against existing HOG. The technique of asymptotic notation in 
particular Big-O notation was applied to each stage of HOG and the complexity for the binning stage 
was modified. This results in a HOG version with a reduced complexity from n4 to n2 thereby having 
an improved speed as compared to the original HOG. 
 
Keywords: Computer Vision, Object detection, Human Detection, Histogram of Oriented 
Gradients, Big-O Notation. 
 
 
INTRODUCTION 
Computer vision is a broad field that finds its application in many aspects of our daily lives. It 
involves enhancement, classification, recognition and detection operations on images and 
video files we take from our daily activities. It seeks to enable computer system automatically 
to see, identify and understand the visual world, simulating the same way that human vision 
does (Feng et al., 2019). Object detection is a widely explored area in computer vision as it has 
applications in many fields like human computer interaction, smart vehicles, automated 
manufacturing processes and surveillance systems. It involves detection of a particular class 
of object from a group of different or similar objects in an image or video. For example, 
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detection of a person from an image containing people, cars, buildings and animals altogether 
(Zhao et al., 2019).  
 
Human detection is the technology that people usually use to detect objects in images or 
videos. It is also a crucial step in the video-based surveillance systems. The aim is to identify 
and monitor humans for security purposes in the crowded environment such as airports, bus 
terminals or train stations (Hossai et al., 2017). Human detection problems are quite complex 
due to the several variations in human pose, dress texture and colour. Several approaches were 
proposed to efficiently tackle these issues among which is the Histogram of Oriented 
Gradients (HOG) by Navneet Dalal in 2005 (Dalal and Triggs, 2005).  
 
HOG is an object detection algorithm used to detect people and objects from an image. It can 
extract characteristics about an objects look and shape from distribution of local gradients, it 
is also capable of defining a distinct texture and shape (Salau and Jain, 2019). HOG-based 
algorithms are still favourable in many applications due to their balanced trade-off between 
accuracy and complexity (Ayalew et al., 2022).  However, due to the complex procedure 
involved in HOG feature computation, it takes a considerable amount of time to generate an 
output vector and hence cannot meet the requirement for real-time applications.  
 
HOG proves that the distribution of gradient or edge directions can be used to describe the 
local appearances of  objects and shapes within an image (Dalal and Triggs, 2005). It involves 
counting the occurrences of local gradient orientations of objects in  xan image. Object features 
are extracted and are called HOG descriptors. A descriptor computation is achieved by 
dividing the image into small connected portions called “cells”. Histogram of gradient 
orientations in each cell is computed and the combination of these histograms is what 
constitutes the descriptor. Group of cells are combined to form a “block” which is then 
normalized to make the image robust against illumination variations. A typical HOG 
descriptor computation process is given in Fig.1 below: 

Figure 1: A typical HOG process (Dalal and Triggs, 2005) 

 
Gamma / colour Normalization 
The input image is optionally pre-processed by normalizing it so as to reduce the impact of 
illumination factor. Two variants of gamma normalization can be applied that is, square root 
or log compression. The normalization will eliminate noises from capturing device and 
environment. It is done for each colour channel of the image. An alternative way is to convert 
the image to grey scale and hence no need to further normalize it.  
 
Gradient Computation 
Gradient calculation is basically the first major task in HOG computation. An optional 
Gaussian smoothing can be applied prior to the gradient computation. Several derivative 
masks like 1-D point mask, 3 × 3 Sobel mask or 2 × 2 diagonal ones can be used. The 
performance is however affected by the type of the mask used. 
The 1D-centered derivative mask gives the best response and hence is the most widely 
adopted for the gradient computation. 

● 1-D derivative mask 
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𝐷𝑥 =  [−1 0 1] 𝑎𝑛𝑑 𝐷𝑦 =  [
1
0

−1
]                                              (1) 

The gradient magnitude is computed as the square root as of the quadratic sum of each 
gradient component, as shown in the equation below 

𝑀(𝑚, 𝑛) = √𝐺𝑥
2 (𝑚, 𝑛) +  𝐺𝑦

2 (𝑚, 𝑛)                                (2) 

 
Once the gradient components are obtained, the gradient angle is obtained using the equation 
below: 

Ø(𝑚, 𝑛) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐺𝑦(𝑚,𝑛)

𝐺𝑥(𝑚,𝑛)
)      (3) 

 
Spatial / Orientation Binning 
This task involves dividing the image into small portions called “cells”. A histogram of 
orientation of gradient values within each is plotted where each pixel in the cell cast a 
weighted vote in the histogram. Histogram channels are created for the orientations usually 
evenly spread from 0 to 180 degrees (unsigned) or from 0 to 360 degrees (signed) gradient  
(Wu et al., 2015), thereby resulting in a total of 9 or 18 channels respectively. As highlighted 
by Dalal (Dalal and Triggs, 2005), the 9 histogram channels configuration outperforms its 
counterpart. This is due wide range in human clothing and object backgrounds, hence the 
sign of the angle is usually irrelevant. 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 2: 9 orientations bins configuration (Dalal and Triggs, 2005) 

 
The vote weighting can be either the gradient magnitude, its square or even square root. The 
gradient magnitude is widely used because it provides the best results. For a typical bin with 
range say k, the equation to compute the kth bin on the histogram is given by (Dalal and 
Triggs, 2005) 

ℎ𝑘 =  ∑  = 𝑚,𝑛  𝑀(𝑚, 𝑛) 1 [ø(𝑚, 𝑛) = 𝑘]  (4) 
 
Descriptor Blocks 
Due to effects of variations in illumination and contrast, the gradients need to be strengthened 
so that they become robust to these adverse effects. This is achieved by combining a group 
cells to form a “block” and the blocks are locally normalized. Over all the block regions, the 
vector component of the normalized cell histograms gives to what is called the “HOG 
descriptor”. Each cell normally contributes to more than one block due to the block-
overlapping with neighbouring ones (Yuan et al., 2015). The two main variants of the 
descriptor blocks are the Rectangular-HOG (R-HOG) and the circular-HOG (C-HOG). Fig. 3. 
below shows the various cells and the grouping of cells to form a block. 
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Figure 3: Descriptor block and cells formation (Dalal and Triggs, 2005) 

 
Block Normalization 
Different methods can be used for block normalization as a counter measure to effects of 
illumination and contrast variations (Zhao et al., 2015). The two major ones are  
L1- norm and L2-norm.  
 
All the above stages have to be carried out in order to compute HOG descriptors of any input 
image which are then passed to a classifier for grouping of datasets and detection. This 
prompts many researchers to work on improving the detection stage by implementing HOG 
with a combination of other pre-processing or post processing techniques. For example, 
Shihong Yao et al. surveyed several combinations of HOG with other algorithms like Scale 
Invariant Feature Transform (SIFT), Speeded-up Robust Feature (SURF), Local Binary Pattern 
(LBP), Multi-scale Orientation (MSO) and Local Self Similarities (LSS). The HOG-LSS 
combination was found to have the strongest description ability and relatively faster than the 
other combinations. LSS is used locally to extract self-similarity feature of edges, colours, 
complex textures and patterns in a unified format. Its four main parameters are: image size, 
window radius, angle interval and interval radius of image patches. HOG-LSS gives a 
combined descriptor that contains both local and global information about an image. It also 
has the ability to capture rough and contour information (Yao et al., 2015).  
 
Surasak et. al implemented a human detection system using Python and OpenCV. HOG was 
used as the main detection algorithm with Support Vector Machine (SVM) as classifier. They 
were able to achieve a detection accuracy of 81.23% with a standard deviation (SD) of 10.95%. 
The system developed has the whole execution time about 5-10 minutes per cycle - which is 
quite long. To solve this problem, they applied four threads parallel execution features using 
Python Multiprocessing Library to reduce the processing time by 45.96% (Surasak et al., 2018).  
A study by Zhou et. al, the origin of the image was explored with a view to handle the 
redundancy associated with the input image processing pipeline. Cumulative errors are 
added to source image by image sensors in the process of producing an optimal quality 
image. Using the minimal image processing pipeline which consist of denoising, 
demosaicing and gamma compression, the study was able to experiment that by taking 
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advantage of the inter-channel correlation of natural images, the HOG features can be 
directly extracted from the Bayer pattern images, where proper gamma compression may be 
needed. An evaluation was done between images generated using minimal image processing 
pipeline and those generated from raw Bayer pattern images after applying gamma 
compression. The result showed that for HOG-based pedestrian detection systems, the 
complete image processing pipeline except the gamma compression can be skipped. Hence, 
the HOG features based on Bayer pattern images can be used in pedestrian detection 
algorithms with little performance degradation (Zhou et al., 2020).   
 
Categorically, the efforts done by researchers to improve HOG can be broadly classified into 
Implementation approach and Algorithm approach. The former involves running HOG on a 
faster device, different platform or in a parallel mode. For example executing HOG on a very 
fast Central Processing Unit (CPU), in parallel on a Graphics Processing Unit (GPU) and using 
Field Programmable Gate Array (FPGA). The latter involves modifying the HOG algorithm 
itself. For example, combining HOG with some other algorithm and improving image 
acquisition and enhancement procedure before computing its HOG feature. This works aims 
to explore HOG as human detection algorithm with a view to overcome some of its limitations 
in particular – computation speed. The algorithm approach will be adopted due its low cost, 
accuracy and better resource utilization. The time complexity of each stage of HOG will be 
studied with a view to identify the slowest or compute intensive stage(s) using Asymptotic 
notation analysis. The identified stage(s) will be improved at algorithm level for faster 
completion keeping in mind the overall accuracy of the process. In doing so, the original HOG 
will still be maintained without adding other algorithms which may have their own limitations 
and an improved version will be obtained. 
 
METHODOLOGY 
Based on the scope of this work, HOG speed will be improved at the algorithm level. Focus 
will be made on the HOG descriptor computation stage and the appropriate techniques will 
be applied to it in order to get the desired result. Image datasets will be collected from samples 
of INRIA still image data sets. The coding and simulation will be carried out using MATLAB 
software tool on a PC having a dual core Intel® Pentium® Processor clocked at 2.1GHz with 
4GB RAM running Windows 7 Ultimate 64bit OS. 
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The complete methodology flow is shown in Fig. 4 below: 
 

 
 
 

 
 
 
 
 
 
 
 

 

Figure 4. Complete methodology flow chart. 

 
HOG Time Complexity: Asymptotic notations is a technique in the study of algorithms that 
focuses on characterization according to their efficiency. The key area here is the growth rate 
of the algorithm with respect to input size (Bensoussan et al., 2011, Ye et al., 2021). Emphasis 
is made on the order of the increase in running time of an algorithm. This is because the 
growth rate provides a way of classifying and comparing algorithms unlike the measure of 
their exact running time. Once the order of growth of functions is known, the basis for 
classification and comparison is obtained as well. Any typical computer algorithm involves a 
lot of steps or procedures; the most common ones are mathematical operations. These 
operations are being executed in specified manner to achieve a task which is the algorithm 
output. The number and type of operations that are involved in an algorithm is a key factor 
in determining the efficiency of the algorithm. As a good algorithm is expected to withstand 
the worst-case scenario with respect input size, asymptotic notation proves to be valuable in 
algorithm design. Several factors contribute to the running time of an algorithm for example 
the programming language used, the compiler used and the computer system on which it is 
run. It is normally carried out for three major cases:  
1) Best case scenario also called big Omega - Ω  
2) Equivalent case scenario also called big theta - ϴ  
3) Worst case scenario also called big O - O   
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The case of emphasis here is the worst case scenario also called as Big-O. It gives an analysis 
measure of the maximum amount of time taken by an algorithm for a large input size. It gives 
the upper bound for the growth of the running time of the algorithm and hence called ‘upper 
asymptotic bound’. It is denoted by the upper case alphabet – O. Big-O is used for asymptotic 
notation for the worst case scenario or ceiling growth rate of a function. The maximum 
amount of time taken by an algorithm can be obtained using this notation. It bounds the 
growth of the running time from an upper region for large enough input sizes. It is the most 
widely used notation as we are more concerned with handling worst case eventualities. The 
big-Oh notation is used widely to characterize running times and space bounds in terms of 
some parameter ‘n’, which varies from problem to problem, for example in our case ‘n’ is 
considered to be input image size.  
 
Suppose f(n) and g(n) are functions mapping non negative integers to real numbers. We say 
that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant no >=1 such that f(n) 
=< cg(n) for every integer n >= no (Goodrich and Tamassia, 2001).  
This definition is often referred to as the “big-Oh” notation, for it is sometimes pronounced as 
“f(n) is big- Oh of g(n)”. Alternatively, we can also say “f(n) is order g(n).”  

 
Figure 5 Big-O notation 

 
Asymptotic notation allows us to classify functions according to their growth rate. The growth 
rate is classified from the slowest to the fastest growing function, which is analogous to from 
fastest execution time to the slowest execution time. A logarithmic function is the slowest 
growing function whereas an exponential function is the fastest growing function. These 
functions are summarized in the table below in ascending order of their growth rate where n 
is input size and c is a constant: 
 
Table 1: Functions hierarchy in order of complexity 

Notation Name 

O(1) Constant 
O(log(n)) Logarithmic 

O(n) Linear 
O(n2) Quadratic 
O(nc) Polynomial 
O(cn) Exponential 

 
Asymptotic notation allows us to ignore constants in a complexity equation. This is because 
as the input size becomes larger, the constant factors only contributes a little to running time 
overhead. This also applies to lower order terms in the complexity equations as well because 
at larger inputs, only the highest order term has much influence on the growth rate  
(Sedgewick and Wayne, 2014, Kalonda and Omekanda, 2020).  
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The idea behind these is due to the useful fact that: 
“When a function say f(n) is formed by a summation of other functions for example f1(n) and 
f2(n) where f1(n) grows faster than f2(n), therefore the order of f(n) is determined by f1(n) since 
it is the faster growing function” (Wegener, 2005). 
 
The timing complexity of an algorithm is primary factor in determining its efficiency. It 
normally gives the relationship between size of input data and the computation time required 
to process it. Its impact is not very noticeable in simple algorithms for example string 
concatenation, or when the input data size is small for example a 2-by-2 array. Time 
complexity comes into significance when the algorithm function of concern involves complex 
procedures like sorting or recursive operations on a very large growing input data size . A 
less time complexity that is, less computation time algorithm is generally considered to be a 
more efficient algorithm as compared to one that consumes longer computation time. HOG 
involves several operations on an image most which requires repeating similar procedure on 
every pixel in an image (Zhou et al., 2020). It can be seen that as the image size gets larger, 
these operations also increased, hence resulting in a longer computation time to generate 
output descriptors. 
 
HOG involves stages and each stage involves a number of operations. These stages were 
analysed and the complexity equation for each was derived. The complexity analysis is done 
for the upper bound or worst case scenario using Big - Oh notation. For complete HOG 
process, the complexity equation is given by the summation of the order of growths of the 
HOG stages. This is shown in the relationship below: 
 

𝑓(𝐻𝑂𝐺) =  𝑓(𝐺𝑟𝑎𝑑) +  𝑓(𝐵𝑖𝑛) +  𝑓(𝑁𝑜𝑟𝑚) +  𝑓(𝑘ℎ𝑜𝑔)              (5) 
where khog is a constant 
Considering the stages individually; 
The Gradient computation: 
 

𝑓(𝐺𝑟𝑎𝑑) =  𝑓(grad mag) +  𝑓(grad angles) +  𝑓(kgrad) 
=  𝑂(n × m) +  𝑂(n × m) +  𝑂(kgrad)        (6) 

  
The Binning Stage: 

𝑓(𝐵𝑖𝑛) =  𝑂 ((
n

c
− 2) × (

m

c
− 2) × (b × b) × (n − 2) × (m − 2)) + O(kbin)    (7) 

 
The Block Normalization Stage: 
𝑓(𝑁𝑜𝑟𝑚) =  𝑂[(n − 2)(m − 2)] +  𝑂(knorm)       (8) 
where n is input image height, m is input image width, c is cell division, b is number of 
orientation bins and kgrad/kbin/knorm are constants. 
 
As stated earlier, asymptotic notation allows us to ignore constants in a complexity equation. 
This is because as the input size becomes larger, the constant factors only contributes a little 
to running time overhead. This also applies to lower order terms in the complexity equations 
as well because at larger inputs, only the highest order term has much influence on the growth 
rate. Hence, complexity equations above can be further simplified by ignoring all constants 
and dropping all lower order terms. The resulting equations are as below: 
 
             𝑓(𝐺𝑟𝑎𝑑) =  𝑂(𝑛2)      (9) 
              𝑓(𝐵𝑖𝑛) =  𝑂(𝑛4)      (10) 
              𝑓(𝑁𝑜𝑟𝑚) =  𝑂(𝑛2)      (11) 



Accelerated Histogram of Oriented Gradients for Human Detection  

 

S. S. Umar et al., DUJOPAS 9 (1a): 44-56, 2023                                                                                         52 

 

Therefore,                                                       
               𝑓(𝐻𝑂𝐺) =  𝑂(𝑛2) +  𝑂(𝑛4) +  𝑂(𝑛2) 
                               =  𝑂(𝑛4)               (12)  
 
Hence the test HOG used is a polynomial function with an upper asymptotic bound of O(n4). 
The relationship between the growth rate and input size is of the polynomial order. 
It was observed that the most time consuming stage is the binning stage. Its modified 
complexity equation is as below: 
              𝑓(𝐵𝑖𝑛) =  𝑂([(𝑛

𝑐⁄ − 2) ×  (𝑚
𝑐⁄ ) − 2 × (𝑏 × 𝑏) × (𝑐 × 𝑐)])  + 𝑂(𝑘𝑏𝑖𝑛)) 

                           = 𝑂 (
𝑛𝑚

𝑐2 −
2(𝑛+𝑚)

𝑐
+ 4) ×  𝑏2𝑐2 +  𝑂(𝑘𝑏𝑖𝑛)   

                          = 𝑂(𝑏2𝑛𝑚) +  𝑂(2𝑐𝑏4(𝑛 + 𝑚)) +  𝑂(𝑘𝑏𝑖𝑛)                          (13) 

 
Where n & m are input image dimension, c is cell dimension, b is number of bins and kbin is 
constant. 
 
RESULTS 
Asymptotic notations allow us to analyze and develop time complexity equations for 
algorithms. These give us an insight into the time required by an algorithm in operation. As 
we always prepare to handle worst case performance conditions, Big O notation provides us 
a technique of knowing the upper asymptotic bound of the running time of an algorithm 
(Bensoussan et al., 2011). The HOG complexity equations developed in the previous chapter 
were modified with a view to obtain a faster HOG version. The modification is done in such 
a way that HOG parameters are less dependent on the input image size. It involves assuming 
some parameters to be constants while other are left to vary as the input image size varies.  
Summing the complexity of all the HOG stages above to obtain the general complexity 
equation of the HOG algorithm yields; 
𝑓(𝐻𝑂𝐺) =  𝑓(𝐺𝑟𝑎𝑑) +  𝑓(𝐵𝑖𝑛) +  𝑓(𝑁𝑜𝑟𝑚)                   
                  =  20(𝑛 × 𝑚) + 𝑂(𝑏2𝑛𝑚) + 𝑂(2𝑐𝑏2(𝑛 + 𝑚)) +  𝑂(𝑛𝑚 − 2(𝑛 + 𝑚) + 4) +

                             𝑂(𝑘𝑔𝑟𝑎𝑑) +  𝑂(𝑘𝑏𝑖𝑛) +  𝑂(𝑘𝑛𝑜𝑟𝑚)    (14) 
 
For large input values, the constants, scalar multiplicands and lower order terms can be 
ignored. Hence the equation above yields: 
      𝑓(𝐻𝑂𝐺) =  𝑂(𝑛 × 𝑚)             (15) 
 
In a scenario where n=m; 

𝑓(𝐻𝑂𝐺) =  𝑂(𝑛2)      (16) 
 
A reduction in the complexity implies slower growth rate and hence a faster running time.  
The tuned parameter here is the cell size. It is made to be independent from the input image 
size. This was tested for various cell sizes in order to find the near optimal cells size for 
efficiency in both speed and accuracy. Cells sizes of 4 × 4, 6 × 6 and 8 × 8 were tested for 
varying image sizes. A 16 × 16 cells size gave a very poor timing performance and hence was 
discarded.  
 
Table 2 below shows the computations time obtained for the different cell sizes. 
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Table 2: Computation for varying image sizes using different cells sizes. 

Image Size 
(m × n) 

Cells size computation time 

4 × 4 6 × 6 8 × 8 

64 × 128 0.393  0.411  0.661  
128 × 256  0.847  1.692  2.819  
256 × 512  3.540  6.895  11.821  
640 × 480  8.393  16.754  27.983  
720 × 480  9.399  18.785  31.416  
852 × 480  11.113  22.335  37.278  
786 × 576  12.218  24.398  41.552  

1280 × 720  24.532  49.159  84.129  
1920 × 1080  56.700  112.380  189.024  

 
Table 2 above shows the computation time obtained with different input image size and cell 
sizes. A smaller input image size combined with a cell size of 4 × 4 gives the fastest 
computation time. The computation time can be seen to increase gradually with increase in 
cell size but rapidly with increase in input image size. The cells sizes can be increased above 
8 × 8 however this normally gives a very poor performance. The performances recorded above 
were depicted graphically in the Fig. 6 below: 
 
Figure 6 Running time using different cell sizes 

Fig. 6 above depicts the graph of computation time against varying input image size for 3 cell 
sizes. The smaller cell size of 4 × 4 gives the fastest computation time. The computation time 
can be seen to increase gradually with increase in cell size (from 4 × 4 to 6 × 6) but rapidly 
with increase in input image size. 
 
The two HOG variants testHOG and thisHOG were run side by side on the same platform 
using the 6 × 6 cell size. The computation time obtained on different input image sizes for each 
is shown below: 
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Table 3: Computation time between testHOG and thisHOG 
Input image Size 

(n × m) 
HOG Computation Time 

testHOG thisHOG 

64 × 128 0.857  0.411  
128 × 256  2.825  1.642  
256 × 512  11.700  6.810  
640 × 480  28.068  16.190  

720 × 480  31.571  18.187  
852 × 840  37.703  21.697  
786 × 576  42.038  24.126  

1280 × 720  85.319  49.122  
1920 × 1080  191.631  110.134  

 
The significant decreases in growth can be observed from Table 3 above where the growth 
rate seems to be reduced by a half in the modified HOG. This is as expected since the time 
complexity was reduced from n4 to n2. This is further depicted Fig. 7 below: 
Figure 7: Growth rate for testHOG and thisHOG 
 

Fig. 7 above shows the computation time taken by each HOG version using a 6 × 6 cell size for various input image 
size. It can be seen that the time increase steadily at smaller size input images but increases rapidly for larger size 
input images. 

 
DISCUSSION 
The 3 main stages of HOG algorithm i.e Gradient stage, Binning stage and Block 
Normalization stage (Zhou et al., 2020) were analyzed using Asymptotic notation method. 
Worst case scenario analysis or Big O notation was applied to the complexity equation of each 
stage. The gradient and block normalization stage were found to have a complexity of 
quadratic function (n2). The binning stage was found to have a polynomial function 
complexity (n4). It also happens to be the most compute intensive stage and hence it 
contributed the most in the long execution time of the algorithm. It was observed that the 
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number of operations carried out in the binning stage largely depend on the size of the input 
image. Big O notation was applied to this stage and its complexity was reduced from 
polynomial to quadratic order (from n4 to n2). 
 
The modified binning stage was used to form a variant of the HOG algorithm with a quadratic 
function complexity. This was named ‘thisHOG’ and was implemented using 3 different cell 
sizes of 4 × 4, 6 × 6 and 8 × 8. Input images of various sizes were used and their respective 
computation time was recorded. As can be seen from Table 2, for an input image of size  
64 × 128 the time taken by the cell configurations are relatively close 0.393, 0.411 and 0.661 
respectively. However, by increasing the input image size to 128 × 256, the computation time 
taken rapidly increases. For example it quadrupled in the case of 6 × 6 and 8 × 8 cell 
configuration.The 4x4 cell time doubled and since it has a smaller cell size, it will require more 
number of cells to carry out a complete feature extraction process depending on the input 
image size. Also Fig. 6 shows how the computation time rapidly increases with large input 
images especially for the 8 × 8 cell configuration. This point to us that for larger input images, 
higher cell configurations take longer duration. This is the reason why cell size of 16 ×16 was 
dropped and infact any cell size higher than 8 × 8 will not give the desired speed 
improvement. 
 
The original HOG algorithm (testHOG) and the modified version (thisHOG) were run on the 
same platform using 3 different cell sizes to evaluate their performance. The key area of focus 
here is the computation time of each algorithm. From Fig. 6 above, the 4 × 4 cells size was 
found to be have the slowest growth rate hence the fastest. However, it is more likely to result 
in too many cells to perform operations on. The 8 × 8 cells sizes is a quite good but was found 
to have a very fast growth rate as the input becomes larger. For a balance between speed and 
accuracy, the 6 × 6 cells size will be more suitable as it has a moderate growth rate even when 
the input size is very large. 
 
The HOG algorithm used for test case in this work was compared with the modified HOG 
adopting the 6 × 6 cells size variant. This is synonymous to comparing an n4 complexity 
algorithm with an n2 complexity algorithm. The n2 complexity algorithm (modified HOG) as 
expected proves to have a slower growth rate and a faster running time with respect to the n4 
complexity algorithm (testHOG). 
 
CONCLUSION  
This work focuses on HOG as an algorithm for human detection by investigating the time 
complexity of the individual stages in the algorithm. The most complex and time consuming 
stage which is the voting and binning stage was modified using Big-oh asymptotic notation 
technique. Its time complexity was successfully reduced from polynomial order of n4 to a 
quadratic order of n2. The modified algorithm was tested for varying image sizes using 
different cells sizes. The 6 x 6 cells size was found to provide a better speed performance as 
compared to other configurations. 
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