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Abstract 
The Physical or Mathematical behaviour of this model may be represented by describing all the different 
states it may occupy and by indicating how it moves among these states. In this study, the stationary 
distribution of Markov chains was solved using iterative methods that begin with an initial estimate of 
the solution vector and then modified it in a way that brings it closer and closer to the real solution with 
each step or iteration. These methods also involved matrix operations like multiplication with one or 
more vectors, which preserves the transition matrices while speeding up the process. We computed the 
solutions using Jacobi iterative method and Gauss-Seidel iterative method in order to shed more light 
on the solutions of stationary distribution in Markov chain. This was done with the aid of several 
already-existing laws, theorems, and formulas of Markov chain and the application of normalization 
principle and matrix operations such as lower, upper, and diagonal matrices. The stationary 

distribution vector’s 𝜋𝑖, 𝑖 = 1, 2, … , 4 are obtained for the illustrative example one as 𝜋(3) =
 (0.078125, 0.109375, 0.21875, 0.59375) as well as the four eigenvalues of the matrix as  𝜆1 = 1.0,  
𝜆2 = −0.7718,   𝜆3,4 = −0.1141 ± 0.5576𝑖 using Jacobi iterative technique, and for illustrative 

example two using Gauss-Siedel method as 𝝅(𝟑) = (0.090909, 0.181818, 0.363636, 0.363636). The 
research shown that Gauss Siedel method converged faster than Jacobi method. 
 
Keywords: Gauss-Seidel, Gerschgorin's theorem, Jacobi, compact storage, Successive over-
relaxation 
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INTRODUCTION 
The two different types of solution methods used in the field of numerical analysis are 
iterative and direct.  The iterative methods begin with an initial estimation of the solution 
vector and then modified it so that with each step or iteration, it gets more and more close to 
the real solution and it eventually arrives to the actual solution. If an initial approximation is 
unknown, an estimate is made or an arbitrary initial vector is utilized in its place and the 
answer must be computed when a predetermined number of clearly defined stages have been 
completed.  
 
Iterative methods, in one form or another, are the most often used techniques for obtaining 
the stationary probability vector from either the stochastic transition probability matrix or the 
infinitesimal generator, and there were many factors considered when making this choice. In 
the conventional iterative techniques, matrices are only used in multiplication with one or 
more vectors, which leaves the transition matrices unaltered. Thus, it is necessary to design 
compact storage solutions that decrease the amount of memory required to store the matrix 
while also being suitable for matrix multiplication Stewart (2009). 
 
Iterative techniques provide benefits when doing a sequence of connected tests, and it is very 
helpful to use good starting approximations of the solution vector. Also, rounding error 
buildup is essentially nonexistent with iterative techniques because the matrix is never 
modified. For these reasons, iterative procedures have typically been favoured to direct ones.  
In the application of direct approaches, the coefficient matrix data structure is a source of 
concern as Markov models produce matrices that are frequently too big to fit into a standard 
two-dimensional array for storage in computer memory.  Also, due to the volume of fill-in 
that can quickly overwhelm available storage capacity, direct approaches are typically not 
recommended when the transition matrix is large and not bounded. 
 
Romanovsky (1970) introduced the Markov chain as a mathematical representation of the 
movement of a tracer throughout the cardiovascular system (CVS), and assumed the existence 
of a steady state condition for the CVS results in a Markov chain of finite order with constant 
coefficients, while Saff (1973) showed the degree of the greatest logical approximation to the 
exponential function in Markov chain. Moler and Van Loan (1978) explained the nineteen 
problematic techniques to compute the exponential of a matrix in order to calculate the 
transient solution of continuous time Markov processes. The Ramaswami's formula is a 
relationship that may be used to determine the consecutive components of stationary 
distribution 𝜋 after the matrix G has been computed. 
  
The Ramaswami's initial probabilistic technique is given by Ramaswami and Neuts (1980), 
while Ramaswami (1988) used an algebraic approach, and Philippe and Sidje (1993) took 
advantage of the knowledge contained in infinitesimal generators of Markov processes to 
compute efficiently and economically the transient solution of continuous time Markov chain. 
Stewart (1994, 2009) provided a methodical and in-depth analysis of the numerical solution of 
a Markov chain with applications to biological systems, computer system, economical system 
and educational system. 
 
Maryam and Ali (2013) proposed that the experiment has the acceptable speed without 
suffering from the problem of computational complexity, while Pesch et al. (2015) 
demonstrated the appropriateness of the Markov chain technique in the wind feed in 
Germany. Meanwhile, Swanirbhar (2015) reviewed the Jacobi iterative solver and its 
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hardware based performance analysis. With special attention paid to 1-norms, Glaister (2016) 
provided a detailed investigation of the link between theoretical convergence results and 
observed monotonic and non-monotonic convergence. Uzun and Kiral (2017) used the 
Markov chain model of fuzzy state to anticipate the direction of gold price movement and to 
estimate the probabilistic transition matrix of gold price closing returns. Tesfaye (2017) 
demonstrated the usefulness of second degree refinement Jacobi (SDRJ) in contrast to other 
techniques by presenting a second degree for solving the system of linear equations 𝑎𝑦 = 𝑏 
and taking into account the spectral radius.  
 
Azizah et al. (2019) predicted monthly rainfall data using the Markov chain model of fuzzy 
state, and Clemence (2019) used the Markov chain to show that Hepatitis B became more 
contagious over time than tuberculosis and HIV when it comes to the transmission of 
infectious diseases. Additionally, Zakaria et al. (2019) developed Markov chain model for 
forecasting Miri's air pollution index, while Vermeer and Trilling (2020) used the Markov 
chain to show how it may be used in journalism. Also, by taking into account consistently 
ordered 3-cyclic matrices that are obtained when a finite difference method is used to solve 
differential equations, Gashaye and Tesfaye (2021) presented a generalized refinement of the 
Gauss-Siedel method and demonstrated that a smaller number of iterations could be 
completed with a higher rate of convergence.  
 
Agboola and Badmus (2021) analysed the distribution function of the renewal process and 
sequence {𝑋𝑛, 𝑛 ≥ 𝑖} using the concept of discrete time Markov chain to obtain performance 
measures, and concluded that, it is not possible for an infinite number of renewals to occur in 
a finite period of time.  Agboola and Ayoade (2021) investigated a block structure that arises 
frequently when modeling queueing systems to provide some insight into the solutions of 
stationary distribution of Markov chain. 
 
Agboola and Ayinde (2021) analysed the concept of the classification of groups of states, 
between states that are recurrent, transient to provide some insight into the performance 
measure analysis such as the mean first passage time, the mean recurrence time of state as 
well as recurrence iterative matrix. Agboola (2021) computed the solutions and algorithms for 
lower - upper triangular matrix approach and the Grassmann - Taksar - Heyman  to obtained 
the stationary distribution vectors in Markov chain. Furthermore, Agboola and Ayinde (2022) 
demonstrated the use of successive over-relaxation algorithm using block numerical iterative 
solution methods to compute the stationary distributions vectors in Markov chain.  
 
Agboola and Ayoade (2022) investigated a block structure that arises frequently when 
modeling G/M/1 queueing systems to provide some insight into the solutions of stationary 
distribution of Markov chain using block lower Hess Enberg numerical iterative methods on 
the structured Markov chain. Agboola (2022) estimated an approximate solution to the 
stationary probability vector and the global solution using decomposition and aggregation 
algorithmic numerical iterative methods by considering the following steps, the left-hand 
eigenvector of length corresponding to the Eigen value closest to 1 and the weights while 
Agboola and Nehad (2022) computed the solutions and algorithms for tiny state spaces 
utilizing matrix scaling and powering approaches. 
 
However, in this study, application of Jacobi and Gauss–Seidel numerical iterative solution 
methods for the stationary distribution of Markov chain is demonstrated in order to shed 
more light on the solution of stationary distribution of Markov chain by using existing laws 
and theorems of Markov chain, and it was shown through the illustrative example 1 and 2 
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that Gauss-Siedel iterative methods converged faster than Jacobi iterative method. Also, in 
line with Gerschgorin's theorem, It was shown that the stationary probability vector is the 
eigenvector that corresponds to a dominant eigenvalue of iterative matrix 𝐻𝐽. 

 
METHODOLOGY 
This study adopted the computation and comparison of Jacobi and Gauss–Seidel numerical 
iterative solution methods for the stationary distribution of Markov chain. We started with 
the analysis of the Jacobi iterative method. 
 
The Iterative Methods of Jacobi  
Building iterative solution methods involves describing a problem as an equation of the form 
𝑓(𝑦) = 0. The formula 𝑓(𝑦) = 𝐴𝑦 − 𝐵 is utilized if the function 𝑓(𝑦) is nonlinear, or even a 
system of linear equation. An iterative technique can be produced by setting 𝑓(𝑦) = 0 as 𝑦 =
𝑔(𝑦), and then establishing the iterative process. 

𝑦𝑘+1 = 𝑔(𝑦(𝑘)).     (1) 

 

𝑦(0) is an initial approximation. Alternatively, the value from the preceding iteration is copied 
and pasted onto the right-hand side of the current iteration. Jacobi, Gauss-Seidel, and 
sequential over-relaxation (SOR) are among the traditional and well-known iterative 
techniques for resolving systems of linear equations. These techniques are founded on a set of 
nonhomogeneous linear equations. 

𝐴𝑦 = 𝐵    or  𝐴𝑦 − 𝐵 = 0, 
an iterative formula of the form 

𝑦𝑘+1 = 𝐻(𝑦(𝑘)) + 𝐶,     𝑘 = 0, 1, …               (2) 

 
This is achieved by separating the coefficient matrix A. 

𝐴 = 𝑀 − 𝑁  
with nonsingular M, we have 

(𝑀 − 𝑁)𝑦 = 𝐵 
Or 

𝑀𝑦 = 𝑁 𝑦 + 𝐵, 
Consequently, the iterative operation is started. 

𝑦(𝑘+1) = 𝑀−1𝑁𝑦(𝑘) + 𝑀−1𝐵 = 𝐻(𝑦(𝑘)) + 𝐶,       𝑘 = 0, 1, …       (3) 

 
The eigenvalues of the iteration matrix, which is given as 𝐻 = 𝑀−1𝑁, are used to calculate the 
rate of convergence of the iterative method. 𝑀 and 𝑁 are chosen using various strategies via 
the Jacobi and Gauss-Seidel methods. By Starting with Jacobi's approach and considering the 

nonhomogeneous system of linear equations 𝐴𝑦 = 𝐵, where 𝐴𝜖Ɽ(𝑛×𝑛)  is nonsingular and 𝐵 ≠
0. The nonhomogeneous system of linear equations is written as. 

𝑎11𝑦1 + 𝑎12𝑦2 + 𝑎13𝑦3 + ⋯ + 𝑎1𝑛𝑦𝑛 = 𝑏1, 
𝑎21𝑦1 + 𝑎22𝑦2 + 𝑎23𝑦3 + ⋯ + 𝑎2𝑛𝑦𝑛 = 𝑏2, 
𝑎31𝑦1 + 𝑎32𝑦2 + 𝑎33𝑦3 + ⋯ + 𝑎3𝑛𝑦𝑛 = 𝑏3, 

 
𝑎𝑛1𝑦1 + 𝑎𝑛2𝑦2 + 𝑎𝑛3𝑦3 + ⋯ + 𝑎𝑛𝑛𝑦𝑛 = 𝑏𝑛. 

 
The result is obtained by moving all terms with off-diagonal components  𝑎𝑖𝑗 , 𝑖 ≠ 𝑗 to the 

right as 
𝑎11𝑦1 =  𝑏1        −𝑎12𝑦2 − 𝑎13𝑦3 − ⋯ − 𝑎1𝑛𝑦𝑛, 

       𝑎22𝑦2 = 𝑏2 − 𝑎21𝑦1          − 𝑎23𝑦3 − ⋯ − 𝑎2𝑛𝑦𝑛, 
       𝑎33𝑦3 = 𝑏3 − 𝑎31𝑦1 − 𝑎32𝑦2           − ⋯ − 𝑎3𝑛𝑦𝑛, 
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⋮ 
                   𝑎𝑛𝑛𝑦𝑛 = 𝑏𝑛 − 𝑎𝑛1𝑦1 − 𝑎𝑛2𝑦2 − 𝑎𝑛3𝑦3 − ⋯ −      .    

 
The method should now be iterated upon. Using the prior values (the values obtained at 
iteration 𝑘), we can assign new values to the right-hand side components of 𝑦 as follows: 

𝑎11𝑦1
(𝑘+1)

=          −𝑎12𝑦2
𝑘 − 𝑎13𝑦3

𝑘 − ⋯ − 𝑎1𝑛𝑦𝑛
𝑘 + 𝑏1 , 

    𝑎22𝑦2
(𝑘+1)

= −𝑎21𝑦1
𝑘          − 𝑎23𝑦3

𝑘 − ⋯ − 𝑎2𝑛𝑦𝑛
𝑘 + 𝑏2, 

     𝑎33𝑦3
(𝑘+1)

= −𝑎31𝑦1
𝑘 − 𝑎32𝑦2

𝑘           − ⋯ − 𝑎3𝑛𝑦𝑛
𝑘 + 𝑏3, 

⋮ 

                 𝑎𝑛𝑛𝑦𝑛
(𝑘+1)

= −𝑎𝑛1𝑦1
𝑘 − 𝑎𝑛2𝑦2

𝑘 − 𝑎𝑛3𝑦3
𝑘 − ⋯ −       +𝑏𝑛.     (4) 

 
This is the Jacobi iterative method. In matrix form, A is split as A = E− L − U where 
• E is a diagonal matrix, 
• L is a strictly lower triangular matrix, 
• U is a strictly upper triangular matrix, 
and so the method of Jacobi becomes equivalent to 

𝐸𝑌(𝑘+1) = (𝐿 + 𝑈)𝑌(𝑘) + 𝐵, 
or 

𝑌(𝑘+1) = 𝐸−1(𝐿 + 𝑈)𝑌(𝑘) + 𝐸−1𝐵.     (5) 
 
It is important to note that the diagonal matrix E must be nonsingular for this system to 
function. As a result, 𝑀 = 𝐸 and N = (L + U) are split according to Jacobi's method. The matrix 
of its iterations is as follows: 

𝐻𝐽 = 𝐸−1(𝐿 + 𝑈). 

 
The system of equations whose solution we seek in the Markov chain setting is 

𝜋𝑄 = 0,  or, equivalently,  𝑄𝑇𝜋𝑇 = 0. 
 
Setting 𝑦 = 𝜋𝑇, and let  𝑄𝑇 = 𝐸 − (𝐿 + 𝑈). Due to the fact that 𝐸𝑗𝑗 ≠ 0 and 𝐸−1 exists for all 𝑗, 

E is a nonsingular matrix. The next approximation is formed by solving the system of 

equations after the 𝑘𝑡ℎ approximation, 𝑌(𝑘), has been produced. 

𝐸𝑌(𝑘+1) = (𝐿 + 𝑈)𝑌(𝑘), 
or 

𝑌(𝑘+1) = 𝐸−1(𝐿 + 𝑈)𝑌(𝑘). 
In scalar form, 

𝑦𝑖
(𝑘+1)

=
1

𝑒𝑖𝑖
{∑ (𝑙𝑖𝑗 + 𝑢𝑖𝑗)𝑖≠𝑗 𝑦𝑗

(𝑘)
} ,    𝑖 = 1, 2, … , 𝑛.          (6) 

 
The Iterative Methods of Gauss–Seidel  
When using the Jacobi technique to do the calculations outlined in equation (3), the 

components of the vector Y(k+1) are typically acquired one at a time as 

y1
(k+1)

,   y2
(k+1)

, … , yn
(k+1)

. Only components from the previous iteration Y(k) are used for 

evaluating yi
(k+1)

, and the Gauss-Seidel approach uses the most recent component 

approximations even though components from the current iteration yj
(k+1)

, for j < 1, are 

accessible and (hopefully) more accurate. This can be done by simply overwriting parts with 
the new approximation once it has been found. equation (4) can be rewritten using the most 
recent values to produce. 

𝑎11𝑦1
(𝑘+1)

=          −𝑎12𝑦2
𝑘 − 𝑎13𝑦3

𝑘 − ⋯ − 𝑎1𝑛𝑦𝑛
𝑘 + 𝑏1 , 

    𝑎22𝑦2
(𝑘+1)

= −𝑎21𝑦1
(𝑘+1)

         − 𝑎23𝑦3
𝑘 − ⋯ − 𝑎2𝑛𝑦𝑛

𝑘 + 𝑏2, 
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     𝑎33𝑦3
(𝑘+1)

= −𝑎31𝑦1
(𝑘+1)

− 𝑎32𝑦2
(𝑘+1)

          − ⋯ − 𝑎3𝑛𝑦𝑛
𝑘 + 𝑏3, 

⋮ 

                 𝑎𝑛𝑛𝑦𝑛
(𝑘+1)

= −𝑎𝑛1𝑦1
(𝑘+1)

− 𝑎𝑛2𝑦2
(𝑘+1)

− 𝑎𝑛3𝑦3
(𝑘+1)

− ⋯ −  𝑎𝑛(𝑛)𝑦𝑛
(𝑘)

+ 𝑏𝑛.     (7) 

 
The second equation uses the value of the freshly computed first component, 𝑦1, and reads 

𝑦1
(𝑘+1)

 rather than  𝑦1
(𝑘)

. The new values of 𝒚𝟏 and 𝒚𝟐 are used in the third equation, and all 

components other than the last are used in the final equation. The 𝒊𝒕𝒉 equation is expressed 
when there are n unknowns and n linear equations. 

𝑎𝑖𝑖𝑦𝑖
(𝑘+1)

= {∑ 𝑎𝑖𝑗𝑦𝑗
(𝑘+1)𝑖−1

𝑗=1 − ∑ 𝑎𝑖𝑗𝑦𝑗
(𝑘)𝑛

𝑗=1+1 } ,    𝑖 = 1, 2, … , 𝑛.          (8) 

 
Rearranging these equations so that all new values appear on the left-hand side, we find 

𝑎11𝑦1
(𝑘+1)

=          −𝑎12𝑦2
𝑘 − 𝑎13𝑦3

𝑘 − ⋯ − 𝑎1𝑛𝑦𝑛
𝑘 + 𝑏1 , 

    𝑎22𝑦2
(𝑘+1)

+ 𝑎21𝑦1
(𝑘+1)

=          −𝑎23𝑦3
𝑘 − ⋯ − 𝑎2𝑛𝑦𝑛

𝑘 + 𝑏2, 

     𝑎33𝑦3
(𝑘+1)

+ 𝑎31𝑦1
(𝑘+1)

+ 𝑎32𝑦2
(𝑘+1)

=           − ⋯ − 𝑎3𝑛𝑦𝑛
𝑘 + 𝑏3, 

⋮ 

     𝑎𝑛𝑛𝑦𝑛
(𝑘+1)

+ 𝑎𝑛1𝑦1
(𝑘+1)

+ 𝑎𝑛2𝑦2
(𝑘+1)

+ 𝑎𝑛3𝑦3
(𝑘+1)

=  − ⋯ − 𝑎𝑛(𝑛)𝑦𝑛
(𝑘)

+ 𝑏𝑛.     (9) 

 
The Gauss–Seidel iterative approach is equal to using the same E − L − U splitting as Jacobi. 

(𝐸 − 𝐿)𝑌(𝑘+1) = 𝑈𝑌(𝑘) + 𝐵      (10) 
 

This is simply the system of equations of matrix in equation (8). It is possible to write it as 

𝑌(𝑘+1) = 𝐸−1(𝐿𝑌(𝑘+1) + 𝑈𝑌(𝑘) + 𝐵), 

Or 

𝑌(𝑘+1) = (𝐸 − 𝐿)−1𝑈𝑌(𝑘) + (𝐸 − 𝐿)−1𝐵.    (11) 
 
Thus, the iteration matrix for the method of Gauss–Seidel is given by 

𝐻𝐺𝑆 = (𝐸 − 𝐿)−1𝑈.      (12) 
 
This iterative technique, which only works with nonsingular matrices (E – L) is comparable to 
splitting M = (E − L) and N = U most of the time. equation (9) becomes equation (10) because 
homogeneous systems of equations such as those found in Markov chains have a right side 
that is zero. 

𝑌(𝑘+1) = (𝐸 − 𝐿)−1𝑈𝑌(𝑘)  or  𝑌(𝑘+1) = 𝐻𝐺𝑆𝑌(𝑘).  (13) Stewart (2009) 
 
Furthermore, the inverse, (𝐸 − 𝐿)−1, exists since all of E's diagonal elements are nonzero. The 
stationary probability vector 𝜋 = 𝑌𝑇 clearly satisfies 𝐻𝐺𝑆𝑌 = y, suggesting that y is the right-
hand eigenvector corresponding to a unit eigenvalue of 𝐻𝐺𝑆. The unit eigenvalue of the matrix 
𝐻𝐺𝑆 is a dominant eigenvalue due to the Stein-Rosenberg theorem and the fact that the 
associated Jacobi iteration matrix 𝐻𝐽 has a dominant unit eigenvalue. The 𝐻𝐺𝑆 power approach 

and the Gauss-Seidel method are comparable as a consequence. 
 
Nomenclature 
𝑄 , infinitesimal generator matrix; 𝜋,  stationary distribution; 𝑦, unknown variable; 𝐸,  nom 
singular matrix; 
 L, lower triangular matrix;  U, upper triangular matrix; 𝐻𝐺𝑆, iteration matrix for Gauss-Siedel 
and 𝜆𝑖, eigen vector for 𝑖 = 1, 2, … , 𝑘. 
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RESULTS AND DISCUSSION 

This section discusses the solutions of stationary distributions, 𝜋(𝑖), 𝑖 = 0, 1, … , 𝑘 and the 
eigenvector corresponding to a dominating eigenvalue of 𝐻𝐽, using various illustrative 

examples for both Jacobi and Gauss-Siedel iterative formulae 
 
Illustrative example using Jacobi iterative formulae:  Consider a four-state Markov chain 
with stochastic transition probability matrix 

𝑃 = (

0.5 0.5 0 0
0 0.5 0.5 0
0

0.125
0

0.125
0.5

0.25
0.5
0.5

) 

 
Since we are given P rather than Q, we need to write 𝜋𝑃 = 𝜋  as 𝜋(𝑃 − 1) = 0 and take 𝑄 =
(𝑃 − 1) : 

𝑄 = (

−0.5 0.5 0 0
0 −0.5 0.5 0
0

0.125
0

0.125
−0.5
0.25

0.5
−0.5

) 

 
Transposing this, we obtain the system of equations 

(

−0.5 0 0 0. 125
0.5 −0.5 0 0.125
0
0

0.5
0

−0.5
0.5

0.250
−0.5

) (

𝜋1

𝜋2
𝜋3

𝜋4

) = (

0
0
0
0

) 

 
Writing this in full, we have 

−0.5𝜋1 + 0𝜋2 + 0𝜋3 + 0.125𝜋4 = 0,

0.5𝜋1 + −0.5𝜋2 + 0𝜋3 + 0.125𝜋4 = 0,
0𝜋1 +
0𝜋1 +

0.5𝜋2 +
0𝜋2  +

−0.5𝜋3 +
0.5𝜋3 +

0.250𝜋4 = 0,
−0.5𝜋4 = 0,

 

or 
−0.5𝜋1 = −0.125𝜋4,

−0.5𝜋2 = −0.5𝜋1 − 0.125𝜋4,

−0.5𝜋3 = −0.5𝜋2 − 0.250𝜋4,
−0.5𝜋4 = −0.5𝜋3,

 

 
From this we can write the iterative version, 

−0.5𝜋1
(𝑘+1)

= −0.125𝜋4
(𝑘)

,

−0.5𝜋2
(𝑘+1)

= −0.5𝜋1
(𝑘)

− 0.125𝜋4
(𝑘)

,

−0.5𝜋3
(𝑘+1) = −0.5𝜋2

(𝑘)
− 0.250𝜋4

(𝑘)
,

−0.5𝜋4
(𝑘+1)

= −0.5𝜋3
(𝑘)

,

 

 
which leads to 

𝜋1
(𝑘+1)

= 0.25𝜋4
(𝑘)

, 

𝜋2
(𝑘+1)

= 𝜋1
(𝑘)

− 0.25𝜋4
(𝑘)

, 

𝜋3
(𝑘+1)

= 𝜋2
(𝑘)

− 0.5𝜋4
(𝑘)

, 

𝜋4
(𝑘+1)

= 𝜋3
(𝑘)

. 
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We may now begin the iterative process. Starting with 

𝜋(0) = (0.5 0.25 0.125 0.125) 
we obtain 

𝜋1
(1)

= 0.25𝜋4
(0)

= 0.25 × 0.125 = 0.03125, 

𝜋2
(1)

= 𝜋1
(0)

− 0.25𝜋4
(0)

= 0.5 − 0.25(0.125) = 0.53125, 

𝜋3
(1)

= 𝜋2
(0)

− 0.5𝜋4
(0)

= 0.25 − 0.5(0.125) = 0.3125, 

𝜋4
(1)

= 𝜋3
(0)

= 0.125. 
 

In this case, no further normalization is required because the total of the components of 𝝅(𝟏) 
equals 1. In fact, for any iteration, k + 1 

∑ 𝜋𝑖
(𝑘+1)

= 0.25𝜋4
(𝑘)

+ 𝜋1
(𝑘)

+ 0.25𝜋4
(𝑘)

+ 𝜋2
(𝑘)

+ 0.50𝜋4
(𝑘)

+ 𝜋3
(𝑘)

= ∑ 𝜋𝑖
(𝑘)

4

𝑖=1

4

𝑖=1

 

 
If the initial approximation has components that add up to 1, the sum of the components of 
all approximations to the stationary distribution will always equal 1. By employing the 
iterative Jacobi method, the following series of approximations is produced: 

𝜋(0) =  (.50000, .25000, .12500, .12500), 

𝜋(1) =  (.03125, .53125, .31250, .12500), 

𝜋(2) =  (.03125, .06250, .59375, .31250), 

𝜋(3) =  (.078125, .109375, .21875, .59375). 
⋮ 

(𝐿 + 𝑈)𝑦 = 𝐸x, is produced when  𝑄𝑇 = 𝐸 − (𝐿 + 𝑈) is substituted for 𝑄𝑇𝑦 = 0, and since 𝑬 is 
nonsingular, the eigenvalue equation is obtained. 

𝐸−1(𝐿 + 𝑈)𝑦,        (14) 
 
where the right-hand eigenvector of the matrix 𝐸−1(𝐿 + 𝑈) is 𝑦 and the unit eigenvalue 𝒚 is 
an eigenvalue. The Jacobi iterative method matrix, 𝐻𝐽, will be evident right away. The 

equation (6) shows that the eigenvalue of 𝐻𝐽 is unitary and there is also 𝑸𝑻's zero-column-sum 

attribute. Therefore, the diagonal matrix 𝐸 is written as 

𝑒𝑖𝑗 = ∑ (𝑙𝑖𝑗 + 𝑢𝑖𝑗)𝑛
𝑖=1,𝑖≠𝑗 , 𝑗 = 1, 2, …,  (15) 

 
Gerschgorin's theorem, which states that no 𝐻𝐽 eigenvalue may have a modulus greater than 

one, leads to the statement that for all 𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑙𝑖𝑗 , 𝑢𝑖𝑗 ≤ 0. This theorem states that the union 

of the 𝑛 circular disks with centers 𝑐𝑖 = 𝑎𝑖𝑖 and radii 𝑟𝑖 = ∑ |𝑎𝑖𝑗|𝑛
𝑗=1,𝑗≠𝑖  contains the eigenvalues 

of any square matrix A of order 𝑛. In this way, the stationary probability vector is the 
eigenvector that corresponds to a dominant eigenvalue of 𝐻𝐽, and the Jacobi method is 

comparable to the power method used with the iteration matrix 𝐻𝐽. 

 
Consequently, the Jacobi iteration matrix is represented as 

𝐻𝐽 = (

−0.5 0 0 0
0 −0.5 0 0
0
0

0
0

−0.5
0

0
−0.5

)

−1

(

0 0 0 −0.125
−5 0 0 −0.125
0
0

−0.5
0

0
−0.5

−0.250
0

) = (

0 0 0 0.25
1.0 0 0 0.25
0
0

1.0
0

0
1

0.50
0

)  

The four eigenvalues of this matrix are 
𝜆1 = 1.0,            𝜆2 = −0.7718,       𝜆3 = −0.1141 ± 0,5576𝑖 
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Illustrative example using Gauss–Seidel iterative formulae: by considering the example 
previously solved using Jacobi's approach. 

−0.5𝜋1 = −0.125𝜋4,

−0.5𝜋2 = −0.5𝜋1 − 0.125𝜋4,

−0.5𝜋3 = −0.5𝜋2 − 0.250𝜋4,
−0.5𝜋4 = −0.5𝜋3,

 

We can write the iterative version from this. 

−0.5𝜋1
(𝑘+1)

= −0.125𝜋4
(𝑘)

,

−0.5𝜋2
(𝑘+1)

= −0.5𝜋1
(𝑘+1)

− 0.125𝜋4
(𝑘)

,

−0.5𝜋3
(𝑘+1) = −0.5𝜋2

(𝑘+1)
− 0.250𝜋4

(𝑘)
,

−0.5𝜋4
(𝑘+1)

= −0.5𝜋3
(𝑘+1)

,

 

𝜋1
(𝑘+1)

= 0.25𝜋4
(𝑘)

, 

𝜋2
(𝑘+1)

= 𝜋1
(𝑘+1)

− 0.25𝜋4
(𝑘)

, 

𝜋3
(𝑘+1)

= 𝜋2
(𝑘+1)

− 0.5𝜋4
(𝑘)

, 

𝜋4
(𝑘+1)

= 𝜋3
(𝑘+1)

. 
Now is the time to start the iterative process. To begin with, 

𝜋(0) = (0.5 0.25 0.125 0.125) 
we obtain 

𝜋1
(1)

= 0.25𝜋4
(0)

= 0.25 × 0.125 = 0.03125, 

𝜋2
(1)

= 𝜋1
(1)

− 0.25𝜋4
(0)

= 0.03125 − 0.25(0.125) = 0.0625, 

𝜋3
(1)

= 𝜋2
(1)

− 0.5𝜋4
(0)

= 0.0625 − 0.5(0.125) = 0.1250, 

𝜋4
(1)

= 𝜋3
(1)

= 0.1250. 

It's worth noting that the sum of the components in 𝝅(𝟏) does not equal 1, implying that 
normalization is required. 

‖𝜋(1)‖
1

= 0.34375 

so dividing each element by 0.34375, we obtain 

‖𝜋(1)‖ =  (0.090909, 0.181818, 0.363636, .363636)  =
1

11
(1, 2, 4, 4) 

The sequence of approximations below is computed: 

𝝅(𝟏) = (0.090909, 0.181818, 0.363636, .363636), 

𝝅(𝟐) = (0.090909, 0.181818, 0.363636, .363636), 

𝝅(𝟑) = (0.090909, 0.181818, 0.363636, .363636), 
Gauss–Seidel converges in only one iteration in this example and to understand this, we must 
look at the iteration matrix. 

𝐻𝐺𝑆 = (𝐸 − 𝐿)−1𝑈.    (16) 
In the example considered above, we have 

𝐸 = (

−0.5 0 0 0
0 −0.5 0 0
0
0

0
0

−0.5
0

0
−0.5

),  𝐿 = (

0 0 0 0
−5 0 0 0
0
0

−0.5
0

0
−0.5

0
0

) ,  𝑈 = (

0 0 0 −0.125
0 0 0 −0.125
0
0

0
0

0
0

−0.250
0

) 

𝐻𝐺𝑆 = (𝐸 − 𝐿)−1𝑈 = (

0 0 0 0.25
0 0 0 0.5
0
0

0
0

0
0

1
1

) 

Given that U has non-zero values only in the last column and that 𝐻𝐺𝑆 must have non-zero 
values only in the same column, the final diagonal element may be the only non-zero 
eigenvalue of 𝐻𝐺𝑆. The diagonal elements of the matrix are often identical to the eigenvalues 
of upper and lower triangular matrices. Convergence must occur immediately following the 
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first iteration, as we can see in this example, because the magnitude of the subdominant eigen 
value (here set to 0) regulates the pace of convergence of the power technique when applied 
to Markov chain issues. 
  

As indicated in Equation 1, the Gauss–Seidel technique corresponds to computing the 𝒊𝒕𝒉 
component of the current approximation from 𝑖 = 1, 2, … , 𝑛,, i.e., from top to bottom (3). 
To illustrate the solution direction, this is frequently referred to as forward Gauss–Seidel. A 
backward Gauss–Seidel repetition takes the following shape: 

(𝐸 − 𝑈)𝑌(𝑘+1) = 𝐿𝑌(𝑘),   𝑘 = 0, 1, …,    (17) 
 
In a Jacobi arrangement, the updating process only employs the components from the 
previous iteration, rendering forward and backward iterations useless. Since the iterative 
method in this case essentially works with the inverse of the lower triangular portion of the 
matrix, (𝐸 − 𝐿)−1, and intuitively, the closer this is to the inverse of the entire matrix, the faster 
the convergence. A forward iterative method is typically advised when the elemental mass 
preponderance is found below the diagonal. With the exception of the fact that 𝑀−1 is simple 
to detect, a splitting should be constructed so that M is as similar to 𝑄𝑇 as possible. Using the 
inverse of the top triangle section, (𝐸 − 𝑈)−1, a backward iterative method is used when the 
majority of the non-zero mass is above the diagonal, and it shown that Gauss Siedel method 
converged faster than Jacobi method. 
 
CONCLUSION 
In this work, Jacobi iterative method and Gauss-Seidel iterative method are used to compute 
the solutions of stationary distribution in order to shed more light on the Markov chain's 
stationary distribution solutions. This is done with the aid of several already-existing laws, 
theorems, and formulas of Markov chain and the application of normalization principle and 
matrix operations such as lower, upper and diagonal matrices. The stationary distribution 

vector’s 𝜋𝑖, 𝑖 = 1, 2, … , 4 are obtained for the illustrative example one as 𝜋(3) =
 (0.078125, 0.109375, 0.21875, 0.59375) as well as the four eigenvalues of the matrix as  𝜆1 =
1.0,  𝜆2 = −0.7718,   𝜆3,4 = −0.1141 ± 0.5576𝑖 using Jacobi iterative technique, and for 

illustrative example two using Gauss-Siedel method as 𝝅(𝟑) = (0.090909, 0.181818, 0.363636, 
0.363636). The research shown that Gauss Siedel method converged faster than Jacobi method 
 
 
REFERENCES 
Agboola, S. O. (2021). Direct Equation Solving methods Algorithms Compositions of Lower -

Upper Triangular Matrix and Grassmann–Taksar–Heyman for the stationary 
Distribution of Markov chains, International Journal of Applied Science and Mathematics 
(IJASM), 8(6):  87 – 96.  www.ijasm.org. 

Agboola, S. O. (2022). The Decomposition and Aggregation Algorithmic Numerical Iterative 
Solution Methods for the Stationary Distribution of Markov Chain, Journal of Scientific 
and Engineering, 9(1):  116 - 123. CODEN (USA):  JSERBR. www.jsaer.com. 

Agboola, S. O.  and Ayinde, S. A. (2021). The Performance Measure Analysis on the States 
Classification in Markov Chain, Dutse Journal of Pure and Applied Sciences (DUJOPAS), 
Faculty of Science Journal, Federal University Dutse, Jigawa State. 7(4b): 19-29. 
https://fud.edu.ng/dujopas. DOI: https://dx.doi.org/10.4314/dujopas.v7i4b.4 

Agboola S. O. and Ayinde S. A. (2022). On the Application of Successive Over-Relaxation 
Algorithmic and Block Numerical Iterative Solutions for the Stationary Distribution in 
Markov Chain, Nigerian Journal of Pure and Applied Sciences, University of Ilorin, 35(1): 4263 
-4272. DOI: https://doi.org/10.48198/NJPAS/22.A02 

http://www.ijasm.org/
http://www.jsaer.com/
https://fud.edu.ng/dujopas


Application of Jacobi and Gauss–Seidel Numerical Iterative Solution Methods for the Stationary Distribution of 

Markov Chain  

 

Agboola S. O. et al., DUJOPAS 9 (1a): 127- 138, 2023                                                                                   137 

 

 Agboola, S. O. and Ayoade, A. A. (2021). On the Analysis of Matrix Geometric and Analytical 
Block Numerical Iterative Methods for Stationary Distribution in the Structured Markov 
Chains, International Journal of Contemporary Applied Researches (IJCAR), 8(11):  51 – 65, 
Turkey,  http://www.ijcar.net 

Agboola, S. O. and Ayoade, A. A. (2022). On the Analysis of Block Lower Hess Enberg 
Numerical Iterative Methods for Stationary Distribution in the Structured Markov 
Chains, International Journal of Engineering Research and Applications, 12(1):  07 – 14.  
www.ijera.com 

Agboola, S. O.  and Badmus, N. I. (2021).   Application of Renewal Reward Processes in 
Homogeneous Discrete Markov Chain, FUDMA Journal of Sciences (FJS), Faculties of Earth 
Science and Physical Science Journal, Federal University DutsinMa, 5(4): 210 – 215.  
https://fjs.fudutsinma.edu.ng. DOI: https://doi.org/10.33003/fjs-2021-0504-785 

Agboola, S. O. and Nehad, A.S. (2022). On the Application of Matrix Scaling and Powering 
Methods of Small State Spaces for Solving Transient Distribution in Markov Chain, 
Fudma Journal of Sciences (FJS), Faculties of Earth Science and Physical Science Journal, Federal 
University DutsinMa, 6(1): 135 – 140. https://fjs.fudutsinma.edu.ng. DOI: 
https://doi.org/10.33003/fjs-2022-0601-849. 

Azizah, A., Welastica, R., Nur, F., Ruchjana, B. and Abdullah, A. (2019). An application of 
Markov chain for predicting rainfall data at West Java using data mining approach, 
Earth and Environmental Science 303(1):  203 – 216. 

Clemence, T.  (2019). Markov chain modelling of HIV, Tuberculosis, and Hepatitis B 
transmission in Ghana, Hindawi, Interdisciplinary Perspective on Infectious Disease 27(1): 
204 – 214. 

Gashaye, D. and Tesfaye, K. (2021). Generalized refinement of Gauss-Siedel method for 
consistently ordered 2-cyclic matrices, Hindawi Journal vol. 2021 Article ID 8343207. 
www.dawi.com>journals>aaa. 

Glaister, P. (2016). An analysis of a Jacobi iteration, International Journal of Mathematics 
Education in Science and Technology.  29(2): 195 – 214. DOI: 10.1080/0020739980290204 

Maryam, K. and Ali, D. (2013). Application of iterative Jacobi method for an anisotropic 
diffusion in image processing, Theory of Approximation and Application, 8(2): 41 – 48. 

Moler, C and Van Loan, C. 1(978). Nineteen dubious ways to compute the exponential of a 
Matrix. SIAM Review 20(4): 801 – 836. 

Pesch, T., Schroder, S., Allelein, H. and Hake, J. (2015). A new Markov chain related statistical 
approach for modelling synthetic wind power time series, New Journal of Physics, 
Dentsche Physikalishe  35(2): 64 – 85. 

Philippe, B. and Sidje, B. (1993). Transient Solution of Markov Processes by Krylov 
Subspaces. Technical Report IRISA—Campus de Beaulieu, Rennes, France 11 – 24. 

Ramaswami, V. and Neuts, M. F. (1980). Some explicit formulas and computational methods 
for infinite server queues with phase type arrivals, Journal of Applied Probability 17(1): 
498–514. 

Ramaswami, V. (1988).  A Stable Recursion for the Steady State Vector in Markov chains of 
M/G/1 type. Communication in Statist. Stochastic Models 4(1): 183–188. 

Romanovsky, V.I. (1970).  Discrete Markov Chains, Wolters-Noord off, Groningen, 
Netherlands pp.23 – 44. 

Saff, E. (1973). On the Degree of the Best Rational Approximation to the Exponential Function, 
Journal of Approximation Theory 9(1): 97 – 101.  

Stewart, W. J. (1994). Introduction to the Numerical Solution of Markov Chains, Princeton 
University Press, Princeton N.J 14 – 38. 

Stewart, W. J. (2009). Probability, Markov Chain, Queues and Simulation, Princeton 
University Press, United Kingdom pp. 1- 42. 

http://www.ijcar.net/
http://www.ijera.com/
https://fjs.fudutsinma.edu.ng/
https://fjs.fudutsinma.edu.ng/
https://doi.org/10.33003/fjs-2022-0601-849


Application of Jacobi and Gauss–Seidel Numerical Iterative Solution Methods for the Stationary Distribution of 

Markov Chain  

 

Agboola S. O. et al., DUJOPAS 9 (1a): 127- 138, 2023                                                                                   138 

 

Swanirbhar, M. (2015). A review on Jacobi iterative solver and its hardware based 
performance analysis, Ph.D. Thesis, Image Processing, Published in IEE Conference 
ICPDEN. 

Tesfaye, K. (2017). Second order degree refinement Jacobi iteration method for solving system 
of linear equation, International Journal of Computer Science and Applied Mathematics 3(1): 
5. Doi: 10.12962/j24775401.v3i1.2114. 

Uzun, B. and Kiral, E. (2017). Application of Markov chain-fuzzy states to gold price, Science 
Direct. ELSEVIER 120(1):  365 – 371. 

Vermeer, S. and Trilling, D. (2020): Toward a better understanding of a new user journeys: A 
Markov chain approach. Journalism Journal, 21(1): 879 – 894. 

Zakaria, N. N., Mahmod, O., Rajalmgan, S., Hamita, D., Lazim, A. and Evizal, A. (2019). 
Markov chain model development for forecasting air pollution index of Miri, Sarawak, 
Sustainability 11(1): 5190 -5202. 

Vermeer, S. and Trilling, D. (2020). Toward a better understanding of a new user journeys: A 
Markov chain approach. Journalism Journal 21(1): 879 – 894. 

 


