Results on Prime and Semi-Prime Rings with Skew and Generalized Reverse Derivations

${ }^{1}$ Mohammed Hafsat ${ }^{2}$ Balogun Funmilola and ${ }^{3}$ Abdullahi Tasiu
${ }^{1,2}$ Department of Mathematics
Federal University Dutsin-Ma,
Katsina.
${ }^{3}$ Department of Mathematics and Statistics Umaru Musa Yar'adua University Katsina, Nigeria.
Email: hafsatmohd1980@gmail.com

Abstract

For this study, R represents a semiprime ring or a prime ring, as the case may be. The ring R is said to be semiprime if for any $a \in R, a R a=\{0\}$, implies $a=0$. R is a prime ring if $a R b=\{0\}$, implies $a=$ 0 or $b=0, \forall a, b \in R$. By assuming that d is a skew derivation with an automorphism $\beta: R \rightarrow R$ associated with it, we prove some results on skew-derivations for semi-prime rings. In particular, we show that for a skew-derivation, if $d(a) d(b) \pm a b=0, \forall a, b \in R$ then $d=0$. Also, by introducing new differential identities, we establish that a prime ring with a generalized reverse derivation defined on it is commutative.

KEYWORDS: Semiprime ring, prime ring, reverse derivation, skew derivation, generalized reverse derivation.

INTRODUCTION

In this study, the symbol $[a, b]$ and ($a o b$), represents the Lie product $a b-b a$ and the Jordan product $a b+b a$, respectively, where a, b are elements of a ring R. A ring R is said to be prime if $a R b=\{0\}$ for all $a, b \in R$, implies $a=0$ or $b=0$ and it is semiprime if $a R a=0$ for all $a \in$ R, implies that $a=0$.

Posner (1957) introduced the following notion for a ring R: A mapping $d: R \rightarrow R$ is said to be a derivation if $d(a b)=d(a) b+a d(b), \forall a, b \in R$. The mapping d is said to be a derivation on R if it is an additive mapping. The concept of additive mapping was presented by Bresar \& Vukman (1989) as follows: A mapping f is called an additive mapping on R if $(a+b)=f(a)+$ $f(b) \forall a, b \in R$. Also, an additive mapping $F: R \rightarrow R$ is said to be a generalized derivation if there exists a derivation $d: R \rightarrow R$ such that $F(a b)=F(a) b+a d(b), \forall a, b \in R$. Derivations on rings and other algebraic structures abound in the literature (Mohammed et al., 2023; Balogun, 2014; Chaudhry and Ullah, 2011; Hvala, 1998; Bell and Kappe, 1989).

[^0]Herstein (1957) initiated the concept of reverse derivations. According to Herstein, an additive mapping d on R is called a reverse derivation if $(a b)=d(b) a+b d(a), \forall a, b \in R$. Aboubakr and Gonzalez (2015) defined a generalized reverse derivation as an additive mapping $F: R \rightarrow$ R such that there exists a mapping $d: R \rightarrow R$ and $F(a b)=F(b) a+b d(a), \forall a, b \in R$. Sandhu (2018) proved the following result: Let $\left(\mu_{1}, \sigma_{1}\right)$ and $\left(\mu_{2}, \sigma_{2}\right)$ be the skew-derivations of 2-torsion free prime ring R with $\mu_{2} \sigma_{2}=\sigma_{2} \mu_{2}$. If the iterate $\left(\mu_{1} \mu_{2}, \sigma_{1} \sigma_{2}\right)$ is a skew derivation of R, we have either $\left(\mu_{1}, \sigma_{1}\right)=0$ or $\left(\mu_{2}, \sigma_{2}\right)=0$.

Recently, Khan et al., (2020) proved that "if δ_{1}, δ_{2} and δ_{3} are skew-derivations associated with automorphisms β_{1}, β_{2} and β_{3} of 3!-torsion free prime rings R with $\delta_{i} \delta_{j}=\delta_{j} \delta_{i}$ for $i, j=1,2,3$, $\delta_{3}^{2}=\delta_{3}$ and the iterate $\delta_{1} \delta_{2} \delta_{3}$ is a skew-derivation of R, then at least one of $d_{i}=0$, for $i=$ 1,2,3.
Motivated by these works, we introduce new differential identities that make prime rings to be commutative. We also establish new results on skew-derivation for semi-prime rings.

THEORETICAL FRAMEWORK

We need the following definitions:

Definition 2.1

An additive mapping $\delta: R \rightarrow R$ of a prime ring R associated with an automorphism $\beta: R \rightarrow R$ is called a skew-derivation if $\delta(a b)=\delta(a) b+\beta(a) \delta(b)$, for all $a, b \in R$.

Definition 2.2

An additive mapping $F: R \rightarrow R$ is said to be a generalized reverse derivation if there exists a derivation $d: R \rightarrow R$ such that $F(a b)=F(b) a+b d(a), \forall a, b \in R$.
The following are results that will be extended in this work:

Theorem 2.3

Let R be a prime ring and d be a skew- derivative associated with an automorphism $\beta: R \rightarrow R$ If $d(x) d(y) \pm x y=0$ for all $x, y \in R$ then $d=0$.

Theorem 2.4

Let R be prime ring and d be a skew- derivative associated with an automorphism $\beta: R \rightarrow R$ If $d(y) d(x)+y x=0$ for all $x, y \in R$, then $d=0$.

Theorem 2.5

Let R be a semiprime ring and I a non-zero ideal of R. Suppose F is a multiplicative (generalized)-reverse derivation associated with the mapping d on R. If $F(x y)-x o y=0$ for all $x, y \in I$, then R is commutative.

DISCUSSION AND RESULTS

In this section, we extend the results presented in section 2.

RESULTS ON SEMIPRIME RINGS

We have the following results for semiprime rings:

Theorem 1

Suppose R is a semiprime ring and d is a skew- derivation associated with an automorphism β from R to itself.
If $d(a) d(b)+a b=0$ or $d(a) d(b)-a b=0 \forall a, b \in R$ then the skew-derivation is zero.

Proof:
First we consider the case

$$
\begin{equation*}
d(a) d(b)+a b=0 \tag{1}
\end{equation*}
$$

$\forall a, b, \in R$. Putting $b c$ in place of b in equation (1), we have

$$
d(a) d(b c)+a b c=0
$$

By definition 1.1 we have

$$
\begin{gathered}
d(a)(d(b) c+\beta(b) d(c))+a b c=0 \forall a, b, c \in R \\
d(a) d(b) c+d(a) \beta(b) d(c)+a b c=0
\end{gathered}
$$

But $d(a) d(b)=-a b$

$$
\begin{align*}
& -a b c+d(a) \beta(b) d(c)+a b c=0 \\
& d(a) \beta(b) d(c)+a b c-a b c=0 \\
& d(a) \beta(b) d(c)=0 \tag{2}
\end{align*}
$$

Replacing a with $a c$ in equation (2), we obtain

$$
d(a c)(\beta(b) d(c))=0
$$

Again by definition 1.1, we have

$$
\begin{gather*}
(d(a) c(\beta(a) d(c)) \beta(b) d(c)=0 \\
d(a) c \beta(b) d(c)+\beta(a) d(c) \beta(b) d(c)=0 \tag{3}
\end{gather*}
$$

Replacing $\beta(b)$ with $c \beta(b)$ in equation (2), we get

$$
\begin{equation*}
d(a) c \beta(b) d(c)=0 \forall a, b, c, \in R \tag{4}
\end{equation*}
$$

Subtracting equation (4) from equation (3), we obtain

$$
\begin{equation*}
\beta(a) d(c) \beta(b) d(c)=0 \forall a . b, c, \in R \tag{5}
\end{equation*}
$$

Replacing $\beta(a) d(c)$ with $d(c)$ in equation (5), we get

$$
d(c) \beta(y) d(c)=0 \forall a, b, c \in R
$$

Now, d is a skew derivation and β is an automorphism associated with it Thus,

$$
d(c) R d(c), \forall z \in R
$$

By Semiprimeness of the ring R, this implies $d(c)=0$. Hence, we have the required result.
Similarly the second case follows.

Theorem 2

Let R be a semiprime ring and d be a skew- derivative associated with an automorphism $\beta: R \rightarrow R$.
If $d(b) d(a)+b a=0$ or $d(b) d(a)-b a=0$ for all $a, b \in R$ then the skew-derivation is zero.
Proof: First we consider the case

$$
\begin{equation*}
d(b) d(a)+b a=0 \tag{1}
\end{equation*}
$$

for all $a, b, \in R$. Replacing a with $a c$ in equation (1), we have

$$
d(b) d(a c)+b a c=0
$$

By definition 1.1, we have

$$
\begin{gathered}
d(b)(d(a) c+\beta(a) d(c))+b a c=0 \forall a, b, c \in R \\
d(b) d(a) c+d(b) \beta(a) d(c)+b a c=0
\end{gathered}
$$

But $d(b) d(a)=-b a c$

$$
\begin{align*}
& -b a c+d(b) \beta(a) d(c)+b a c=0 \\
& d(b) \beta(a) d(c)+b a c-b a c=0 \\
& d(b) \beta(a) d(c)=0 \tag{2}
\end{align*}
$$

Replacing b with $b c$ in equation (2), we obtain

$$
d(b c)(\beta(a) d(c))=0
$$

By definition 1.1, we have

$$
\begin{array}{r}
(d(b) c+\beta(b) d(c))(\beta(a) d(c))=0 \\
d(b) c \beta(a) d(c)+\beta(b) d(c) \beta(a) d(c)=0 \tag{3}
\end{array}
$$

Replacing $\beta(a)$ with $c \beta(a)$ in equation (2), we get

$$
\begin{equation*}
d(b) c \beta(a) d(c)=0 \forall a . b,, c \in R \tag{4}
\end{equation*}
$$

Subtracting equation (4) from equation (3), we obtain

$$
\begin{equation*}
\beta(b) d(c) \beta(a) d(c)=0 \forall a . b, c \in R \tag{5}
\end{equation*}
$$

Substituting $d(c)$ for $\beta(b) d(c)$ in equation (5), we get

$$
d(c) \beta(a) d(c)=0 \quad \forall a, c \in R
$$

Now, d is a skew derivation and β is an automorphism associated with it Thus,

$$
d(c) R d(c)=0, \quad \forall c \in R
$$

By the semiprimeness of the ring R, we have
$d(c)=0$. Hence the result.
The second case follows.

RESULT ON PRIME RINGS

Next, we present the following result for a prime ring R:

Theorem 3

Let R be a prime ring and F be a generalized reverse derivation associated with the reverse derivation d on R. If $F(a b) \pm a o b=0, \forall a, b \in R$, then the ring R is commutative.
Proof:

$$
\begin{equation*}
F(a b) \pm a o b=0, \forall a, b \in R \tag{1}
\end{equation*}
$$

Put $a=z a$

$$
\begin{equation*}
0=F(z a b)-z a o b, \forall a, b, z \in R \tag{2}
\end{equation*}
$$

By definition 1.2

$$
\begin{align*}
& 0=F(a b) z+a b d(z)-(a o b) z+(a o b) z-z a b-b a z, \forall a, b, z \in R \\
& 0=(F(a b)-(a o b)) z+a b d(z)+a b z-b a z-z a b-b a, \forall a, b, z \in R \tag{3}\\
& 0=(F(a b)-(a o b)) z+a b d(z)+[a b, z]+b[a, z], \forall a, b, z \in R \tag{4}
\end{align*}
$$

Since $F(a b)-a o b=0$, then

$$
\begin{equation*}
0=a b d(z)+[a b, z]+b[a, z], \forall a, b, z \in R \tag{5}
\end{equation*}
$$

Put $y=x y$
$0=a^{2} b d(z)+\left[a^{2} b, z\right]+a b[a, z], \forall a, b, z \in R$
$0=a^{2} b d(z)+a[a b, z]+[a, z] a b=a b[a, z], \forall a, b, z \in R$
From equation (5) right multiplying by a
$0=a^{2} b d(z)+a[a b, z]+a b[a, z], \forall a, b, z \in R$
(6) minus (7) we have,
$0=[a, z] a b, \forall a, b, z \in R$
Put $z=z u, u \in R$, we have
$0=[a, z u] a b, \forall a, b, z, u \in R$
This implies that,
$(\mathrm{z}[a, u]+[a, z] u) a b=0, \forall a, b, z, u \in R$
$\mathrm{z}[a, u] a b+[a, z] u a b=0, \forall a, b, z, u \in R$
But $u=z u$,we have
$\mathrm{z}[a, z u] a b+[a, z] z u a b=0, \forall a, b, z, u \in R$
But $[a, z u] a b=0$
Thus we have,
$[a, z] z u a b=0, \forall a, b, z, u \in R$
But , $u=z u$
$[a, z] u a b=0, \forall a, b, z, u \in R$
Replacing $z u$ instead of $u,(u=z u)$ in equation (13)
$[a, z] u z a b=0, \forall a, b, z, u \in R$
Put $b=z b$ in (13)
$[a, z] u a z b=0, \forall a, b, z, u \in R$
(14) minus (15), we have
$[a, z] u z a b-[a, b] u a z b=0, \forall a, b, z, u \in R$
$[a, z](z u a b-u a z b)=0, \forall a, b, z, u \in R$
$[a, z](u(z a b-a z b))=0, \forall a, b, z, u \in R$
$[a, z](u(z a-a z) b)=0, \forall a, b, z, u \in R$
$[a, z] u[z, a] b=0, \forall a, b, z, u \in R$
Put $b=1$
$[a, z] u[z, a]=0, \forall a, z, u \in R$
$[a, z] R[z, a]=0, \forall a, z \in R$
Since R is a prime ring we have
$[a, z]=0$ or $[z, a]=0, \forall a, z \in R$
$a z-z a=0$ or $-a z=0, \forall a, z \in R$
Hence,
$a z=z a$ or $z a=a z, \forall a, z \in R$.
Therefore the ring R is commutative, hence our result.

CONCLUSION

In this work, we established some new results on skew-derivation and generalized reverse derivation for prime and semi-prime rings by extending some existing results. In particular, we proved the following for semi-prime rings with skew-derivations: if $d(a) d(b) \pm a b=0$ for all $a, b \in R$ then $d=0$. Furthermore, by introducing new differential identities, we proved that a prime ring R with a generalized reverse derivation F, which is associated with a reverse derivation d on R, is commutative if $F(a b) \pm a o b=0, \forall a, b \in R$.

REFERENCES

Aboubakr, A. and Gonzalez, S. (2015) Generalized reverse derivations on semiprime rings. Seberian Mathematical Journal 56(2): 199-205.
Balogun, F. (2014). A study on derivations on lattices. Mathematical Theory and Modeling, 4(11): 14-19.
Bell, H. E., and Kappe, L. C. (1989). Rings in which derivations satisfy certain algebraic conditions. Acta Math. Hng, 53(3-4): 339-346.
Bresar, M. and Vukman, J. (1989). On some additive mappings in rings with involution. Aequationes Mathematicae 38: 89-93.
Chaudhry, M. A. and Ullah, Z. (2011). On generalized α, β-derivations on lattices. Quaestiones Mathematicae, 34: 417-424.
Hvala, B. (1998). Generalized derivations in prime rings. Commun. Algebra, 26: 1147-1166.
Herstein, I. N. (1957). Jordan derivations of prime rings. Proc. Amer. Math. Soc., 8: 1104-1110.
Mohammed, H. R., Balogun, F., and Yusuf, T. A. (2023). Commutativity of prime rings with multiplicative (generalized- reversed) derivation. Science World Journal, 18(3):386-388.
Posner, E. C. (1957). Derivations in prime rings. Proceeding of the American Mathematical Society, 8(6): 1093-1100.
Khan, M. A., Madugu, A., and Yusuf, T. A. (2020). Extension of Posner's first theorem via skew-derivations. International Journal of Trends in Research and Development, 7(2): 151153.

Sandhu, G. S. (2018). A note on Posner's theorems. Annals of Pure and Applied Math., 17: 147150.

[^0]: *Author for Correspondence
 Mohammed H., Balogun F., Abdullahi T., DUJOPAS 9 (4b): 55-59, 2023

