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Abstract 
 
The mathematical modeling of branching processes finds its origin in attempts to model reproduction 
patterns in species. For systems with replicating and dying components (like cells or particles), 
branching process theory provides the mathematical tools for understanding their probabilistic 
progression.. They are used to describe random systems such as chain reactions, survival of family 
names, pest eradication, population development and gene propagation. This study showcases clear 
illustrations of the likelihood of extinction, the duration until extinction, and the probability related to 
the entire offspring. Observations of past elite families often highlight their eventual decrease, leading 
to myriad speculations. Through Python-based modeling, it was found that if every person, on 
average, yields slightly over one offspring, there is no absolute guarantee of family extinction. 
However, if the mean number of offspring per individual  is one or less, the process is guaranteed to 

become extinct. 
  
Keywords:  Branching process; Epidemiology, Size of population; Population-dependence; 
Extinction time 

 
INTRODUCTION 
A branching process is a mathematical construct used primarily to describe the reproduction 
of individuals in a population. The framework has been exploited in various fields to study 
phenomena that exhibit branching-like behavior. The branching process offers a streamlined 
and refined approach to modeling population expansion (Abdulazeez, 2021). The Galton-
Watson Process, named after the foundational correspondence between Galton and Watson 
highlighted by Klebaner (1985), is a cornerstone in the mathematical modeling of systems. It 
efficiently depicts the probabilistic behavior of entities, whether they are cells or broader 
organisms, as they live and reproduce before meeting their end. (Becker, 1989), (Farrington 
& Grant, 1999), (Haccou et al, 2005), (Diekmann & Heesterbeek, 2000), (Lyons & Peres, 2016).  
 
Using the branching process model, we observe an initial particle count expand as particles 
birth more of their kind or different types. As this creation sequence persists, the system's 
progression is steered by distinct probability laws. In a branching process time is measured 
discretely, particles are considered to behave independently and there exist a certain 
probability of producing new particles (Bagley, 1986).  
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The decay of the families of men who occupied conspicuous positions in past times has been 
a subject of frequent remark, and has given rise to various conjectures (Gonzalez & 
Molina,1998). 
 
Some entities, whether they are humans, bacteria through biological processes, or even 
neutrons in a chain reaction, have the capability to produce more of their kind. When the 
original group produces offspring, they become the first generation. The subsequent 
generation they produce is the second, and the sequence goes on. It is essential to note that 
this generational process is subject to random occurrences. We have employed the simplest 
mathematical model to depict this situation in our work. This corresponds to the model of 
Galton and Watson (Hefferman; Smith. & Wahl, 2005), (Abdulazeez, 2021), (Lyons & Peres, 
2016). 
 
According to Galton (1891) in his book “Hereditary genius” he treated the different social 
groups (such as nobility and judges), which he ascribed the biological reasons causing 
reduced fertility. Based on their population's law, a percentage of adult males in each 
generation don't have male descendants reaching adulthood; some have one, others have 
two, and so on until a few have five. This poses the question: after  ' r ‘ generations, what 
fraction of family names would no longer exist? And how often would certain surnames 
appear 'm' times? The statistical intricacies of this issue remained elusive, prompting 
attempts with numerical samples. However, Galton's re-exploration of family extinction, 
inspired by De Candolle’s book, brought a fresh perspective. It is noteworthy that the loss of 
family names and the end of family lines essentially depict the same phenomenon.  
 
Galton thought to himself that one could compute “using the laws of probability” the 
percentage of family that dies out and that consequently, one should be able to determine 
whether or a given number of family died out because of reduced fertility (Albertsen,1995) 
Citing historical examples of Galton–Watson process is complicated due to the history of 
family names often deviating significantly from the theoretical model. New family names 
can arise, while current ones might undergo changes throughout an individual's life. 
Historically, it was not uncommon for people to take on names of unrelated individuals, 
especially from noble backgrounds. So, the scarcity of some surnames today does not 
inherently point to their extinction over generations or the eradication of family lines. For 
such conclusions, one must verify that there were more diverse names before and that their 
absence now is due to lineage endings, not other reasons for name alterations.  
 
In the concept of branching theory, initially our focus is on monitoring the magnitude of 
each subsequent generation, rather than pinpointing the birth timing of individual entities 

or understanding their specific familial ties. Suppose we denote by ...,,, 210 XXX  the 

number in the 0th, first, second, …  generations (we sometimes can interpret 

...,,, 210 XXX as a size of population at a sequence of point in time). Furthermore, we 

make the following assumptions 
a) If the size of the nth generation is known, then the probability law governing the later 

generations does not depend on the sizes of generation preceding the nth generation. In 

other words, ...,,, 210 XXX  is a form of Markov chain. We shall always make 

additional assumption that the transitional probability does not vary with time.  
b) The Markov chain considered in this context have a very special property 

corresponding to the assumption that different objects do not interfere with one 
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another. The number of children born to an object does not depend on how many 
objects are present. 

 
When we think of the branching process in action, the preservation of family names often 
stands out as a prime example. 
Surnames are passed down exclusively through male lineage. Each man yields a variable 
number of sons, who in turn have an unpredictable number of sons themselves. This 
cascade of descendants epitomizes the "branching" concept. 
Lotka (1931) used the theory of branching process to address a problem of survival of family 
names. In attempting to mirror the offspring spread of the 1920s male American populace, 
he turned to the zero modified geometric distribution. Within this distribution, the chance 
factor that a father has j sons is: 

 .....,...3,2,1,1 == − jbpP j

j   

Lokta assumed  
2
1

5
1 == pandb  Therefore the probability of having no sons is 2

1
0 =p , the 

probability of having one son is 5
1

1 =p , following this progression, the structure of the 

offspring probability is outlined as 
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The mean of the offspring is ( ) 11 4
5 == gm . According to the fundamental case 1  

there is a positive probability of survival. Nq−1 , where N is the initial number of males, 

applying the fundamental theorem, the number q is a fixed point of g, that is a number such 

that ( ) qqg = and 0 < q < 1.the fixed point of g are found by solving the following equation; 

q
q

q
=

−
+

352

1
 

There are two solutions 1=q  and 6
5=q  but only one solution satisfies 0< q < 1, namely 

6
5=q  and it should be noted that 1=q  will always be one solution to ( ) qqg = due to one of 

the properties of the probability generating function, ( ) 11 =g  

To address the question about the probability of survival of family, it follows that one male 

has a probability of  6
5  that is his line of descent becomes extinct and a probability of 6

1 , 

that his descendants will continue forever. The concept that families can fade away over 
time is deeply rooted in theory, with a significant amount of subsequent writings delving 
into it. Our research zeroes in on the statistical indications of family line extinctions. 
 
 
METHODOLOGY 

Let us assume that an individual produces a random number    of offspring at a given time 

and produce no further offspring. In turn these descendants each produce further 
descendants at the next subsequent time at the same chance and let  

( ) )1(....,..2,1,0=== kwherePkP k  

be the probability mass function of the number of offsprings generated by each individual. 
When every individual procreates without any dependence on others, then the scenario 

unfolds as   is independently and identically distributed for each individual within a 
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generation time n. In the nth generation, the nX  independently produce other 
)()(

2

)(

1 ...,, n

k

nn   Consequently, the aggregate count of individuals emerging in the (n+1)th 

generation is      )2(........ )()(

2
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1)1(

n

k

nn

nX  +++=+  

And this makeup the fundamental branching process equation. 
 
  0 
 1 
  2 
 3 
 4 
 
 
 
 
 
Fig 1.0  Picture of the branching process 

 
Fig.1.0 above demonstrates the standard increase associated with the branching process. A 

dot indicates a birth of an individual  10 =X  implies that there is a single individual in the 

initial generation, 31 =X   which produces only three(3) individuals in the next generation. It 

shows that this continues indefinitely or until extinction. 
 
Probability of Extinction 

  Let    00 0 == PAssumeqXP nn  

We are interested in knowing when the population would eventually die out, that is 

nn q→lim    If nq  is non-decreasing, .10lim =→  andexistsqnn  It follows that, 

 is the smallest positive root of the equation ( ) ( )10 = zzz  

It follows that 
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 Since ( )z is increasing in ( )10  zz  

 We have    
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 1+ nn qq     by (3) and (4) hence nq  is non- decreasing in n  

 

 ( ) ( ) .........,3,2,111 ==+ nqq nn   

Therefore 

 existssayqnn )(lim =→  

Now   .0sin}{001 − andgdecreanonisqandnqandq nn   

We have 

 ( ) thetakingqq nn =+1 →nlim     on both sides we get 

 

 
( ) ( )( )

( )



=

== →+→ continuousiszqq nnnn limlim 1
 

Now  ( )  →= zz  is positive and hence   is positive root of ( ) zz =  

Assume that  0S  is another positive square root of   ( ) zz =   

Then 00 0 Sq =    assume    0Sqn  and which implies  

 ( ) ( ) )5(......00101 SSqqSq nnn == ++     

 

Now  ( ) ( ) 100 === nnn qXP  

 

It follows that on ...2,1,0, 0 = nforSqn  

Hence  

 0lim Sqnn =→   

therefore    is the smallest positive root of ( ) zz =  

To show that    ( ) zz = has a real root on 0< z < 1     iff            1  

 ( ) zz =  has only z = 1 as root in 0 < z <1  iff         1  

It is known that the generating function  
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Since this is a power series which is uniformly convergent  
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Case 1 1  
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Thus there exists 10   , such that  ( ) 0' =f  and which implies that 
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Now  
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Therefore there exists 0 < a<1   such that ( ) 1=af  that is . ( ) aa =  

Case 2: 1  

 Since   1=  it follows that, 0)(' zf  in z for 0 < z < 1  

 For  ( ) ( ) 1)1(02 ==+ fff  

Hence, there does not exists 0 < a < 1 such that  1)( =af  and hence z =1 is the only root of  

( ) zz =  

Method 1 
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 and if 
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That is 1, 



v

isthatv  

Then 1=  that is, the population is to die out (Athreya & Ney, 1972), (Linda, 2011)) 

If   1  then with the probability   the population become extinct and with probability 

−1  the population explodes. 

If 1  then with probability 1, the population becomes extinct [regardless of the actual 

value of  the mean ( ) 11 = XE , the probability that the n-th generation will consist of any 

positive finite  number of individuals tend to zero as →n , with the probability of 

extinction tending to  . In this circumstance, we say that →→ nasX n  with 

probability −1 ]. (Bruss, 1984) 
Let T be the time till extinction (first passage time to state zero) 

Then      0,0 1 === −nn XXnT  

Hence,      0,0 11 =−==−== −− nnnn XPXPqqnTP  

Hence    

( ) ( )

0..

..3322

3210

231201

1 1

−−−−−=

++−+−+−=

−=


= −

qqqq

qqqqqq

qqnTE
n nn

 

This is because the series  ( )


= −−
1 1n nn qqn  is convergent in the rearrangement of the series. 
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Now, ==→ nnnn nqthereforedqq 00lim  is divergent. (Lyons & Peres, 2016) 

 
Method 2 
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The aggregate of descendants amounts to 
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Here is the python program that simulates and models the branching processes  
 
import random 
def simulate_spread(initial_infected, generation_limit, reproduction_number): 
    """ Simulates the spread of a disease using a simple branching process model. 
        :param initial_infected: Initial number of infected individuals. 
    :param generation_limit: Limit to the number of generations to simulate. 
    :param reproduction_number: Expected number of people an infected person will infect. 
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    :return: List of number of infected individuals for each generation. 
    """ 
    generations = [initial_infected] 
    for i in range(generation_limit): 
        new_infected = sum([random.poisson(reproduction_number) for _ in 
range(generations[-1])]) 
        if new_infected == 0: 
            # Disease has died out. 
            break 
            generations.append(new_infected) 
    return generations 
if _ _name_ _ = = "_ _main_ _": 
    initial_infected = 1 
    generation_limit = 10 
    reproduction_number = 1.5 
    result = simulate_spread(initial_infected, generation_limit, reproduction_number) 
    for gen, num_infected in enumerate(result, 1): 
        print("Generation {gen}: {num_infected} infected individuals.") 
 
This program models the disease spread using a branching process. Starting with an initial 
infected individual, it simulates how many new people get infected in each generation. It 
assumes that the number of people each infected individual infects follows a Poisson 
distribution centered around a given reproduction number. Upon running the program, it 
displays the count of affected persons in each generation until either the ailment ceases or 
the generation cap is met. Adjusting the ‘reproduction_number helps us understand the 
impact of varying disease transmissibility levels. 
 
RESULTS AND DISCUSSION 
 
Illustration 1 
Ponder upon a male progenitor whose reproductive capacity is limited to birthing a 
maximum of two male descendants in his lifetime. We only consider male offspring based 
on the fact that family names are maintained by sons only. The probabilities of the male 
offspring produced are as follows: 

Likelihood of having no male is: 1.00 =P  

Likelihood of having one male is: 6.01 =P  

Likelihood of having two males is: 3.02 =P  

 and  

 13.06.01.0210

2

0

=++=++=
=

PPPP
k

k  

The likelihood of extinction in each generation is given by  

   

With q = 0, here the extinction probability is calculated from generation one (  

generation 30  (  

= 0.1  

= 0.1  
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= 0.1  

.. .. .. . .. .. .. .. 

= 0.1  

= 0.1  

= 0.1  

 
Table 1 
GENERATION PROBABILITYOF 

EXTINCTION 
GENERATION PROBABILITY OF 

EXTINCTION 

1  0.1 16 0.3277 

2  0.163 17 0.3288 

3  0.2058 18 0.3297 

4  0.2063 19 0.3304 

5  0.2584 20 0.331 

6  0.2751 21 0.3315 

7  0.2878 22 0.319 

8  0.2975 23 0.3322 

9  0.3053 24 0.3324 

10  0.3111 25 0.3326 

11  0.3157 26 0.3327 

12  0.3193 27 0.3328 

13  0.3222 28 0.3329 

14  0.3245 29 0.3330 

15  0.3263 30 0.3331 

 

Hence, the likelihood of extinction  is non- decreasing and as n increases, it tends to one 

(1) or the probability of extinction tends to the ultimate probability of extinction as time goes 
on. It can be concluded that all families are to die out as stated by the earlier pioneers of 
branching process (Karlin & Kaplan, 1973), (Hull, 1982), (Alsmeyer & Osler, 2002), 
(Gonzalez, 2009). 
 
Illustration 2  
From example 1, suppose we let the probability for the number of offspring to be as follows: 

Likelihood of having no son (male offspring) is 2.00 =P  

Likelihood of  having one male offspring is 5.01 =P  

Likelihood of having two male offspring is 3.02 =P  

and   

Then the likelihood of extinction would be given by  

 
With  

In this case we would consider calculating the probability of extinction from generation one 

( )1X  to generation 20 ( )20X  

 

 
.. .. .. . .. .. .. .. 
.. .. .. . .. .. .. .. 

 = 0.2  

 = 0.2  
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 = 0.2  

 = 0.2  

 
Table 2 
GENERATION PROBABILITYOF 

EXTINCTION 
GENERATION PROBABILITY OF 

EXTINCTION 

1  0.2 11 0.3962 

2  0.28 12 0.3973 

3  0.3232 13 0.3981 

4  0.3492 14 0.3987 

5  0.3657 15 0.3991 

6  0.3766 16 0.3994 

7  0.3839 17 0.3996 

8  0.3889 18 0.3997 

9  0.3923 19 0.3998 

10  0.3946 20 0.3999 

 

Thus by inspection, the probability of extinction is non-decreasing and as n increases it 

tends to 1 as time goes on. It follows that all family names are to die out in the long run. This 
result is in line with the generalization of the classical branching process which is used to 
describe the evolution of population size at each generation.  
 
CONCLUSION 
This kind of model proves instrumental in addressing various practical problems. The odds 
of it fading away hinge significantly on the value of   , dictating the certainty with which 

the branching process will terminate. This will ensure that the branching process will die out 
is with probability one. The assurance is such that the likelihood of dying out is firmly less 
than one. If the mean number of offspring per individual is more than 1, then generally 
speaking, individuals produce a bit more than just a replacement for themselves and the 
termination of the branching process is not assured. Yet, when considering the average 
number of descendants per individual, where  is one or less, the process is guaranteed to 

become extinct.  
This research solidifies the idea that the branching process is a potent method for handling 
unpredictable real-life situations. As such, it is recommended for tasks like modeling cell 
growth, understanding family name extinction, or examining nuclear reactions. It offers a 
fitting framework for a range of real-world problems. 
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