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Abstract 
Nutrient demands of plants are fulfilled via nutrient uptake by the roots, even though minor 
quantities of certain nutrients might be assimilated via leaves. For the reason that the majority of 
nutrients are assimilated by roots, an understanding of root morphology and cell structure is crucial 
in knowing this basic plant process. Nutrient achievement by plants hinges on ion applications on 
superficial, root assimilation capacity, and plant requirement. Movement of ion in plant cells is 
classified into active and passive. Ion concentrations in the cytoplasm of plant cells are frequently and 
considerably observed to be greater than in soil solutions. Consequently, roots ought to be able to take 
up ions in contrast to broadly diverse concentration gradients. Currently, two major theories of ion 
transport across membranes are reported in literature: carrier theory where carrier agents accountable 
for transferring ions from one side of membrane to the other; encounter specific ions for which they 
have attraction, form carrier ion complexes; and move across membranes and connecting ATPase 
theory of ion transport; which is related with the plasmalemma and is activated by cations; the ion 
pump theory, which is a demanding proces, transporting via electrochemical gradient. Measurements 
of ion uptake could be achieved through tracer techniques. Long-distance transport of ions to shoots 
happens in the vascular system, with water being the transporting agent. New and stimulating 
developments in mineral uptake mechanism of plants have momentously added to our understanding 
of the function of nutrients uptake in plants. Most research comparative to physiology of nutrient 
uptake has been conducted under controlled environment by means of particular nutrient cultures in 
the growth medium. 
 
Keywords: Nutrient, Ion uptake kinetics, Ion absorption measurement, Ion translocation.   
 
 
Introduction  
Nutrients are dimensionally and transitory varied in the soil and, hence, plants have 
advanced to have great and small attraction transporters for uptake athwart nutrient 
concentration gradients (Shin et al., 2004; Griffiths et al., 2021). Nutrient acquisition by plants 
is intricate and energetic because soil, climate and plant factors and interactions are 
concerned (Wilfahrt et al., 2021). Most studies on physiology of mineral nutrient acquisition 
have been conducted under controlled environments using specific nutrient cultures in the 
growth medium. Such studies, as observed by Fageria et al. (2006) and Jayakumar et al. 
(2019), are crucial for knowing elementary values of nutrient uptake and assimilation; but 
could lack some vital characteristics once plants are cultivated in field environments for 
commercial commitment. Nutrient absorption via roots is the main machinery to fulfil 
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nutritive requisite of plants, even though little quantities of some nutrients may be absorbed 
through leaves if applied as foliar sprays or are pollutants in the atmosphere (Barber, 1995; 
Alaoui et al., 2022). In unique conditions such as 
wherever deficiencies must be relieved instantly, these micro-nutrients are applied through t
he leaves (Rajasekar et al., 2017). The fact that majority of nutrients are absorbed by roots, dis
cussion of root morphology and cell structure is fundamental in understanding 
nutrient uptake processes in plants. Hence, the objective of this paper is to review root morp
hology, active and passive ion transport, ion uptake mechanisms, carrier ion transport theor
y, ATpase theory of ion transport, ion absorption measurement, and ion translocated from 
roots to shoots. 
 
Root morphology 
Plant roots accomplish significant roles as they not only serve the function of holding the 
plant in position, but also absorb water and nutrients from the soil, and are the location 
where useful and morbific organisms interact in the rhizosphere (Paez-Garcia et al., 
2015). Plant root system is in charge of acquiring soil resources (Louvieaux et al., 2020). 
Significant characters of root morphology include root hairs (Marin et al., 2021), epidermis (T
akada and Iida, 2014; Nyainleta et al., 2022), cortex (Kim et al., 2022), and stele (Tomescu, 
2021). In the process of their absorption, ions transfer via epidermis, cortex, endodermis, and 
stele and drain into the xylem after which the ions are carried from the xylem to shoots (Bao 
et al., 2019). Photosynthetic assimilates are conveyed by phloem tissue from the leaves and 
shoots to roots in the course of plant development (De 
Schepper et al., 2013; Liesche and Patrick, 2017; Babst et al., 2022). There are two analogous ro
utes for solute transportation, through cortex cells, before reaching stele and they are passag
eway through extracellular location or apoplast cell walls and intercellular locations, and; pa
ssage from cell to cell in the symplast via plasmodesmata to cellular particles and to vacuole 
sections inside cells (Marschner, 1995; Kim et al., 2018; Aubry et al., 2019). 
 
Effective or active nutrient uptake takes place across cells bounded by membranes. 
Vacuoles, nuclei, chloroplasts, ribosomes, and mitochondria are implanted within cells 
(Mengel and Kirkby, 1978; Mathur, 2020). Plasma membranes attach to the cytoplasm and ce
ll wall, whereas tonoplast membranes distinct the cytoplasm from the vacuole; plasmalemm
a membranes form borders between cells and the external medium, and it is these 
membranes (not cell walls) that make active barriers against uptake of ions and molecules 
suspended in aqueous outer media (Gronnier et al., 2018; Ackermann and Stanislas, 2020).Pl
ant cell organs that execute specific roles accelerating plant growth and development includ
e vacuoles, which perform the function of water economy of cells as well as providing locati
ons for separating of water end products of metabolism (Meyer et al., 2010; Hedrich, 2012; Jia
ng et al., 2021); chloroplast, which are places for light energy conversion and CO2 

assimilation (Bose et al., 2017; Song et al., 2021); mitochondria, which enclose 
enzymes monitoring numerous stages of metabolism such as the tricarboxylic acid (TCA) cy
cle, respiration, and fatty acid metabolism (Jacoby et al., 2012; Taylor, 2018; Wang et 
al., 2022); ribosomes, which are supermolecular assemblies comprised of ribosomal nucleic a
cids and proteins empowering production of polypeptides from free amino acids (Martinez-
Seidel et al., 2020); plasmodesmata (PD) are fenced plant cell wall networks that permit the 
transport of molecules between cells and perform significant functions throughout plant 
development and in the arrangement of cellular and systemic signaling 
responses throughout the period of communications of plants with the living and non-living
 environment (Huang and Heinlein, 2022). 
 
Biological membranes are made up of protein and lipid molecules (Jacobson et al., 2019) 
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In almost equivalent sizes and about 7 to 10mm thick. Biological membranes are not totally i
mpervious and such may permit diffusion of hydrophilic ion and molecules but the degree o
f perviousness rest on constituents building up the membranes (Mengel and Kirkby, 1978; 
Watson, 2015; Kalkan and Eşrefoğlu, 2022). A unit membrane model was suggested by 
Danielli and Davson (1935), in which individual unit contains binary lipid molecules layers 
with their hydrophobic ends (fatty acids) slanted to innermost (Marschner, 1995; Watanabe 
et al., 2019). Singer (1972) propositioned a membrane model comprising largely of liquid 
amphiphilic existing in the model. Lipids and proteins 
may be compelled by electrostatic, H, and aquaphobic link (Mengel and Kirkby, 1978; Pöyry 
and Vattulainen, 2016; Noack and Jaillais, 2020). Walker (1976) reported that certain 
proteins may even spread over membranes to form protein networks from one side of a me
mbrane to another (Cournia et al., 2015; Chatzigoulas and Cournia, 2022). These protein 
networks can be considered hydrophilic openings through which polar solutes such as ions 
can be translocated (Corradi et al., 2019). 
 
Active and passive ion transports 
Ion transportation in plants is accomplished in two ways and they include active and 
passive ion transports, with each having its distinct characteristics. Active ion transport is ch
aracterized by ions moving against concentration gradients (Stillwell, 2013; Griffiths and Yor
k, 2020). Ion movement depends onelectrochemical potential gradients and the attractions of
 cations and anions to negative electropote-ntials and positive electropotentials, respectively 
(Alaoui et al., 2022). Passive ion transport is categorized by movement of ions from higher to 
lower concentrations or down chemical gradients of potential energy (Tomkins et al., 2021). 
It should be observed that, electrochemical potentials are recognized through membranes 
due to uneven charge allocations (Kisnieriene et al., 2019). Discrepancies between membrane 
potentials and actual potentials formed by non-equilibrium allocations is a 
degree of quality of energy needed (Fageria et al., 2006; Baklouti et al., 2023). Electrical charge
, therefore could be computed by means of a revised Nernst equation explained by Ting 
(1982), as stated below: 

  Ψ = (-RT/ZF/In (ai/a0) 
Where Ψ = electrochemical potential between root cells and external solutions in mullivolts 
(MV); R = gas constant (8.3J/mol K); T = absolute temperature (K); Z = net charge on ion 
(dimension less); F = Faraday constant (96, 400 J/mol); ai = activity of ion inside a tissue, and 
a0 = activity of ion outside a tissue. For speedy computations, it is 
expedient to recall that RT/F = 26 mV (Fageria et al., 2006; Farhangi-Abriz and Ghassemi-Go
lezani, 2023). 
 
Measurement of electrochemical potential  
Measurement of electrochemical potential in cells and external media is valuable because it 
helps in understanding ionic concentrations in cells and the external media. Secondly, it 
suggests whether ions are transported actively or passively (Fageria et al., 2006; Farhangi-Ab
riz, and Ghassemi-Golezani, 2023). When Nernst equation is employed in computing 
electrical potentials, negative values designate passive uptake and positive values show 
passive uptake for anions (Mengel and Kirkby, 1978; Ciribelli et al., 2020). Measurements are 
only effective when equilibrium state is sustained in the system, which according to Fageria 
et al. (2006), is difficult under practical situations. Hodges (1973) stated that electrical 
potential variances across tonoplasma membranes are in the range of -60 to -200 mV 
(cytoplasm negative), and electrical potential variances athwart tonoplasts are relatively low 
at 0 to -20mV, with cytoplasm values being negative compared to vacuole values (Vodeneev 
et al., 2015; Lyu and Lazár, 2017; Kowacz and Pollack, 2020). 
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The mechanisms of ion uptake  
The kinetic outline of ion uptake rates athwart roots, known as ion influx isotherms, were 
initially recognized in the 1960s by the pioneer study of Emanuel Epstein with 86Rb or 42K 
radioactive tracers for potassium uptake in barley (Le Deunff et al., 2016). 
 
Ion uptake mechanism is best understood when ions are more concentrated in the cytoplasm 
than in soil solutions, and extreme cases may be 10, 000 –fold higher (Alaoui et al., 2022). In 
view of this, plant roots must be able to absorb ions against widely diverse concentration 
gradient; a particular ion involves metabolic energy for it to move ion against concentration 
gradients or against electrochemical gradient; and in such circumstance it is labeled as active 
uptake (Griffiths and York, 2020). There are two major theories of ion transport across 
membrane, now described in literature, and are the 
carrier theory and the ion pump theory (Mengel and Kirkby, 1978; Hedrich, 2012; Ragel et 
al., 2019; Unsuree et al., 2021). 
 
Carrier ion transport theory  
The carrier ion transport theory refers to agents in charge of transferring ions from one 
part of membranes to the another (Lombard, 2014; Stillwell, 2016; Wang et al., 2018). Carrier 
proteins have properties comparable to that of enzymes, though, unlike enzymes, 
they have not been sequestered and categorized (Heinemann et al., 2021). Currently, quantif
ying the actions of the carriers has not been realized (Eisenberg, 1990; Alberts et al., 2002; Fag
eria et al., 2006; Grabarczyka et al., 2015; Gyimesi and Hediger, 2022). The carrier theory 
states that carriers encounter specific ions for which they have attraction, from carrier ion 
centres, and pass across membranes, then, the enzyme phosphatase situated at innermost 
membrane-bound increases, splits off phosphate from carrier complexes, and ions are 
discharged (Mengel and Kirkby, 1978; Alaoui et al., 2022). Marschner (1995) and (Tyutereva 
et al., 2022) observed that, in this transport 
process, energy is essential and participation of adenosine triphosphate (ATP) is usually rec
ounted. Fageria et al. (2006) and Griffiths and York (2020) reported that high energy 
molecule ATP is produced from adenosine diphosphate (ADP) = inorganic P (Pi) from 
respiration (oxidative phosphorylation reactions). 
The following equations describe the mechanism of the uptake (Mengel and Kirkby, 1978) as 
in Fageria et al. (2006): 

 
                  Carrier +                                     Carrier P + ADP                           (1.2) 
   
  Carrier P + Ion                                  Carrier P – Ion                       (1.3) 
 
  Carrier   P – Ion                                Carrier + Pi + Ion                  (1.4) 
 
  Net: Ion + ATP                                Ion + ADP + Pi                     (1.5) 

 
ATPase theory of ion transport  
Prior to early 1970s, little or nothing was known about the ATPpase theory of ion transport 
in plants (Palmgren and Morsomme, 2019). Hodges (1973) proposed an ATpase theory of 
ion transport in plants. Later, the method was labeled by Mengel and Kirkby 
(1978) and Clarkson (1984). Fageria et al. (2006) and Kabała and Janicka (2023) reported that 
ATpase is a group of enzymes having the ability to break ATP into ADP and Pi, and energy 
released from these reactions can be used in ion transport across membrane- a process 
known as activation of ATP, and which is connected with the plasmalemma and triggered 
cations (Hodges et al., 1972; Falhof et al., 2016; Zharova et al., 2023). 

Kinase 

Phosphatase  

Transport   

https://journals.physiology.org/doi/full/10.1152/physrev.00038.2011
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The kinetics of ion uptake  
This is an enzyme kinetic hypothesis related to membrane transport. Various reviewers like 
Clarkson and Hanson (1980); Epstein (1973); Nissen (1974); Nissen et al. (1980); Fageria 
(1984), Griffiths and York (2020) have discussed widely on ion uptake kinetic, and 
designated it as transport of ions into plants cells; which may be comparable to association 
between attachment of substrates to enzymes and discharge of their products 
subsequent to catalysis (Epstein and Hagen, 1952). Segel (1968), Robinson (2015) and Mu et 
al., 2020 posited that complete order of activities in enzyme catalyzed reaction is:                              
                                    

 S                             E   
The above may be represented as  

E + S        E S         EX          EY        EZ          E – P         P + E  
The enzyme (E) first combines with substrate (S) to form an enzyme substrate complex (ES). 
On the surface of enzymes, substrates may go through one or more intermediate forms (X, 
Y, Z) and lastly transformed to an ultimate product (P) (Segel, 1968; Robinson, 2015; 
Udema, 2023). The final product separates permitting free enzymes (E) to activate again. The 
next step is wherein uptake by plants follows hyperbolic relationships with growing 
concentrations (Up to ~ 200 mmol/m3) in the growth medium (Ingestad, 1982; Overman, 
2012). Uptake rates at given concentrations can be projected as: V = (Vmax Ci) / (Km + Ci) 
Where Vmax = maximum velocity, Ci = concentration of ion in the growth medium, and Km = 
Michalis constant equal to substrate ion concentration giving half maximal rates of 
uptake.  Small values or Km indicate high attraction between ion and carrier; straight lines 
are generally attained if uptake rates and concentrations are plotted as reciprocates 
(Clarkson, 1974; Khan, 2021); plotting rates of uptake (V) against V/C and Vmax occur so that 
Vmax/Km can be extrapolation of experimental slopes to the ordinates and abscissas, and or 
extrapolation of these lines offer intercepts at 1/Vmax, the concentration at half maximal 
velocity equivalent to Km.  
Ion absorption in otherm has been defined to be comparative to 1max, Km, and E with the 
projected equation  

1max = (1max Ci)/ (Km + Ci – Cmin)    (1.7) 
Where 1max =maximum net entry of ions into roots, nmol.m-2, S-2, Cmin = value of C10 (C10 = 
ion concentration in solution at the root surface, mmol. L-1) where = influx and h = O,  
mmol. L-1) (Barber, 1995). At concentrations above zero, uptake rates were discovered to be 
zero and was consequently called efflux (E) from roots (Barber, 1995). It is important 
to note that ion uptake kinetic values differ with plant age, nutrient concentration, temperat
ure, root morphology, plant demand for nutrients, and analytical technique used to 
make measurements (Fageria et al., 2006; Meychik et al., 2021).  An uninterrupted flow metho
d for measuring nutrient uptake kinetics, by Hai and Laudelout (1966), Fageria (1973, 1976), 
Fageria et al. (2006) and Baiyin et al. (2021) described, is established on the fact that rates of n
utrient uptake (U) are equivalent to products of flow rate (F) and variances between concent
rations of solutions entering systems (Co) and those of outgoing solutions (Cs). 
 
The importance of solution flow rates in smooth culture trials and that of the definite flow 
rates essential for a specific experiment will rest on type and intensity of ion, plant stage of 
development, productivity of roots in absorbing verified ions, and circumstances of research 
(Edward and Asher, 1974; Baiyin et al., 2021). According to Clarkson (1984) the reaction of 
1max and Km in the transport method to physical and metabolic influences 
can offer certain perception into the overall nature of procedures stirring ions through mem
branes. Association between ion and concentration and consumption rate were reported to 
be more complex when concentrations differed over extensive scopes (Epstein et 
al., 1963; Griffiths and York, 2020). Mechanisms were proposed to work in sequences, one at 
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the plasmalemma and one at the vacuolar membrane or tonoplast (Laties, 1969; Alaoui et al., 
2022). Uptake mechanisms go on unaffected over varied concentration series, but their 
features adjust at definite distinct outside concentrations (Nissen, 1974; Le Deunff et al., 2016; 
Saibi and Brini, 2021). Ion absorption data were revisited in many plant species and it was 
concluded that ion uptake in higher plants can be explained by multiphasic mechanisms 
which account for ostensible opposing evidence for analogous and sequence models (Nissen 
et al., 1980; Wang et al., 2023). 
 
Methods for measuring ion uptake  
The most popular methods of measuring ion uptake or absorption are by tracer techniques 
that use excised roots. The major limitation of these techniques is that they tend to overlook 
huge quantities of ion carried across roots into the xylem and lastly to shoots. This is to say 
that, in reality, only little percentage of nutrients absorbed are reserved in roots, and greater 
percentage are transferred to shoots (Asher and Ozanne, 1967; Loneragan and Snowball, 
1969, Chalk and Smith, 2020). Consequently, determination of ions in both roots and shoots 
should be carried out in ion absorption experiments (Fageria et al., 2006; Abdolzadeh et al., 
2008; Griffiths and York, 2020). Chemical evaluations are repeatedly in use to calculate 
amounts of nutrient absorption by roots, and this is attributed to approximating fluctuations 
in nutrient composition in both roots and shoots. The absorption method is attained by 
finding the average of the values over some days (Pitman, 1976; Lamshoeft et al., 2018). The 
rate of monovalent cation uptake is usually 
greater than that of polyvalent cations in crop plants (Fageria, 1973; Belatus, 2018). Monovol
ent ions are absorbed more rapidly than divalent or polyvalent ions of analogous hydrated 
radii and ions of small radii are absorbed quicker than ions with great hydrated radii 
(Fageria et al., 2006; Bhardwaj et al., 2020).   
 
Uptake rates from nutrient solution of 100-day old rice plants were examined to be much 
greater for K+ compared to Mg2+. These disparities in uptake rates prove that uptake 
mechanisms for K+ are more applicable and discriminating than for Mg2+ (Zhang et al., 
2017). Also, efficient uptake mechanisms ought to occur for NO3- and HPO4-, and 
presumably for NH4+ and Cl-. Plant cells demand these dynamic uptake machineries to 
propel appropriate inorganic ions in a short period; which are crucial for great plant growth 
rates. Although NO3-, NH4+, and HPO4- are required for production of many organic 
compounds, great amounts of K+ are criterion for optimum stimulation of several 
enzymes and stability of cellular osmotic concentrations (Zhu et al., 2021). Dry matter of und
eveloped tissues was described as having greater concentrations of N, P and K than grown u
p tissue (Mengel, 1974b; Burns, 1992; Reddy et al., 2000; Sitienei et al., 2013; Souri et al., 
2019). Certain corporeal attributes of ions effect their rates of uptake. The most significant of 
these attributes are charge and hydrated radii (Hiatt and Leggett, 1974; Gransee 
and Führs, 2013; Griffiths and York, 2020). 
 
How ions are transported from roots to shoots 
The mechanism of ion transport from roots to shoots can be described through the following 
steps: the first step is that of absorption of ions by roots. Long-distance transport of ions to 
shoot transpires in the vascular system of the xylem and phloem, and principally in the 
xylem vessels with water being conveying agent (Fageria et al., 2006; Alaoui et al., 2022). 
Xylem transport is motivated by gradients in hydrostatic pressure in roots. Notwithstanding 
gradients in water potential and solute movement in the xylem from roots to shoots is one-
way, long-distance transport of solutes in the phloem, which has living sieve tubes, is two-
way; increase in transportation rates of plants improve both uptake and translocation of 
mineral nutrients in the xylem (Marschner, 1995; Schenk et al., 2020). Tanner and Beevers 
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(1990) and Blevins (1994) reported that transpiration of water hastens movement of greatest 
elements in the xylem, but transpiration is not essential for movement of ions in the 
xylem. Concentrations of many elements (e.g., K and P) were higher in phloem sap than in 
xylem sap (Blevins, 1994; Killiny, 2019). Nitrate, Mn, and B are comparatively phloem steady 
(Fageria et al., 2006; Renseigné et al., 2007). According to Larcher (1995) the rate-limiting 
phases in the nutrient translocation chain are uptake, conduction, and liberations of ions by 
the symplast into roots, as the transpiration stream is usually capable of transporting high 
amounts of mineral nutrients. Larcher (1995) also reported that nutrients absorbed by roots 
can be moved adequately to the shoots, even if velocity of the transpiration stream in the 
xylem is low. The phloem plays a fundamental role in distribution of nutrients. Phloem and 
xylem tissues are connected at many locations onward the transport system, predominantly 
in roots and nodes of stem (Schuetz et al., 2013; Liesche and Patrick, 2017). 
 
Conclusion  
The uptake or acquirement of nutrients by plants is active and multifaceted. Absorption 
kinetics are generally more vital than thermodynamics in recounting uptake. It should be 
noted that rates of nutrient absorption by roots are determined by nutrient providers to root 
surfaces, active absorption by roots and plant request for nutrient from the xylem, ions are 
transported to growing organs in shoots for metabolic processing. Energy is mandatory for 
this process, which is provided through respiration. Kinetic evidence is providing acumens 
into nature of ion carriers. Most ion uptake studies have been of short duration in solution 
culture experiments using excised roots. An important constituent of 
ion uptake in higher plants is the existence of electrogenic proton pumps, which encompass 
plasmalemma. Movements of cations such as K+ possibly happen through membrane 
networks and down electrochemical gradients. Although not hitherto copiously categorized,
 carriers for anions such as nitrate occur. Nitrate uptake is inducible in roots of advanced 
plants. 
 
New and exciting development in mineral nutrient research in the past few decades have 
greatly contributed to our understanding of the role of essential nutrients in improving 
yields of annual crops. However, research in mineral uptake of crops in not without 
obstacles. Most research relative to physiology of nutrient acquisition has been conducted 
under controlled environment using specific nutrient cultures in the growth medium. Such 
research may lack some important aspects when plants are growth under field conditions 
for economic purpose. Nutrient concentrations, temperature, pH, humidity, diseases, 
insects, and weeds can be controlled when plants are grown in controlled environments. 
Controlling these factors at an appropriate level is difficult in field conditions. In view of 
this, the following recommendations are proffered: 

(i) The shortcomings attributed to research conducted in controlled experiments 
should be taken into consideration each time plants are grown under field 
conditions. This is because, controlled experiments, being so artificial compared 
to field experiments, should not serve as a basis for drawing general conclusion; 

(ii) For proper or further understanding of nutrient uptake process in plants, 
relevant data, drawn from correlated fields of physiology, biochemistry, 
climatology, and evolution, should be collected and fully exploited. 
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