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Abstract 

The restricted three-body problem (R3BP) defines the motion of an infinitesimal mass moving under 
the gravitational attractions of two main masses, called primaries. In this paper, we examine the 
dynamical equations of a test body in the frame of the circular R3BP. Both primaries are assumed to 
vary their masses in accordance with the Unified Mestschersky law (UML) and their motion 
determined by the Gylden-Mestschersky problem (GMP). Further, the first primary is assumed to be a 
triaxial variable mass body. The potential between the primaries is deduced and in furtherance, the non-
autonomous equations of motion of the model are derived. The derived equations are time varying and 
are thus transformed to the autonomized forms with constant coefficients using the Mestschersky 
transformation (MT), the UML, the particular integral and solutions of the GMP. We also use a 
transformation we introduced, which helps in converting the time dependent triaxiality of the bigger 
primary to one that is constant. The derived systems of equations with variable and constant coefficients 
can be used to model the long-term motion of satellites and planets in binary systems.  
 
Keywords: R3BP, Variable Masses, Triaxiality, Dynamical Equations, Test particle  
 
 
INTRODUCTION 
The restricted three-body problem (R3BP) defines the motion of an infinitesimal mass moving 
under the gravitational attractions of two main masses, called primaries, which move in 
circular orbits around their center of mass on account of their common attraction and the 
infinitesimal mass not inducing the motion of the primaries (Szebehely 1967). The 
approximate circular motion of the planets around the sun and the small masses of asteroids 
and the satellites of planets compared to the planet’s masses, initially proposed the 
formulation of the restricted problem. There are so many examples of the restricted problem 
in space dynamics. One of them is the classical three-body problem viz; the Sun-Earth-Moon 
combination and describing the motion of the moon. The motion of a Trojan asteroid attracted 
by the Sun and Jupiter is another example, which has a similarity with the restricted problem. 
One of the foremost in space science is the creation of artificial bodies, which are required to 
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move in the neighborhood of two natural celestial bodies. This problem is also similar to the 
restricted problem. 
 
The formulation of the classical R3BP considered all the bodies to be strictly spherical. But in 
actual sense, most celestial bodies are not perfect spheres. Some have the shape of an oblate 
spheroid while some are triaxial in nature (Sharma et.al 2001; Singh & Leke 2012; Saeed & 
Zotos 2021). For example, the Earth, Jupiter, Saturn and stars (Archerner, Antares and Altair) 
have the shape of an oblate spheroid while the Moon and several Post Asymptotic Giant 
Branch stars (Post AGB), Haumea, (a scalene dwarf planet, Figure 1) are triaxial in shape. The 
rotation of a star produces an equatorial bulge due to centrifugal force; as a result, the stars 
are often non-spherical in shape. 
 

         
Figure 1: Artist's conception of Haumea, a triaxial dwarf planet, with its two moons (Credit: NASA, ESA) 

The lack of sphericity of the planets causes large perturbations from a two-body orbit. 
Interesting results of studies that have included the triaxiality of one, two or all the 
participating bodies in the R3BP have been produced up to date. Among them are, Khanna & 
Bhatnagar (1999), Sharma et al. (2001), Singh & Begha (2011), Singh (2013), Singh & Leke 
(2014), Singh & Umar (2014), Saeed & Zotos (2021), Alrebdi et. al (2022), Gyegwe et. al (2022), 
Vincent et al (2022) and Gahlot & Kishor (2023).    

 
The classical R3BP adopts the masses of celestial bodies to be constant. However, the 
phenomenon of isotropic radiation or absorption in stars led scientists to formulate the 
restricted problem of three bodies with variable mass. The problem of the motion of 
astronomical objects with variable mass has many interesting applications in stellar, galactic, 
and planetary dynamics. As an example, we could mention motion of a satellite around a 
radiating star surrounded by a cloud and varying its mass due to particles of the cloud, and 
comets loosing part or all of their mass as a result of travelling around the Sun (or other stars) 
due to their interaction with the solar wind which blows off particles from their surfaces. 
Another interesting example of mass loss is the real physical scenario of those transiting 
exoplanets whose atmospheres are escaping because of the severe levels of energetic 
radiations, coming from their very close parent stars, hitting them. Due to the inclusion of 
mass variations, many researchers such as Gelf’gat (1973), Bekov (1988), Luk’yanov (1989), 
Singh & Leke (2010,2012,2013a, b, c) and Leke & Singh (2023), have carried out various studies 
to include mass variation of the primaries when the mass of the third body is kept constant 
while Singh & Ishwar (1984, 1985) and Zhang et al. (2012) have considered the formulation of 
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the R3BP when the mass of the third body is assumed to vary with time and the masses of the 
primaries is kept constant . When the three masses vary with time, researchers such as El-
Shaboury (1990), Bekov et al. (2005); Letelier & Da Silva (2011), and Singh & Leke (2013d), have 
investigated this formulation under different classifications. 
 
The problem of the R3BP with variable masses in which the masses of the primaries vary in 
accordance with the unified Mestschersky law and their motion defined within the framework 
of the Gylden-Mestschersky problem has been studied extensively under different 
characterization.  
 
In this present paper, our aim is to derive the dynamical equations of the R3BP with variable 
masses in which the bigger primary is a triaxial body while the second is a spherical one with 
the consideration that the mass variations and motion of the primaries are described by the 
unified Mestschersky law (1952) and the Gylden-Mestschersky problem (Gylden 1884, 
Mestscherskii, 1902). The paper is an extension of the dynamical equations of motion given 
by Gelf’gat (1973), Bekov (1988) and Luk’yanov (1989,1990) when the shape of the first 
primary departs from being a sphere to triaxial in nature.  
 
METHODOLOGY  
 
Gylden-Mestschersky Problem  
By the problem of two bodies with variable masses, by analogy with the classical problem of 
two bodies with constant masses, one understands the problem of motion of two primary 

bodies, the masses 1m and 2m of which vary with time under certain laws and between which 

only the gravitational force acts. It is usually assumed that the separation of particles from (or 
their attachment to) the points take place in accordance with Mestschersky’s hypothesis, i.e., 
a contact interaction occurs between the points of variable mass and the separating (or 
attaching) particles; it is assumed that the masses of the points vary continuously. 
The absolute motion of the points is described by the Mestschersky equation for a point of 
variable mass, 

                                     ( )F mv v u m= + −                                                                             (1) 

where F is the sum of all the forces acting on the body and v is its velocity, both measured in 
an inertial coordinate system. Also, u  is the velocity of the center of mass of the absorbed 
mass immediately before its union with the body (or of the ejected mass immediately after its 
ejection). The over dot denotes derivation with respect to the time variable. 

Gylden represented the relative motion of mass 2m about mass 1m under the action of mutual 

gravitational force, as the sum of the masses of these points as varying with time by a certain 
law 

                                      ( )1 2m m t+ =                                                                                   (2) 

 and wrote the differential equation of the problem in the form 

                                       
( )
3

0
t

r r
r


+ =                                                                                    (3) 

Mestschersky showed that the Gylden problem (3) is a particular case of the problem of two 
bodies with variable mass under the condition that the laws of variation of the two masses are 
the same.   
There are two special cases of equation (1) to be considered. The first one is when the mass is 

ejected with the same velocity of the body at any moment ( )v u= , that is, mass ejection does 
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not produce reactive forces. This case can be used to study the motion of a body ejecting mass 
isotropically (or radiating energy), since the total reactive momentum would be zero. 
If v u= , then equation (1) reduces to the form 

                                          F mv=                                                                                             (4)  
 In this case the relative motion of the problem of two bodies with variable masses is described 
by the equation 

                                          
( )1 2

3

m m
r G r

r

+
= −                                                                            (5) 

Equation (5) is analogous to the equation of the classical problem of two bodies with constant 
masses, with the difference that now; the sum of the masses is a certain function of time. 
Equality of the velocities of ejected mass and the body at any moment means that isotropic 
variation of masses (in Mestschersky term) occurs. Equation (5) is justly called the Gylden-
Mestschersky problem (GMP).    

The Mestschersky Transformation and Unified Mestschersky Law 
Mestschersky (1902) disclosed that the Gylden problem is a particular case of the problem of 
two bodies with variable mass under the condition that the laws of variation of the two masses 
are the same, while the relative velocities of the particles separating from them (or attaching 
to them) equals zero everywhere.  He found two laws of variation of the sum of the masses of 
the points 

                               ( ) 0
1 2m m t

a t





+ = =

+
                                                                               (6) 

                                ( ) 0
1 2

2
m m t

t t




  
+ = =

+ +
                                                                 (7) 

where 0 , , ,a   and  are constants. 

 
In the work of Mestschersky (1902), he reduced the GMP through the introduction of new 
variables and “time” to the equations of the classical problem of two bodies with constant 
masses by a transformation, which was thereafter known as the Mestschersky transformation 
(MT) and is given as 

                         

                         ,                                                                       (8) 

where            ( ) 2 2R t t t  = + +  ; , , ,    are the new variables and  12 is constant. 

Later, Mestschersky (1952) came up with a law which considers the masses and their sum to 
vary in the same proportion in such a way that  

           ( )
( )
0t

R t


 = ,  ( )

( )
10

1 t
R t


 = , ( )

( )
20

2 t
R t


 =                                                         (9) 

where      ( ) ( )1 1t Gm t = , ( ) ( )2 2t Gm t =  ,   ( ) ( ) ( )1 2t t t  = + ,  10 and 20 are constants.                 

The law (9) is called the unified Mestschersky law (UML) and it assures that the centre of the 
mass of the system moves inertially. 

Particular Solutions of the Gylden-Mestschersky Problem. 

       We let ( ) ( )1 2t G m m = +  in equation (5) to get 

( ),x R t= ( ),y R t= ( ),z R t= 2 ( )
dt

R t
d

=

( ), ( 1,2)i ir R t i= = 12 ( )r R t=
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2

0
r

r
r r


+ =                                                                                               (10)  

Equation (10) takes the form 

                                     
2

3 2
0

C
r

r r


− + = ,                                                                                       (11) 

where                           2C r =   or 2r C =  

r  is the distance between the bodies,   is the angle between the straight line passing through 

1m and 2m , and a certain fixed straight line in the plane of motion. ( )t = is angular velocity 

of revolution of the bodies and C  is the constant of area integral. 
Now, equation (11) has the particular solutions 

                               
( )

( )

2

12 3
r

R t

 


−
=                                                                                          (12)  

                              ( )
( )
0

2
t

R t


 =                                                                                                  (13)   

                               2
12 0C  =                                                                                                       (14)   

and                          2r C =                                                                                                      (15)  

where                      
2 2

0

2
0

  




− +
=  

Equation (15) is a particular integral of the Gylden-Mestschersky problem and   is a constant. 

When 2 0 − = , we get 1 = and this corresponds to the case when the masses are constant. 

When 2 0 −  , this means that 1  and when 2 0 −  , this implies that 1  . Since 

kappa cannot be zero, the range is such that 0    .   
 
Equations of Motion  
The investigations of the motion and libration points of the infinitesimal mass in the restricted 
problem, under the condition that the motion of the variable-mass main bodies are 
determined by the Gylden-Mestschersky problem with isotropic mass variation of the 
primaries varying in proportion to each other in accordance with the unified Mestschersky 
law was studied by Bekov (1988). We consider a rotating frame of reference zyxO    , where O 

is the origin and suppose that  and  are the masses of the primary bodies and 3m  is the 

mass of the third body. Let the radius vector from 3m  to  be , 3m  to  be  and the 

distance between the two primaries be and let  be the angular velocity. We consider same 
formulation by Bekov (1988) with further assumptions that the bigger primary is a triaxial 

body. In this premise, the kinetic energy in the rotating frame of reference  is given by  

                                                        (16)    

while the potential energy has the form (Sharma et. al 2001) 

           

 ( )







−++++−= IIII

rm

m

r

m

r

m
GmV 3

2
3213

11

1

2

2

1

1
3                                                          (17)     

 whereG  is the gravitational constant. 

( ),
5

221
1 cb

m
I += ( ),

5

221
2 ca

m
I += ( ),

5

221
3 ba

m
I +=                                                             (18) 

1m 2m

1m 1r 2m 2r

r 

0xyz

2 2 2 2 2 2

3 3 3

1 1
( ) ( ) ( )

2 2
T m x y z m xy yx m x y = + + + − + +
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( )3,2,1=iI i  are the moments of inertia about the principal axes of 1m  while is the moment 

of inertia about the line joining the center of 1m and 3m , and are defined by 

 2

33

2

22

2

11 lIlIlII ++=                                                                                                                  (19)   

where ( )3,2,1=ili be the direction cosine with respect to the principal axes of 1m and are such 

that 

1

1
r

x
l = , 

1

2
r

y
l = and 

1

3
r

z
l =  

Therefore, the potential (17) is cast to the forms 

( )




















++−++++−= 2

3

2

2

2

12

1

3213

11

1

2

2

1

1
3

3

2
zIyIxI

r
III

rm

m

r

m

r

m
GmV   

If the body is displaced to the points ( )0 ,0 ,1x the potential becomes 

( )( )




















++−−++++−= 2

3

2

2

2

112

1

3213

11

1

2

2

1

1
3

3

2
zIyIxxI

r
III

rm

m

r

m

r

m
GmV  

where ( ) 222

1

2

1 zyxxr ++−= and ( ) 222

2

2

2 zyxxr ++−=  

Hence, the potential can be rewritten as 

( ) ( )




































−−−−++−++−= 2

132

1

2

122

1

3213

11

1

2

2

1

1
3

33
2

2
zII

r
yII

r
III

rm

m

r

m

r

m
GmV  

Substituting equations (18) at once gives 

( ) ( )










−−










−−−−++−= 222

2

1

222

2

1

222

3

1

1

2

2

1

1
3

33
2

10
zca

r
yba

r
cba

r

m

r

m

r

m
GmV  

Next, we assume that the triaxial shape of the first primary also changes with time as the mass 

changes, so that the potential V is cast into the form  

( ) ( ) ( )( )( ) ( ) ( )( ) ( ) ( )








−

−
−

−
++−=

5

1

1

2

1

5

1

21

2

1

3

1

211

2

2

1

1
3

2

3

2

3

2

2

r

tztm

r

tytm

r

ttm

r

tm

r

tm
GmV


    (20)

         

                      

where 

( )
2

22

1
5r

ba
t

−
= , ( )

2

22

2
5r

cb
t

−
= , is the triaxiality of the first primary. 

  ,     .                     

Now, let ,  and be the generalized components of momentum, then 

         ( )3x m x y = −  ,   ( )3y m y x = + ,   3z m z =                                                          (21) 

Substituting system (21) in (16), and simplifying yields     

          ( )2 2 2

3

1

2
x y zT

m
  = + +          

 Now using equations (21) in the Hamiltonian H and simplifying, gives 

                                                                             (22)                                                             

Therefore, we have      

I

2 2 2 2

1 1( )r x x y z= − + + 2 2 2 2

2 2( )r x x y z= − + +

xp yp
zp

( ) ( )2 2 2

3

1

2
x y z x yH p p p yp xp V

m
= + + + − +
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        ,      ,
                              

           (23) 

Now since the primaries move within the framework of the GMP and their masses vary with 

time in accordance with the UML, then and the angular velocity will all be time 

dependent. Thus, differentiating system ,  and  with respect to time, respectively, we 

get 

                 ,         ,           
               

(24)                                                                                                                                                                                                                                    

From systems (23) and (24), we have 

                     

                                                                                             (25) 

                                                                                                                                           

Substituting the equations of system (21) in those of system (25), gives 

                          

                                                                                                 (26) 

                                                                                                                                                   

Now, from equation (20), we have 

( ) ( )( )( ) ( ) ( )( )( )

( )( )



−
−




 −−
−

−
+

−−
+

−
=





7

1

2

111

7

1

2

1211

3

2

22

5

1

1211

3

1

11
3

2

15
          

2

152

2

3

r

zxxtGm

r

yxxtGm

r

xxm

r

xxtm

r

xxm
Gm

x

V





 

( )( ) ( )( ) ( )( )
( )

( )




−




 −
−+

−
+

−
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



7

1

2

11

7

1

3

211

3

2

2

5

1

211

5

1

211

3

1

1
3

2
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27     
2

1532

2

3

r

yztGm

r

ytGm

r
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r
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r
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r
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Gm

y

V





                     

( )( ) ( )( ) ( )








−

−
−+

−
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


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1
3

2
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2
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r

ztGm

r
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r
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r
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r
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Gm

z

V 
                                                                     

 On substituting equations (27) in the respective equations of system (26), we get 

( ) ( ) ( )( )( )

( )( )( ) ( )( )
7
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2
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2
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r
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yxyx

−
+

−−
+

−−
−

−
−

−
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


 

    

( )x y

V
p p

x



= − − −


y x

V
p p

y



= − −


z

V
p

z


= −



, ,x y zp p p 

xp yp
zp

( )3xp m x y y = − − ( )3yp m y x x = + +
3zp m z=

( )3 y

V
m x y y p

x
  


− − = −



( )3 x

V
m y x x p

y
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
+ + = − −



3

V
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z


= −



2

3

1
2

V
x y x y
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  


− = + −



2

3

1
2

V
y x y x

m y
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
+ = − −
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3

3

1 V
m z

m z


= −
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( )( ) ( )( )
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             (28)         
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Now, we let 

             1 1( ) ( )Gm t t= , 2 2( ) ( )Gm t t=                                                                                      (29) 

So that equations (28) take the form:  
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where   ( )
22 2 2
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2 2r x x y z= − + +                                 
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  is the constant of the integral (15) of the GMP; ( )t is defined in equations (9)                                                                                                                                    

 
These equations describe the motion of the third body having infinitesimal mass in the 
gravitational field of the triaxial bigger primary and the spherical smaller primary in the 

Barycentric coordinate system zyxO    , rotating with an angular velocity ( )t  about the z−

axis perpendicular to the plane of motion of the primaries, while the x− axis always passes 
through these points with the consideration that both primaries experience mass variations 
with time.  
  

Now from the property of the center of mass at and at
 

with the 

consideration that the origin is taken as the center of mass, we have 

                                                                                                                           (31) 

From               , we have . 

Substituting for in equation (31) and solving, we get  

1 1( ,0,0)x 2 2( ,0,0)x

1 1 2 2 0x x + =

2 2
2 1( )r x x= − 2 1x r x= +

2x
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                         ,                                                                              (32) 

The expressions (32) connect the Barycentric coordinates and with the mutual distance 

r . 
 
Autonomization of the equations with variable coefficients  
The equations of motion (30) are non-integrable differential equations with variable 
coefficients. The solutions even for particular steady-state solutions –the EPs are difficult to 
seek directly from equation (30), because these equations contain unknown functions of time. 
In order to transform system (30), we use the MT (8); the UML (9); the particular integral (15) 
and solutions of the GMP.   
From the MT (8), we have                     

            

Differentiating with respect to t  and denoting differentiation with respect to by dashes, we 
get 

   ,  ,

 

                                     (33)                                           

  

 

 ,                                                                                          

Also, from a particular solution (13) of the GMP, we get 

                                                                                                                         

Further, in view of the variable triaxiality of the first primary, we introduce a transformation 

                             
( ) ( )tRt ii

2 =                                                                                               (34) 

where                
2
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Here, ( )2,11 = ii is the triaxiality of the first primary while 1111 ,ba and 11c   are the lengths 

of its semi-axes of the triaxial body for the autonomized system, and  is the distance between 

the primaries.                                                                               
Substituting all the above in system (30) and simplifying, yields    
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 Performing same substitution on 2

1r and 2

2r , and simplifying gives 

                   

                  
                                                                  

                                                                                 

Also, we have from equations (32), that 
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                   , 
( )10 12

2
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R t
x

 


=  

And can be expressed such that        

                    ,                                                                                         (36) 

where ,   
 
are constants. 

Hence, the system (30) of equations of motion with variable coefficients is now reduced to the 
autonomous form such that 

                     ,       ,                                                (37)                                                                                                             

where     
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         (38) 

                    ,                                                                                     

Next, we make choice for units of measurements such that at initial time , we choose   

                    0 G =                                                                                                                    (39) 

For the unit of time and length, we choose them, respectively, such that 

                                                                                                                                        (40) 

We now introduce the mass parameter , expressed as  

                    ,    ,   where                                                               (41) 

Substituting (39) in (41), we have 

                    ( )10 1G = −    ,   20 G =                                                                                    (42) 

Now from the particular integral (15) and (39), we simplify to get 

                    G =                                                                                                                       (43)    
If these measurements are substituted in equation (15), we get       

                    ( )  −=− 22

01                                                                                                 (44) 

where is the constant of integration of the GMP. 

Also, from   equation (14), we get .                                                                                           
Therefore, substituting the units of measurement in equations of system (37) and (38), we get 
the equations of motion of the autonomized system with constant coefficients in the forms 
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DISCUSSION 
The paper investigates derivations of the dynamical equations of a test particle in the frame 
of the R3BP when the primaries undergo mass variations in accordance with the UML and 
their motion governed by the GMP with further assumption that the bigger primary is a 
triaxial body. The equations of motion of the non-autonomous equations have been derived 
in equations (30) and thereafter transformed to the autonomized forms with constant 
coefficients (45) using the MT, the particular solutions of the GMP, the UML and we 
introduced a transformation that helps to convert the variable triaxiality to one which is 
constant. These two systems of equations are different from those of Bekov (1988, 2005), 
Luk’yanov (1989), Sharma et. al. (2001), Singh & Leke (2010, 2012, 2013a), Singh & Begha 
(2011), Taura & Leke (2022), Alrebdi. et.al (2022) and, Leke &Singh (2023). The study of the 
R3BP is of great theoretical, practical, historical and educational relevance, and in its many 
variant, has had important implications in several scientific fields, including among others; 
celestial mechanics, galactic dynamics, chaos theory and molecular physics. The R3BP is still 
an interesting and active research field that has been receiving considerable attention from 
scientists and astronomers because of its applications in dynamics of the solar and stellar 
systems, lunar theory, and artificial satellites.  
 
 
CONCLUSION 
The paper modeled the R3BP to include mass variations of the primaries when the bigger 
primary is a triaxial body. The primaries undergo mass variation with time in accordance with 
unified Mestschersky Law (1952) and their motion described by the Gylden-Mestschersky 
problem. The equations of motion of the time dependent dynamical system were derived and 
transformed to the system of equations with constant coefficients using the Mestschersky 
transformation, the unified Mestschersky law, the particular solutions of the Gylden-
Mestschersky problem and our own introduced transformation that helped in converting the 
time dependent triaxiality of the bigger primary to one with constant triaxiality. These models 
may be used to study the dynamics of a particle under the gravitational influence of a binary 
system, such as in the Kruger 60 or Achird system.   
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