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Abstract 

Fuzzy T-rough set consists of a set 𝑋 and a T-similarity relation on 𝑋, where T  is a lower semi-
continuous triangular norm. In this paper, axiomatic definition for fuzzy 𝛱-rough sets and its upper 
approximation operator were proposed. The method employed was by relaxing the arbitrary T and 
adopting its special case 𝑇𝑃 (product triangular norm). The results obtained suggests an easier way of 
being specific to the product case of fuzzy rough sets and computations regarding its upper 
approximation operators. Some important propositions and examples were also provided. 
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INTRODUCTION 
The notion of Rough sets was originally proposed by Pawlak (1982). It passed through a 
number of extensions and generalizations. The notion was severally compared to fuzzy set 
which was proposed by Zadeh (1965) to check the notion that is more general than the other. 
Dubois and Prade (1990) found it more natural to combine the two notions of uncertainty 
rather than to have them compete on the same problem. Consequently, they proposed a fuzzy 
rough set and rough fuzzy sets which involve the use fuzzy set and rough set within a single 
framework. They have also shown that the latter is a special case of the former. Morsi and 
Yakout (1998) studied the fuzzy T-rough set with respect to a T-similarity relation R on a 
universe X. They generalized the Farinas, L., Prada, H. (1986) definition for the upper 
approximation operator �̅�: 𝐼𝑋 → 𝐼𝑋  of a fuzzy T -rough set (X, R), given originally for the 
special case T = Min, to the case of arbitrary T. They also proposed a new definition for the 
lower approximation operator 𝐴: 𝐼𝑋 → 𝐼𝑋 of a fuzzy T -rough set (X, R). Motivated by these 

developments, we study the fuzzy T-rough set as a special case , i.e.T = product ( Π ), 

defined as, ∀𝛼, 𝛽 ∈ 𝐼, 𝛼 Π 𝛽 = 𝛼𝛽, where 𝐼 is a unit interval. 
 
NOTATIONS 
Notations  Meaning 

   Product triangular norm 

   Fuzzy set on  

   Fuzzy binary relation on  

   Supremum 

   Constant fuzzy set 
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METHODOLOGY 
Definition 3.1. (Schweizer and Sklar, 1983). A triangular norm (briefly, t-norm) is a binary 

operation on the unit interval  that is associative, symmetric, monotone in each 

argument and has 1 as a neutral element, i.e., it is a function , such that 

: 

(T1). , 

(T2). , 

(T3).  whenever , 

(T4). . 

 

Clement, Mesiar and Pap (2004) the following are the four basic t-norms; the minimum , 

the product , the Łukasiewiczt-norm  and the drastic product  which are respectively 

defined by; 

   .............................................……………………..............(1) 

.................................…….......................................….........(2) 

..........................….……...……………......(3) 

................................………....(4) 

 

The drastic product and the minimum are the smallest and the largest T –norms 

respectively (with respect to the point-wise order). The minimum  is the only T-norm 

where each  is an idempotent element. We have the following strict inequalities between 

the four basic T –norms: 

 ....................................................………...……...........(5) 

 
Definition 2.1. (Ovchinnikov, 1991). Given a lower semi-continuous triangular norm T, a 
fuzzy binary relation 𝑅 on 𝑋  (𝑅 ∈  𝐼𝑋×𝑋) is said to be a T-similarity relation if the following 
conditions are satisfied, ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋: 

i. 𝑅(𝑥, 𝑥) = 1   reflexivity 
ii. 𝑅(𝑥, 𝑦) = 𝑅(𝑦, 𝑥)  symmetry 

iii. 𝑅(𝑥, 𝑧) 𝑇 (𝑥, 𝑦) ≤ 𝑅(𝑧, 𝑦) T-transitivity 
 
Definition 2.2. (Pawlak, 1982). A fuzzy T-rough set (or a fuzzy T-approximation  
space) is a pair (𝑋, 𝑅) where 𝑅 is a T-similarity relation on 𝑋. 
 

Definition 2.3. (Morsi and Yakout, 1998). An operator �̅� on 𝐼𝑋(from 𝐼𝑋 to 𝐼𝑋) is said to be a 
fuzzy 𝑇-upper approximation operator on 𝑋 if it satisfies the following axioms for all 𝜇 ∈

𝐼𝑋, (𝜇𝑗 ∈ 𝐼𝑋 for all 𝑗 ∈ 𝐽, where 𝐽 is an index set), for all 𝑥, 𝑦 ∈ 𝑋 and all 𝛼 ∈ 𝐼: 

(U1). �̅�𝜇 ≥ 𝜇 
(U2). �̅��̅�𝜇 = �̅�𝜇 

(U3). �̅�(⋁ 𝜇𝑗𝑗∈𝐽 ) = ⋁ �̅�𝜇𝑗𝑗∈𝐽  

(U4). �̅�(1𝑥)(𝑦) = �̅�(1𝑦)(𝑥) 

(U5). �̅�(𝛼 T μ) = 𝛼 T �̅�𝜇 
 
Proposition 2.4.(Morsi and Yakout, 1998). Let 𝑅 be a T-similarity relation on 𝑋. Define an 
operator �̅�𝑅 on 𝐼𝑋 by, 
�̅�𝑅𝜇(𝑥) = 𝑠𝑢𝑝𝑢∈𝑋(𝑅(𝑢, 𝑥) 𝑇 𝜇(𝑢))........................................................................…….....(6) 
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for all 𝜇 ∈ 𝐼𝑋 and 𝑥 ∈ 𝑋. Then �̅�𝑅 is an upper approximation operator. 
 
In  next section, the arbitrary T used in Definitions 3.2, 3.3 and 3.4 was relaxed and adopted a 

product triangular norm  (also denoted by ). Consequently, new definitions were 

established, namely; -similarity relation, fuzzy -rough sets and fuzzy -upper 

approximation operator. 
 
RESULTS AND DISCUSSION 
 
Definition 3.1. A fuzzy binary relation 𝑅 on 𝑋 (𝑅 ∈ 𝐼𝑋×𝑋) is said to be a Π-similarity relation 
if ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑋 the following conditions are satisfied: 
(S1). 𝑅(𝑎, 𝑎) = 1   Reflexive 
(S2). 𝑅(𝑎, 𝑏) = 𝑅(𝑏, 𝑎)  Symmetric 
(S3). 𝑅(𝑎, 𝑐) Π 𝑅(𝑎, 𝑏) ≤ 𝑅(𝑐, 𝑏)    Π-transitive 
 
Definition 3.2. A fuzzy Π-rough set (or a fuzzy Π-approximation space) is a pair (𝑋, 𝑅) where 
𝑅 is a Π-similarity relation on 𝑋. 
 

Definition 3.3. An operator �̅� on 𝐼𝑋 is said to be a fuzzy Π-upper approximation operator on 
𝑋 if the following axioms are satisfied ∀𝜇 ∈ 𝐼𝑋, 𝑎, 𝑏 ∈ 𝑋, 𝛼 ∈ 𝐼: 

(U1). �̅�𝜇 ≥ 𝜇 
(U2). �̅��̅�𝜇 = �̅�𝜇 

(U3). �̅�(⋁ 𝜇𝑗𝑗∈𝐽 ) = ⋁ �̅�𝜇𝑗𝑗∈𝐽  

(U4). �̅�(1𝑎)(𝑏) = �̅�(1𝑏)(𝑎) 
(U5). �̅�(𝛼 Π μ) = 𝛼 Π �̅�𝜇 
 

Proposition 3.4. Suppose 𝑅 is a Π-similarity relation on 𝑋, then ∀𝜇 ∈ 𝐼𝑋, 𝑎 ∈ 𝑋 an operator �̅�𝑅 
on 𝐼𝑋 defined by: 

�̅�𝑅𝜇(𝑎) = ⋁ (𝑅(𝑢, 𝑎) Π 𝜇(𝑢))𝑢∈𝑋 ……...…………………………………….……...(7) 
is a fuzzy Π-upper approximation operator on 𝑋. 
 
Proof: 
Let 𝑎, 𝑏 ∈ 𝑋, 𝜇 ∈ 𝐼𝑋, 𝜇𝑗 ∈ 𝐼𝑋 for all 𝑗 ∈ 𝐽, then 

i. �̅�𝑅𝜇(𝑎) ≥ 𝑅(𝑎, 𝑎)Π𝜇(𝑎) = 1 Π (𝑎)𝜇 = 𝜇(𝑎)   by (S1) 

ii. �̅�𝑅�̅�𝑅𝜇(𝑎)      = ⋁ (𝑅(𝑢, 𝑎) Π �̅�𝑅𝜇(𝑢))𝑢∈𝑋  

                            = ⋁ ⋁ (𝑅(𝑢, 𝑎) Π 𝑅(𝑣, 𝑢) Π 𝜇(𝑣)),𝑣∈𝑋𝑢∈𝑋 Π is associative 
         ≤ ⋁ (𝑅(𝑎, 𝑎) Π 𝑅(𝑣, 𝑎) Π 𝜇(𝑣))𝑣∈𝑋  By (S3) 
          = ⋁ (1 Π 𝑅(𝑣, 𝑎) Π 𝜇(𝑣))𝑣∈𝑋  
          = ⋁ (𝑅(𝑣, 𝑎) Π 𝜇(𝑣))𝑣∈𝑋  
          = �̅�𝑅𝜇(𝑎) 
        Therefore, �̅�𝑅�̅�𝑅𝜇 ≤ �̅�𝑅𝜇, and by (i) equality follows, i.e.�̅�𝑅�̅�𝑅𝜇 = �̅�𝑅𝜇 
 

iii. �̅�𝑅(⋁ 𝜇𝑗𝑗∈𝐽 )(𝑎)  = ⋁ (𝑅(𝑢, 𝑎) Π ⋁ 𝜇𝑗𝑗∈𝐽 (𝑢))𝑢∈𝑋  

                       = ⋁ ⋁ (𝑅(𝑢, 𝑎) Π 𝜇𝑗(𝑢))𝑗∈𝐽𝑢∈𝑋    

            = ⋁ (⋁ (𝑅(𝑢, 𝑎) Π 𝜇𝑗(𝑢)𝑢∈𝑋 )𝑗∈𝐽  

             = ⋁ �̅�𝑅𝜇𝑗𝑗∈𝐽 (𝑎) 

 

iv. �̅�𝑅(1𝑎)(𝑏) = ⋁ (𝑅(𝑢, 𝑏) Π (1𝑎)(𝑢))𝑢∈𝑋 = 𝑅(𝑎, 𝑏) = �̅�𝑅(1𝑏)(𝑎) By symmetry of 𝑅 

        Therefore, 𝑅(𝑎, 𝑏) = 𝑅(𝑏, 𝑎) 
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v. �̅�𝑅(𝛼Πμ)(𝑎) = ⋁ (𝑅(𝑢, 𝑎) Π (𝛼 Π μ)(𝑢))𝑢∈𝑋  

                      = 𝛼 Π (⋁ (𝑅(𝑢, 𝑎) Π 𝜇(𝑢)𝑢∈𝑋 ) 

                      = 𝛼 Π �̅�𝑅𝜇(𝑎) 

 Hence, �̅�𝑅 having satisfied (U1) – (U5) is a fuzzy Π-upper approximation operator on 
 𝐼𝑋. 
 

Proposition 3.5.  Let �̅� be a fuzzy Π-upper approximation operator on 𝐼𝑋 . Define a fuzzy 
binary relation 𝑅�̅� on 𝑋 by, ∀𝑎, 𝑏 ∈ 𝑋: 
   𝑅�̅�(𝑎, 𝑏) = �̅�(1𝑎)(𝑏)………………………………………….…...(8) 
Then, 𝑅�̅� is a Π-similarity relation. 
 
Proof: 

i. 𝑅�̅�(𝑎, 𝑎) = �̅�(1𝑎)(𝑎) ≥ (1𝑎)(𝑎) = 1  By (U1) 
ii. 𝑅�̅�(𝑎, 𝑏) = �̅�(1𝑎)(𝑏) = �̅�(1𝑏)(𝑎) = 𝑅(𝑏, 𝑎) By (U4) 
iii. 𝑅�̅�(𝑎, 𝑏) = �̅�(1𝑎)(𝑏) = �̅�(�̅�(1𝑎)(𝑏))  By (U2) 

             = ⋁ (�̅�(1𝑢)(𝑏) Π �̅�(1𝑎)(𝑢))𝑢∈𝑋   By (7) 

             = ⋁ (𝑅(𝑢, 𝑏) Π 𝑅(𝑎, 𝑢))𝑢∈𝑋 . 
Hence (i) - (iii) shows that 𝑅�̅� is reflexive, symmetric and Π-transitive, which proves 
that 𝑅�̅� is a Π-similarity relation on 𝑋. 

The results obtained would be an important tools  for handling fuzzy rough sets based on the 
product triangular norm. The axiomatic definitions for fuzzy T-rough sets and its 
approximation operators provided in the existing literatures such as Morsi, N. N., Yakout M. 
M. (1998), Mi, J. S., Zhang, W. X. (2004), and Guilong, L. (2008) can only handle a fuzzy rough 
set based on the general case of the triangular norm without being specific to a particular one. 
 
Example 3.6: Let 𝑋 = {𝑎, 𝑏, 𝑐}. Define a fuzzy binary relation on 𝑋 by: 

           𝑎  𝑏    𝑐 

𝑅 =
𝑎
𝑏
𝑐

(
1 0.3 0.8

0.3 1 0.3
0.8 0.3 1

) 

 
i. 𝑅(𝑎, 𝑎) = 𝑅(𝑏, 𝑏) = 𝑅(𝑐, 𝑐) = 1 𝑅 is reflexive 

 
ii. 𝑅(𝑎, 𝑏) = 𝑅(𝑏, 𝑎) = 0.3 
 𝑅(𝑎, 𝑐) = 𝑅(𝑐, 𝑎) = 0.8 
 𝑅(𝑏, 𝑐) = 𝑅(𝑐, 𝑏) = 0.3  𝑅 is symmetric 
 
iii. 𝑅(𝑎, 𝑏) Π 𝑅(𝑎, 𝑐) = 0.3 Π 0.8 = 0.24 < 𝑅(𝑏, 𝑐), 

𝑅(𝑏, 𝑎) Π 𝑅(𝑏, 𝑐) = 0.3 Π 0.3 = 0.09 < 𝑅(𝑎, 𝑐), 
 𝑅(𝑐, 𝑎) Π 𝑅(𝑐, 𝑏) = 0.8 Π 0.3 = 0.24 < 𝑅(𝑎, 𝑏) 𝑅 is Π-transitive. 
 Hence 𝑅 is a Π-similarity relation on 𝑋 and the pair (𝑋, 𝑅) is a fuzzy Π-rough 

  set. 
Now consider (7) and let 𝜇 = (𝑎0.2, 𝑏0.5, 𝑐0.8), then 

 �̅�𝑅𝜇(𝑎) = ⋁(𝑅(𝑎, 𝑎) Π 𝜇(𝑎), 𝑅(𝑏, 𝑎) Π 𝜇(𝑏), 𝑅(𝑐, 𝑎) Π 𝜇(𝑐)) 

    = ⋁(1 Π 0.2, 0.3 Π 0.5, 0.8 Π 0.8) 
    = ⋁(0.2, 0.15, 0.64) 
    = 0.64 
 �̅�𝑅𝜇(𝑏)  = ⋁(𝑅(𝑎, 𝑏) Π 𝜇(𝑎), 𝑅(𝑏, 𝑏) Π 𝜇(𝑏), 𝑅(𝑐, 𝑏) Π 𝜇(𝑐)) 
     = ⋁(0.3 Π 0.2, 1 Π 0.5, 0.3 Π 0.8) 
     = ⋁(0.06, 0.5, 0.24) 
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     = 0.5 
 �̅�𝑅𝜇(𝑐) = ⋁(𝑅(𝑎, 𝑐) Π 𝜇(𝑎), 𝑅(𝑏, 𝑐) Π 𝜇(𝑏), 𝑅(𝑐, 𝑐) Π 𝜇(𝑐)) 

   = ⋁(0.8 Π 0.2, 0.3 Π 0.5, 1 Π 0.8) 
   = ⋁(0.16, 0.15, 0.8) 
   = 0.8 

           Therefore, �̅�𝑅𝜇 = (𝑎0.64, 𝑏0.5, 𝑐0.8) 
 
CONCLUSION 
The concept of fuzzy T-rough sets was used to establish a fuzzy Π-rough set (also called a 
fuzzy Π-approximation space). Π-similarity relation was defined and used as the determinant 
of the fuzzy Π-rough set. Some important propositions were provided with counter examples. 
Meanwhile, the same concept can be extended to some other special cases of continuous 
triangular norm such as Minimum (denoted by m or ˄), Luckasiewicz conjunction (denoted 
by W) etc. 
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