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Abstract 
The effects of magnetic field and heat transfer problem on incompressible magnetohydrodynamics 
(MHD) mixed unsteady convective flow of an electrically conducting viscous fluid in a duct filled with 
a porous medium are investigated. The fluid flow is subjected to an applied uniform magnetic field 
vertical to the duct and uniform free stream of constant velocity and temperature. The system of 
nonlinear differential equations governing flow and heat transfer phenomena are derived and reduced 
into a set of ordinary differential equations using the auxiliary variable method. The reduced equations 
are solved numerically using Runge-Kutta method associated with slip boundary conditions. The 
graphical results for velocity, temperature and heat transfer rate are obtained using MATLAB software. 
It is observed that the velocity profiles increase with an increase of similarity parameter (𝑓𝐼) while 
temperature gradient decreases rapidly with an increase of similarity parameter (𝜃𝐼) for different values 
of Grosh number, Magnetization and Prandtl number respectively. 
 
Keywords: Porous duct, Magnetohydrodynamics, Magnetic field, incompressible, Flow 
 
 
INTRODUCTION 
The heat transfers and flow phenomenon in a porous media has momentously played a vital 
role in addressing problems associated with fluid dynamics (Hafeez et al., 2013). The fluid 
flow over porous materials has various applications in many engineering, biomedicine, heat 
exchange, fuel cell and many other related fields (Bhukta et al.,2015). These flows have been 
effectively derived by magnetic fields, electric fields and/ or combinations of the two 
(Buonomo et. Al.,2016; Dehghan et al.,2015). Among these effects, magnetohydrodynamics 
(MHD) effects become most promising candidate owing to its potential applications in fluid 
dynamics systems (Qian et.al ,2009; Jang et. Al.,2000). The MHD unsteady flows for electrical 
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conducting fluid flow subjected to the magnetic field have attracted the attention of many 
researchers due to its imminent applications in recent years (Abolbashari et. al.,2014; Daniel 
et. al 2017a), Daniel et. al.,2015a; Daniel et. al. ,2015b; Daniel et. al.,2016; Daniel et. Al.,2017b). 
Recently, enormous effort has been carried out by several researchers to explore boundary 
layer flow of unsteady and incompressible MHD flow over porous media (Bhukta et al.,2015; 
Veera et al.,2009; Suneetha et al.,2010). For instance, (Abdallah et.al.,2009) studied the effects 
of MHD, viscous, unsteady, incompressible and electrically conducting fluid flow over 
stretching materials and heat transfer problem in the presence of a magnetic field. The 
analytical results obtained was verified numerically. (Bhukta et.al 2015) reported the 
dissipative effect of MHD mixed convective flow of an electrically conducting fluid over 
stretching sheet in porous media subjected to a magnetic field in the presence of non-uniform 
heat source/sink. The differential equations derived were solved numerically and the results 
obtained reveals that the effects of electric field significantly improve the skin friction 
contributing to the flow instability Rabhi et al. (2017) investigated the effects of magnetic field, 
entropy generation and Nusselt number for MHD unsteady flow over porous duct using a 
modified axisymmetric lattice Boltzmann method. The simulation of MHD flow was carried 
out with LBM, and the obtained results indicated that the entropy generation intensified near 
wall of the duct. It also found out that magnetic field strongly affected the global 
irreversibility. Krishna et al. (2016) studied the unsteady MHD convective flow of second 
grate fluid over porous media in a rotating plate channel subjected to temperature dependent 
source. Analytical solution of velocity and temperature profile were obtained via Laplace 
transformation method and compared with numerical results. The results agree with already 
reported works. Ullah et al. (2016) presents the effects of the chemical reaction and thermal 
radiation on the MHD convective flow of Casson fluid over stretching surface through porous 
media. The obtained nonlinear differential equation is solved numerically using a Kellar box 
technique. It was revealed that the Casson fluid is better than the Newtonian fluid in 
controlling temperature and the nanoparticles. 
 
In the last decades, the combined effects of heat transfer, chemical reaction and electric fields 
on electrically conducting MHD flow played significant role in chemical and manufacturing 
industries. Kandasamy et al. reported the effects of mass and heat transfer on Newtonian fluid 
of MHD mixed convection flow over a stretching sheet in the presence of chemical reaction 
(Kandasamy et. al, 2005). Perkidis et al (2006) theoretically studied the boundary layer flow of 
electrically conducting fluid flow through stretching sheet subjected to the chemical reaction. 
Damseh and Chamkha et al. (2010) reported the analytical and numerical solution of 
boundary layer flow of micropolar fluid through a stretching material. Raptis et al. (2006) 
investigated the effects of slip conduction chemical reaction on MHD electrically conducting 
fluid flow through porous materials. 
 
On the other hand, flow over porous media drew attention of several researchers and 
industries owing to its several applications including, industrial machinery, disk drives, 
storage tank and so on, (Herero et. al.,1994). Heat transfer and MHD flow problem through a 
porous medium over a stretching surface are studied by  Cortell et al. (2011), Chauhan et. al. 
(2011a) and Chauhan et al. (2011b). Abet et al analyzed the heat transfer on electrically 
conducting MHD flow of a second-grade fluid in a porous medium over stretching surface 
under the influence of heat source/sink, (Subhas et. Al.,2011). Bhukta et al. (2014) 
studied the effects of mass and heat transfer on electrically conducting viscoelastic fluid in a 
boundary layer flow in a porous medium over a shrinking sheet in the presence of transverse 
magnetic field and heat source. Choudhry et al. (2014) analyzed the viscoelastic MHD flow 
over a porous plate in a porous medium subjected to chemical reaction and radiation under 
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influence of heat and mass transfer. 
 
Strongly motivated by the earlier studies and widespread applications, it is of uttermost 
importance to explore the effects of magnetic field on incompressible magnetohydrodynamics 
(MHD) mixed unsteady convective flow of an electrically conducting viscous fluid in a duct 
filled with a porous medium and the heat transfer problem was investigated. The governing 
flow equations are derived and reduced into nonlinear partial differential equations 
associated with slip boundary conditions. These conditions are made dimensionless using a 
suitable similarity transformation. The system of non-dimensionless equations is solved 
numerically via iteration method. The numerical results obtained for different values of 
magnetic field, Kaman-Prandit, and Grosh numbers are presented graphically. The 
representation of the variation of velocity and temperature and differential characteristics 
boundary layer is discussed and shown graphically. 
 
NOMENCLATURE    and     MEANING 
 

a Stretching constant       B Imposed or applied magnetic induction 

u,v Kinematic component of velocity g Acceleration of free fall 
TW Surface or wall temperature 𝜎 Electrical conductivity 
P Pressure 𝛹 Fluid stream function 
C Mass concentration 𝜂 Similarity or transformation parameter 
C Specific heat capacity T Temperature 
𝜌 Density 𝜃 Temperature gradient 
𝛽 Coefficient of area expansion 𝜈 Surface stretching parameter 
K Coefficient thermal expansion M2 Magnetization 
H Step size z1, z2 

,z3, 𝜙 
Auxiliaries variable 

E Function ' Derivative 
F Dimensional function x,y Coordinate 
N Number of iterations L Length of porous media 
Pr Prandit number Gr Grosh number 

 
THEORETICAL FORMULATION OF THE PROBLEM 
The 2-Dimentional unsteady MHD convection flow of incompressible, viscous, and 
electrically conducting fluid flow over porous duct and heat transfer subjected to the magnetic 
field and constant stream velocity and temperature is considered. The imposed magnetic field 
is homogenous and perpendicular to the body surface. The transport properties of medium 
can be considered. The origin is kept fixed while the wall is stretched and the y-axis is 
perpendicular to the surface as seen in Figure. 1. The governing equations and the boundary 
conditions are as follows, (Hafeez et. al.,2013; Hafeez et. al.,2016) 
Continuity equation 
 

Figure.1 Fluid flow through porous duct 
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𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                 (1) 

 
Momentum equations  

𝑢
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The energy equation  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶

𝜕2𝑇

𝜕𝑦2
                                                                                                                               (4) 

 
The boundary conditions associated with equation (4) are, Abdallah. Et. al (2009). 

𝑢(𝑥, 0) = 𝑎𝑥, 𝑣(𝑥, 0) = 0, 𝑇(𝑥, 0) = 𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑢(𝑥, ∞) = 0, 𝑇(𝑥, ∞) = 0                       (5) 
where u and v are the velocity components along x and y coordinates respectively, T is 
temperature; β is coefficient of area expansion, ρ is the density, Tw is the surface temperature, 
and a is the stretching rate constant, g is the acceleration of free fall, T is the temperature, σ is 
the electric conductivity, B is the imposed (applied) magnetic induction and C is concentration 
of mass on boundary layer, (Abdallah. et. al., 2009). 
 
SOLUTION OF THE PROBLEM 
The velocity component along x and y coordinate in terms of stream function is given as 
(Hafeez et. al 2013) 

𝑢 =
𝜕𝛹

𝜕𝑦
, 𝑎𝑛𝑑 𝑣 = −

𝜕𝛹

𝜕𝑥
                                                                                                                          (6) 

 
By applying the transformation 

𝜓 = 𝑥√𝑎𝜈𝑓(𝜂),    𝜂 = 𝑦√
𝑎

𝜈
,     𝜃 =

𝑇

𝑇𝑤
                                                                                                 (7) 

 
where 𝜓 is dimensionless stream function and 𝜂 is similarity parameter. Consider the MHD 
flow along x- axis, the continuity equation (1) become 
𝜕𝑢

𝜕𝑥
= 0                                                                                                                                                                  (8) 

 
Substitution equation (7) into equation (2), we have 

𝜕𝛹
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(
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𝜎𝐵2

𝜌

𝜕𝛹
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              (9) 

 
Differentiating equation (7), we have  

𝜕𝛹

𝜕𝑥
= √𝑎𝜈 𝑓(𝜂),      

𝜕2𝛹

𝜕𝑥2
= 0,     

𝜕𝛹

𝜕𝑦
= 𝑥√𝑎𝜈  𝑓′(𝜂),     

𝜕2𝛹

𝜕𝑦2
=  𝑥√𝑎𝜈𝑓′′(𝜂)                           (10) 

 
Putting equation (10) into equation (9), we get 

         𝑥√𝑎𝜈𝑓′
𝜕

𝜕𝑥
(𝑥√𝑎𝜈𝑓′) − √𝑎𝜈 𝑓 

𝜕

𝜕𝑦
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𝜕𝑦2
(𝑥√𝑎𝜈𝑓′)] + 𝑔𝛽𝑇 −

𝜎𝐵2

𝜌
𝑥√𝑎𝜈𝑓′                                                       (11) 
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We assumed that, the pressure flow along x coordinate is zero, thus equation (11) reduces to 

𝑓′′′ + 𝑓′𝑓′′ − 𝑓′2 + 𝑔𝛽𝑇
1

𝑥(𝑎2)
 −

𝜎𝐵2

𝜌

1

𝑎
𝑓′ = 0                                                                             (12) 

 
Now, equation (12) becomes 

𝑓′′′ + 𝑓′𝑓′′ − 𝑓′2 + 𝐺𝑟 𝜃 − 𝑀2𝑓′ = 0                                                                                              (13) 
 
Equation (13) is nonlinear third order differential equation. Thus, the solution of the equation 
of motion and continuity equation is given by equation (14) subject to the boundary condition 
equation (14). 
Where the prime represents differentiation with respect to 𝜂, 𝐺𝑟𝑜𝑠𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝐺𝑟 =

 𝑔𝛽𝑇
𝑇𝑤

𝑥(𝑎2)
𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑀2 =

𝜎𝐵2

𝜌

1

𝑎
   and 𝑇 = 𝜃 𝑇𝑤 

The corresponding boundary conditions are, (Abdallah et. al., 2009). 
𝑓(0) = 0, 𝑓′(0) = 1,   𝑓′(∞) = 0                                                                                                 (14) 

 
The exact solution of equation (13) with boundary conditions (14) is obtained by Abdallah et 
al. (2009) and Mahapatra et al (2012), as follows: 

𝑓(𝜂) = 1 − 𝑒−𝜂                                                                                                                                         (15) 
 
Similarly, for energy equation, we substitute equation (10) into equation (4), we have 

𝑥√𝑎𝜈𝑓′ 𝜕(𝜃𝑇𝑤)

𝜕𝑥
− √𝑎𝜈 𝑓

𝜕(𝜃𝑇𝑤)

𝜕𝑦
=  

𝑘

 𝜌𝐶

𝜕2(𝜃𝑇𝑤)

𝜕𝑦2                                                                                             (16) 

 
Assuming the temperature flow along x-coordinate is zero, equation (16) become 

−√𝑎𝜈 𝑓
𝜕(𝜃𝑇𝑤)

𝜕𝑦
=  

𝑘

 𝜌𝐶

𝜕2(𝜃𝑇𝑤)

𝜕𝑦2
                                                                                                            (17) 

 
Now, equation (17) become 

−√𝑎𝜈 𝑓
𝜕𝜃

𝜕𝑦
=  

𝑘

 𝜌𝐶

𝜕2𝜃

𝜕𝑦2
      ⟹     −√𝑎𝜈 𝑓 𝜃′ =

𝑘

 𝜌𝐶
𝜃′′                                                                     (18) 

 
The equation (18) can now be reduced to  

𝜃′′ + Pr 𝑓 𝜃′ = 0                                                                                                                                      (19) 
 
Equation (19) is nonlinear differential equation with boundary conditions of  
𝜃(0) = 1 , 𝜃(∞) = 0                                                                                                                                 (20) 
 
The exact solution of (19) subject to the condition (20) is given by, (Abdallah. Et. Al.,2009). 

𝜃(𝜂) = 𝑒−𝜂                                                                                                                                                  (21) 
 
NUMERICAL SOLUTION 
The system of nonlinear differential equations (13) and (19) with boundary conditions (14) 
and (20) respectively, were solved numerically using the Runge-kutta method of order three. 
The third and second order system of nonlinear differential equation can be reduced to first 
order for the solution of initial value problem 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥𝑗) = 𝑦𝑖  using any suitable step 

size which is always less than unity, (Richard et. al.,2011). For two different approximations 
to the solution are calculated values with the terminal point. So, in each of the following, three 
steps are required to be computed, (Richard et. al.,2011): 
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𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛),   𝑘2 = 𝑓(𝑥ℎ +
1

2
ℎ, 𝑦𝑛 +

1

2
ℎ𝑘1), 𝑘3 = 𝑓(𝑥𝑛 +

1

2
ℎ, 𝑦𝑛 − ℎ𝑘1, 2ℎ𝑘2),

𝑦𝑛+1 = 𝑦𝑛 +
1

6
ℎ(𝑘1 + 4𝑘2 + 𝑘3)                                                                               (22) 

 
To solve the system of differential 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛s (13) 𝑎𝑛𝑑 (19) numerically, a system of equation 
reduction to first ordinary linear equation is employed by introducing three auxiliary 
variables in equation (13) and two auxiliary variables in (19), respectively. So. let 

𝑓 = 𝑧1,    𝑓′ = 𝑧2, 𝑓′′ = 𝑧3,   𝑓′′′ = 𝑧4 
Thus, 

𝑧2 = 𝑧1
′, 𝑧3 = 𝑧2

′, 𝑧4 = 𝑧3
′                                                                                                                      (23) 

 
Substitution equation (23) into (13), we have 

𝑧3
′ = −𝑧2𝑧1  – 𝑧1

′2  + 𝐺𝑟𝜃 − 𝑀2𝑧1                                                                                                            (24) 

 

Also, let 
𝜃′ = ∅ ⟹ 𝜃′′ = ∅′                                                                                                                                    (25) 

 
The equation (19) assume the form 
∅′ +  𝑃𝑟𝑓∅ = 0  

∅′ = − 𝑃𝑟𝑓∅                                                                                                                                             (26) 
 
Let the step size (h), Magnetization (M) and Gross number (Gr) be 0.2, 0.4 and 0.5, respectively. 
Now, the system of differential equations (23) to (24) are solved numerically using third order 
Runge-Kutter Method, using conditions 𝑓(0) = 0, 𝑓′(0) = 1, 𝑡ℎ𝑒𝑛 𝑧𝑜 = 0, 𝑧1 = 1. Similarly, 
equation (26) can be evaluated numerically for different value of Prandtl number (Pr) (i.e Pr= 
0.2, 0.4, 0.6, 0.8 and 1.0). The initial value 𝑓(0) = 1, 𝑥𝑜 = 𝑦𝑜 = 0, 𝜃𝑜 = ∅𝑜 = 1. For Pr =0.0 the 
entire iterations are zero. 
 
RESULTS AND DISCUSSION 
The present study aimed at studying the effects of magnetic field and heat transfer problem 
on the electrically conducting MHD viscous flow over porous media. The effects are 
characterized by different values of non-dimensional parameters such as Prandtl number (Pr), 
Magnetization (M) and Gross number (Gr). All the numerical results were carried out for Pr= 
0.2, 0.4, 0.6, 0.8 and 1.0 and M=0, 0.2, 0.4, 0.6, 0.8 and 1.0 at different values of Gr=1, 2, 3, 4 and 
5.  
 
Figures 2 to 9 illustrates the physical behavior of Pr, M and Gr on velocity ( 𝜃′(𝜂) and 𝑓′(𝜂)) 
profiles. Figure 2 shows the influence of Prandtl number (Pr) on the temperature profile. As 
expected, the Pr increases with decrease in temperature profile, suggesting that for large value 
of Pr, the heat will diffuse faster than the momentum. Moreover, it also observed that the 
thickness of thermal boundary decreases as Prandtl number (Pr) increases. Noticeably, higher 
Pr value substantially decreases the temperature owing to the fact that higher Pr leads to the 
low thermal conductivity of fluid, which largely reduces conduction resulting in temperature 
fall. A similar trend of results was observed by (Ullah et al.,2016) and (Khan et al.,2019). 
Notably, it is significant to identify that the MHD temperature increases as the heat(energy) 
increase due to the fact that the conduction impact of the MHD improves in the presence of 
thermal expansion parameter. 
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Figure 2. Effects of Prandtl number (Pr) on temperature. Figure 3. Effects of Gross number (Gr) on velocity at 
constant Magnetization (M=0.0) 

 
Figures 3 to 8 presents the velocity profile displaying the effects of the Gross number 
parameter and Magnetization parameter. The discussion shows that the magnitude of all 
velocity profile presents the positive values. It has also been observed that the profile increases 
with an increase in Gross number parameter at constant magnetization (M), suggesting that 
Gr improves the fluid flows resulting in an increase in velocity profile. This result is in 
agreement with previously reported work  
(Ullah et. Al.,2016). 
   

 
Figure 4. Effects of Gross number (Gr) on velocity at constant Magnetization (M=0.2). 
 
Figure 5. Effects of Gross number (Gr) on velocity at constant Magnetization (M=0.4) 
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Figure 6. Effects of Gross number (Gr) on velocity at constant Magnetization (M=0.6) 
 
Figure 7. Effects of Gross number (Gr) on velocity at constant Magnetization (M=0.8) 
 

 

   
Figure 8. Effects of Gross number (Gr) on velocity at constant Magnetization (M=1.0) 
Figure 9. Effects of Magnetization on velocity at constant Gross number (Gr=0.5) 

 
 
Figure 8. Effects of Gross number (Gr) on velocity at constant Magnetization (M=1.0) 
Furthermore, the effect of magnetization (M) is prominent on the velocity for electrically 
conducting fluid flow (as shown in Figure 9). It is interesting to note that magnetization (M) 
decrease the fluid velocity, indicating the presence of Lorentz force. Obviously, Lorentz force 
is opposite the fluid direction which decrease the velocity. Moreover, higher value of 
magnetization (M) increase resistive forces that resist the fluid flow, resulting in decreasing 
fluid velocity. This result is consistent with the existing literature, (Ullah et. al 2016; Khan et 
al 2019). 
 
Finally, it was observed that the velocity profiles (𝑓′(𝜂)) increase with an increase in the 
similarity parameter(𝜂)  while the temperature gradient profile ( 𝜃′(𝜂)) decrease with 
increasing similarity parameter(𝜂). These results are in good agreement with previous 
literature (Ullah et al.,2016; Bhukta et. al 2014;  Khan et al 2019). It’s good to note that, the 
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existence of porous duct significantly improves the velocity because it acts as an insulator to 
the vertical surface, suggesting energy loss is prevented owing to convection as reported by 
Bhukta et al.,(2014). Furthermore, it is also reported that the rate of heat transfer plays a vital 
role in the presence of duct and magnetic field for MHD viscous fluid flow, (Bhukta et. 
al.,2014). 
 
CONCLUSION 
In conclusion, the impart of unsteady MHD flow with mixed convection over porous duct by 
the combined effects of magnetic field and heat transfer on the electrically conducting fluid 
flow are investigated. The governing flow and heat transfer equations are derived and 
converted into sets of nonlinear ordinary differential equations using similarity 
transformations and then solved numerically using a Runge-Kutter method with an implicit 
finite difference. On the basis of this findings with various parameters we draw the following 
main conclusions: 

a) Velocity profiles increase with an increase in the similarity parameter while the 
temperature gradient profiles decrease with similarity parameter 

b) Prandtl number and Gross number have an increasing effect on velocity profiles 
c) Effect of Magnetization is prominent and has a decreasing effect on velocity profile 
d) MHD temperature increases as the heat(energy) increase 
e) There is a lush velocity increase similarity 
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