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Abstract 
In this paper, the Volterra integral equation of the second kind were solved. The functional under the 
integrals were approximated by the quadrature rule in which the scheme is obtained. The tested 
problems were solved and compared the results with the exact solutions, so that to illustrate the 
performance of the scheme derived. 
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Introduction 
Several methods are available for solving Volterra integral equation but analytic and 
approximate solutions are the most common and easiest methods. Let us consider the linear 
Volterra integral equation of the second kind 
 

𝑢(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)
𝑥

0
𝑢(𝑡)𝑑𝑡 + 𝑔(𝑥),   𝑥 ∈ [0, 𝑇]                                                         (1) 

 
where u(x) is an unknown function to be determine, K(x; t) is a smooth function and is regular 
value of the kernel. In particular, Rahbar and Hashemizabeh (2008) established an effective 
algorithm for solving Fredholm integral equation of second kind that implemented the 
quadrature and its modification. Kamyad and Mehrabizhad (2010) established a new 
algorithm by means of the calculus of variation and discretization scheme, so as to use for 
solving linear and nonlinear Volterra integral equations. Khan and Gondal (2011) propose 
new modification in standard Laplace decomposition algorithm to solve Abel's second kind 
integral equation. Prajapati et al. (2012) used friendly algorithm on the variation iteration 
method in solving singular Volterra integral equations with generalized Abels kernel. 
However, Yang and Hou (2013) established the numerical Scheme for solving Volterra 
integral equation with convolution kernel in which the equations were first converted to an 
algebraic. Also Khodabi and Maleknejad (2013) solved the stochastic Volterra integral 
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equations numerically with triangular functions. Al-Jawary and Shehan (2015) derived an 
efficient method for solving singular Volterra integral equation of second kind analytically 
and make the comparisons between the results. 
In this article we used some quadrature rule and derived a scheme for solving the second kind 
Volterra integral equations and the results obtained were compared with exact solutions.  
 
Derivation of the Scheme 
Consider the linear Volterra integral equation of second kind given in (1) as 

𝑢(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)
𝑥

0

𝑢(𝑡)𝑑𝑡 + 𝑔(𝑥),   𝑥 ∈ [0, 𝑇] 

Substituting 𝑥 by 𝑥 + 𝜂 in the above equation for 𝜂 > 0, we have 

𝑢(𝑥 + 𝜂) = 𝜆 ∫ 𝑘(𝑥 + 𝜂, 𝑡)
𝑥+𝜂

0
𝑢(𝑡)𝑑𝑡 + 𝑔(𝑥 + 𝜂),   𝑥 ∈ [0, 𝑇]                                        (2) 

by splitting of the interval we have 

𝑢(𝑥 + 𝜂) = 𝜆 ∫ 𝑘(𝑥 + 𝜂, 𝑡)
𝜂

0
𝑢(𝑡)𝑑𝑡 + 𝜆 ∫ 𝑘(𝑥 + 𝜂, 𝑡)

𝑥+𝜂

𝜂
𝑢(𝑡)𝑑𝑡 + 𝑔(𝑥 + 𝜂),   𝑥 ∈ [0, 𝑇]                              

(3) 
equivalently to 

𝑢(𝑥 + 𝜂) = 𝐼𝜂 + 𝜆 ∫ 𝑘(𝑥 + 𝜂, 𝑡)
𝑥+𝜂

0
𝑢(𝑡)𝑑𝑡 + 𝑔(𝑥 + 𝜂),   𝑥 ∈ [0, 𝑇]                                        (4) 

where  

      𝐼𝜂 := 𝜆 ∫ 𝑘(𝑥 + 𝜂, 𝑡)
𝜂

0
𝑢(𝑡)𝑑𝑡 

Since 𝐼𝜂  is known, let us define a uniform grid 𝑋ℎ with step size 𝑖ℎ = 𝑇 

𝑋ℎ ≔ {𝑥𝑖 = 𝑖ℎ,   0 ≤ 𝑖 ≤ 𝑇} 
Setting 𝑥 = 𝑖ℎ in (4) we have 

𝑢(𝑥𝑖) = 𝐼𝜂 + 𝜆 ∫ 𝑘(𝑥𝑖 , 𝑡)
𝑥𝑖

0
𝑢(𝑡)𝑑𝑡 + 𝑔(𝑥𝑖)                                                                            (5) 

 

Now assume that 𝐼𝜂 is approximated by the quadrature rule 𝑌(𝑢) = ∑ 𝑚𝑗𝑢(𝑡𝑗) ,𝑛−1
𝑗=0  𝑗 =

0,1,2,3, … , 𝑛 − 1, by such an approximation for 𝑥𝑖 ∈ [0, 𝑇],  and (5) is reduced to the equation 
 

𝑢(𝑥𝑖) = 𝐼𝜂 + 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)𝑢(𝑡𝑗) 𝑛−1
𝑗=0 + 𝑔(𝑥𝑖)                          𝑖 = 0,1,2, … , 𝑛 − 1                (6) 

Lemma: Special Gronwall lemma: Let (𝑒𝑛) and (𝑒𝑗) be non-negative sequences and C a 

nonnegative constant if 

 𝑢𝑛 ≤ 𝐶 + ∑ 𝑔𝑘𝑢𝑘

𝑛−1

𝑘=0

        𝑓𝑜𝑟    𝑛 ≥ 0 

then 

 𝑢𝑛 ≤ 𝐶𝑒∑ 𝑔𝑗
𝑛−1
𝑗=0         𝑓𝑜𝑟    𝑛 ≥ 0 

  
Error Bound of the Scheme in Midpoint Rule Approach 
In this section we present the error bound for the convergence of the scheme. 
Theorem 3.1 Consider (1) and assume the integral 𝐼𝜂 is known for a chosen particular solution. 

Then the approximate solution obtained by the Quadrature method converges with order 2 
to the exact solution. 
Proof 
The solution u of the exact solution satisfies 

𝑢(𝑥𝑖) = 𝐼𝜂 + 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)𝑢(𝑡𝑗) 𝑛−1
𝑗=0 + 𝑔(𝑥𝑖) + 𝜓(𝜆, 𝑥𝑖),      𝑖 ≥ 0                               (7) 

where 𝜓(𝜆, 𝑥𝑖) is the consistency error given by 

𝜓(𝜆, 𝑥𝑖) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

− 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)𝑢(𝑡𝑗) 

𝑛−1

𝑗=0

                                        (8) 

But the exact solution is  
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𝑢(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

+ 𝑔(𝑥)                                                                            (9) 

Setting   𝑒𝑖 = 𝑢(𝑥) − 𝑢(𝑥𝑖) for 𝑖 ≥ 0  and by utilizing (9) and (7) this gives 
 

𝑒𝑖 = 𝜆 ∑ 𝑚𝑗𝑘(𝑥, 𝑡𝑗)𝑢(𝑡𝑗) 

𝑛−1

𝑗=0

− 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)𝑢(𝑡𝑗) 

𝑛−1

𝑗=0

+ 𝜓(𝜆, 𝑥𝑖) 

= 𝜆 ∑ 𝑚𝑗(𝑘(𝑥, 𝑡𝑗)𝑢(𝑡𝑗) 

𝑛−1

𝑗=0

− 𝑘(𝑥𝑖 , 𝑡𝑗)𝑢(𝑡𝑗)) + 𝜓(𝜆, 𝑥𝑖) 

= 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)[𝑢(𝑥) −

𝑛−1

𝑗=0

𝑢(𝑡𝑗)] + 𝜓(𝜆, 𝑥𝑖),       𝑖 ≥ 0 

Since 𝑥𝑖 ∈ [0, 𝑇]  for  𝑖 ≥ 0 after the variable interchanging this yield  

𝑒𝑖 = 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖 , 𝑡𝑗)𝑒𝑗

𝑛−1

𝑗=0

+ 𝜓(𝜆, 𝑥𝑖),       𝑖 ≥ 0                                                 (10) 

Taking the modulus in (10) we have  

| 𝑒𝑖| ≤ 𝜆 ∑ |𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)||𝑒𝑗| + |𝜓(𝜆, 𝑥𝑖)|𝑛−1
𝑗=0 ,     𝑖 ≥ 0                                (11) 

On the other hand from (8) we have 

|𝜓(𝜆, 𝑥𝑖)| = |𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

− 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖 , 𝑡𝑗)𝑢(𝑡𝑗)

𝑛−1

𝑗=0

| 

 

= |𝜆 ∑ 𝑚𝑗𝑘(𝑥, 𝑡𝑗)𝑢(𝑡𝑗) 

𝑛−1

𝑗=0

− 𝜆 ∑ 𝑚𝑗𝑘(𝑥𝑖, 𝑡𝑗)𝑢(𝑡𝑗) |

𝑛−1

𝑗=0

 

 

≤ 𝜆 ∑ 𝑚𝑗|(𝑘(𝑡𝑗 , 𝑥)𝑢(𝑥) − 𝑘(𝑥𝑖, 𝑡𝑗)𝑢(𝑡𝑗))|

𝑛−1

𝑗=0

 

But for a regular kernel after the variables interchanging we have  

|𝜓(𝜆, 𝑥𝑖)| ≤ 𝜆 ∑ 𝑚𝑗

𝑛−1

𝑗=0

|𝑢(𝑥) − 𝑢(𝑡𝑗)| 

This implies  

                               |𝜓(𝜆, 𝑥𝑖)| ≤ 𝜆 ∑ 𝑚𝑗
𝑛−1
𝑗=0 |𝑒𝑗| ,     𝑖 ≥ 0                                              (12) 

Therefore, by substituting (12) into (11) we have 

| 𝑒𝑖| ≤ 𝜆 ∑ |𝑚𝑗𝑘(𝑥𝑖 , 𝑡𝑗)||𝑒𝑗| + 𝜆 ∑ 𝑚𝑗

𝑛−1

𝑗=0

|𝑒𝑗| 

𝑛−1

𝑗=0

,     𝑖 ≥ 0 

                     ≤ 𝜆 ∑ 𝑚𝑗|𝑒𝑗||𝑘(𝑥𝑖, 𝑡𝑗)| +𝑛−1
𝑗=0 𝜆 + 𝜆 ∑ 𝑚𝑗

𝑛−1
𝑗=0 |𝑒𝑗| − 𝜆  ,         𝑖 ≥ 0                (13) 

By applying the special Gronwall lemma for the discrete in (13) we have  

                             | 𝑒𝑖| ≤ 𝜆2𝑒
(∑ 𝑚𝑗

𝑛−1
𝑗=0 |𝑒𝑗|)|𝑘(𝑥𝑖,𝑡𝑗)| + 𝜆2𝑒

(∑ 𝑚𝑗
𝑛−1
𝑗=0 |𝑒𝑗|)

 ,     𝑖 ≥ 0                        (14) 
We obtained the error bound as 

   | 𝑒𝑖| ≤ 𝜆2𝑒(𝑇−1) [𝑒(|𝑘(𝑥𝑖,𝑡𝑗)|) + 1] ,         𝑖 ≥ 0 

Hence, a second order convergence follows 
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Numerical Results and Discussion 
In this section, we used the scheme discussed in the previous section for solving some problem 
of Volterra integral equations of second kind in which the integrals were approximated by the 
quadrature rule and maple 13 for computations. 
 
Problem 1 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑉𝑜𝑙𝑡𝑒𝑟𝑟𝑎 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑐𝑜𝑛 𝑘𝑖𝑛𝑑   

𝑢(𝑥) = 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

+ 𝑔(𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥) = (1 − 𝑥)𝑒(−𝑥)𝑎𝑛𝑑 𝑘(𝑥, 𝑡) = 𝑒(𝑡−𝑥) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢(𝑥) =

𝑒(−𝑥).  𝑇ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑖 𝑤𝑖𝑡ℎ 𝑖 = 10 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟  
 | 𝑒𝑖| = |𝑢(𝑥) − 𝑢𝑖| 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑇𝑎𝑏𝑙𝑒1  
  
Table1: The results obtained by the numerical scheme (6) on problem1. 
 

𝑥 𝑢𝑖 | 𝑒𝑖| 
0 0.999990000 1.0000𝐸 − 5 

1 0.367870260 9.1812𝐸 − 6 

2 0.135335014 2.6924𝐸 − 7 

3 0.0497870120 5.6368𝐸 − 8 

4  0.0183156301 8.7887𝐸 − 9 

5 0.0067379400 7.0000𝐸 − 9 

6 0.0024785212 8.0001𝐸 − 10 

7 0.0009118815 5.0000𝐸 − 10 

8 0.0003354625 9.0000𝐸 − 11 

9 0.0001234789 9.8000𝐸 − 12 

 
Table (1) Shows that the performance of the scheme (6) obtained by using problem1 in which 
an approximate solution is obtained.  
 
Problem 2 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑉𝑜𝑙𝑡𝑒𝑟𝑟𝑎 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑐𝑜𝑛 𝑘𝑖𝑛𝑑   

𝑢(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

+ 𝑔(𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥) = 1 𝑎𝑛𝑑 𝑘(𝑥, 𝑡) = (𝑡 − 𝑥) 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢(𝑥) =
cos(𝑥) .  𝑇ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑖 𝑤𝑖𝑡ℎ 𝑖 = 10 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟  
 | 𝑒𝑖| = |𝑢(𝑥) − 𝑢𝑖| 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑇𝑎𝑏𝑙𝑒 2. 
  
Table2: The results obtained by the numerical scheme (6) on problem2. 
 

𝑥 𝑢𝑖 | 𝑒𝑖| 
0 0.9872365202 1.2763𝐸 − 2 

1 0.54030000001 2.3058𝐸 − 6 

2 0.4161462130 6.2400𝐸 − 7 

3 0.9899920100 4.8700𝐸 − 7 

4 0.6536436000 2.1001𝐸 − 8 

5 0.28036621000 8.5500𝐸 − 8 

6 0.9601702812 5.5001𝐸 − 9 

7 0.7539022502 4.1000𝐸 − 9 

8 0.1455000321 1.9000𝐸 − 9 

9 0.9111302614 6.0001𝐸 − 10 

 
Table (2) Shows that the performance of the scheme (6) obtained by using problem 2 in which 
an approximate solution is obtained.  
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Problem 3 𝐶𝑜𝑛𝑠𝑖𝑑𝑒𝑟 𝑡ℎ𝑒 𝑉𝑜𝑙𝑡𝑒𝑟𝑟𝑎 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑐𝑜𝑛 𝑘𝑖𝑛𝑑   

𝑢(𝑥) = ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑥

0

+ 𝑔(𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝑔(𝑥) = 1 + 𝑥 − 𝑥2 𝑎𝑛𝑑  𝑘(𝑥, 𝑡) = 1 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢(𝑥) = 1 +
2𝑥.  𝑇ℎ𝑒 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑢𝑖 𝑤𝑖𝑡ℎ 𝑖 = 10 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟  
 | 𝑒𝑖| = |𝑢(𝑥) − 𝑢𝑖| 𝑎𝑟𝑒 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑖𝑛 𝑇𝑎𝑏𝑙𝑒 3. 
  
Table3: The results obtained by the numerical scheme (6) on problem3. 
 

𝑥 𝑢𝑖 | 𝑒𝑖| 
0 0.9999564820 4.3518𝐸 − 5 

1 2.9999252600 7.4740𝐸 − 5 

2 4.9999625540 3.7446𝐸 − 5 

3 6.9999925500 7.4500𝐸 − 6 

4 8.9999996210 3.7900𝐸 − 7 

5 10.9999993236 6.7641𝐸 − 7 

6 12.9999992115 7.8850𝐸 − 7 

7 14.9999999201 7.9900𝐸 − 8 

8 16.9999999941 5.8999𝐸 − 9 

9 18.9999999992 8.9999𝐸 − 10 

 
Table (3) Shows that the performance of the scheme (6) obtained by using problem3 in which 
an approximate solution is obtained.  
 
Conclusion 
In this paper, we presented a scheme for solving the second kind linear Volterra integral 
equations where both kernel and function under integrals were approximated by the 
quadrature rule. We established the error bound analysis for the convergence of the scheme. 
The approximate results were obtained by comparing with the exact solutions by the use of 
some problems so that to test the efficiency, accuracy and effectiveness of the scheme. 
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