https://dx.doi.org/10.4314/dujopas.v9i4b.6

Results on Prime and Semi-Prime Rings with Skew and Generalized Reverse Derivations

¹Mohammed Hafsat ² Balogun Funmilola and ³Abdullahi Tasiu

^{1, 2} Department of Mathematics Federal University Dutsin-Ma, Katsina.

³Department of Mathematics and Statistics Umaru Musa Yar'adua University Katsina, Nigeria.

Email: hafsatmohd1980@gmail.com

Abstract

For this study, R represents a semiprime ring or a prime ring, as the case may be. The ring R is said to be semiprime if for any $a \in R$, $aRa = \{0\}$, implies a = 0. R is a prime ring if $aRb = \{0\}$, implies a = 0 or b = 0, $\forall a, b \in R$. By assuming that d is a skew derivation with an automorphism $\beta: R \to R$ associated with it, we prove some results on skew-derivations for semi-prime rings. In particular, we show that for a skew-derivation, if $d(a)d(b) \pm ab = 0$, $\forall a, b \in R$ then d = 0. Also, by introducing new differential identities, we establish that a prime ring with a generalized reverse derivation defined on it is commutative.

KEYWORDS: Semiprime ring, prime ring, reverse derivation, skew derivation, generalized reverse derivation.

INTRODUCTION

In this study, the symbol [a, b] and (aob), represents the Lie product ab - ba and the Jordan product ab + ba, respectively, where a, b are elements of a ring R. A ring R is said to be prime if $aRb = \{0\}$ for all $a, b \in R$, implies a = 0 or b = 0 and it is semiprime if aRa = 0 for all $a \in R$, implies that a = 0.

Posner (1957) introduced the following notion for a ring R: A mapping $d: R \to R$ is said to be a derivation if d(ab) = d(a)b + ad(b), $\forall a, b \in R$. The mapping d is said to be a derivation on R if it is an additive mapping. The concept of additive mapping was presented by Bresar & Vukman (1989) as follows: A mapping f is called an additive mapping on R if $(a + b) = f(a) + f(b) \forall a, b \in R$. Also, an additive mapping $F: R \to R$ is said to be a generalized derivation if there exists a derivation $d: R \to R$ such that F(ab) = F(a)b + ad(b), $\forall a, b \in R$. Derivations on rings and other algebraic structures abound in the literature (Mohammed *et al.*, 2023; Balogun, 2014; Chaudhry and Ullah, 2011; Hvala, 1998; Bell and Kappe, 1989).

Herstein (1957) initiated the concept of reverse derivations. According to Herstein, an additive mapping *d* on *R* is called a reverse derivation if (ab) = d(b)a + bd(a), $\forall a, b \in R$. Aboubakr and Gonzalez (2015) defined a generalized reverse derivation as an additive mapping $F: R \rightarrow R$ such that there exists a mapping $d: R \rightarrow R$ and F(ab) = F(b)a + bd(a), $\forall a, b \in R$. Sandhu (2018) proved the following result: Let (μ_1, σ_1) and (μ_2, σ_2) be the skew-derivations of 2-torsion free prime ring *R* with $\mu_2\sigma_2 = \sigma_2\mu_2$. If the iterate $(\mu_1\mu_2, \sigma_1\sigma_2)$ is a skew derivation of *R*, we have either $(\mu_1, \sigma_1) = 0$ or $(\mu_2, \sigma_2) = 0$.

Recently, Khan *et al.*, (2020) proved that "if δ_1 , δ_2 and δ_3 are skew-derivations associated with automorphisms β_1 , β_2 and β_3 of 3!-torsion free prime rings *R* with $\delta_i \delta_j = \delta_j \delta_i$ for *i*, *j* = 1,2,3, $\delta_3^2 = \delta_3$ and the iterate $\delta_1 \delta_2 \delta_3$ is a skew-derivation of *R*, then at least one of $d_i = 0$, for *i* = 1,2,3.

Motivated by these works, we introduce new differential identities that make prime rings to be commutative. We also establish new results on skew-derivation for semi-prime rings.

THEORETICAL FRAMEWORK

We need the following definitions:

Definition 2.1

An additive mapping $\delta: R \to R$ of a prime ring *R* associated with an automorphism $\beta: R \to R$ is called a skew-derivation if $\delta(ab) = \delta(a)b + \beta(a)\delta(b)$, for all $a, b \in R$.

Definition 2.2

An additive mapping $F: R \to R$ is said to be a generalized reverse derivation if there exists a derivation $d: R \to R$ such that $F(ab) = F(b)a + bd(a), \forall a, b \in R$. The following are results that will be extended in this work:

Theorem 2.3

Let *R* be a prime ring and *d* be a skew- derivative associated with an automorphism $\beta: R \to R$ If $d(x)d(y) \pm xy = 0$ for all $x, y \in R$ then d = 0.

Theorem 2.4

Let *R* be prime ring and *d* be a skew- derivative associated with an automorphism $\beta: R \to R$ If d(y)d(x) + yx = 0 for all $x, y \in R$, then d = 0.

Theorem 2.5

Let *R* be a semiprime ring and *I* a non-zero ideal of *R*. Suppose *F* is a multiplicative (generalized)-reverse derivation associated with the mapping *d* on *R*. If F(xy) - xoy = 0 for all $x, y \in I$, then *R* is commutative.

DISCUSSION AND RESULTS

In this section, we extend the results presented in section 2.

RESULTS ON SEMIPRIME RINGS

We have the following results for semiprime rings:

Theorem 1

Suppose *R* is a semiprime ring and *d* is a skew- derivation associated with an automorphism β from R to itself.

If d(a)d(b) + ab = 0 or $d(a)d(b) - ab = 0 \forall a, b \in R$ then the skew-derivation is zero.

Proof:

First we consider the case

$$d(a)d(b) + ab = 0$$
(1)

$$\forall a, b, \in R. Putting bc in place of b in equation (1), we have
$$d(a)d(bc) + abc = 0$$
By definition 1.1 we have

$$d(a)(d(b)c + \beta(b)d(c)) + abc = 0 \forall a, b, c \in R$$

$$d(a)d(b)c + d(a)\beta(b)d(c) + abc = 0$$
But $d(a)d(b) = -ab$

$$-abc + d(a)\beta(b)d(c) + abc = 0$$

$$d(a)\beta(b)d(c) + abc - abc = 0$$

$$d(a)\beta(b)d(c) = 0$$
(2)
Replacing a with ac in equation (2), we obtain

$$d(ac)(\beta(b)d(c)) = 0$$
Again by definition 1.1, we have

$$(d(a)c(\beta(a)d(c))\beta(b)d(c) = 0$$

$$d(a)c\beta(b)d(c) = 0$$
(3)
Replacing $\beta(b)$ with $c\beta(b)$ in equation (2), we get

$$d(a)c\beta(b)d(c) = 0 \forall a, b, c, \in R$$
(4)
Subtracting equation (4) from equation (3), we obtain

$$\beta(a)d(c)\beta(b)d(c) = 0 \forall a, b, c, \in R$$
Now, d is a skew derivation and β is an automorphism associated with it
Thus,

$$d(c)R d(c), \forall z \in R$$
By Semiprimeness of the ring R, this implies

$$d(c) = 0.$$
 Hence, we have the required result.
Similarly the second case follows.$$

Theorem 2

Let R be a semiprime ring and d be a skew- derivative associated with an automorphism $\beta: R \rightarrow R.$

If d(b)d(a) + ba = 0 or d(b)d(a) - ba = 0 for all $a, b \in R$ then the skew-derivation is zero. Proof: First we consider the case

$$d(b)d(a) + ba = 0 \tag{1}$$

for all
$$a, b, \in R$$
. Replacing a with ac in equation (1), we have
 $d(b)d(ac) + bac = 0$

By definition 1.1, we have

$$d(b)(d(a)c + \beta(a)d(c)) + bac = 0 \forall a, b, c \in R$$

$$d(b)d(a)c + d(b)\beta(a)d(c) + bac = 0$$

But d(b)d(a) = -bac

$$-bac + d(b)\beta(a)d(c) + bac = 0$$

$$d(b)\beta(a)d(c) + bac - bac = 0$$

$$d(b)\beta(a)d(c) = 0$$
(2)
h bc in equation (2), we obtain

Replacing b with

$$d(bc)\big(\beta(a)d(c)\big)=0$$

By definition 1.1, we have

$$(d(b)c + \beta(b)d(c))(\beta(a)d(c)) = 0$$

$$d(b)c\beta(a)d(c) + \beta(b)d(c)\beta(a)d(c) = 0$$
(3)
Replacing $\beta(a)$ with $c\beta(a)$ in equation (2), we get

Mohammed H., Balogun F., Abdullahi T., DUJOPAS 9 (4b): 55-59, 2023

$$d(b)c\beta(a)d(c) = 0 \ \forall \ a. \ b,, c \in R$$

$$\tag{4}$$

Subtracting equation (4) from equation (3), we obtain

$$\beta(b)d(c)\beta(a)d(c) = 0 \quad \forall \ a. \ b, c \in R$$
(5)

Substituting d(c) for $\beta(b)d(c)$ in equation (5), we get $d(c)\beta(a)d(c) = 0 \quad \forall a, c \in R$

Now, *d* is a skew derivation and β is an automorphism associated with it Thus,

$$d(c)R\ d(c)=0, \ \forall \ c\in R$$

By the semiprimeness of the ring *R*, we have d(c) = 0. Hence the result. The second case follows.

RESULT ON PRIME RINGS

Next, we present the following result for a prime ring R:

Theorem 3

Put a = za

Let *R* be a prime ring and *F* be a generalized reverse derivation associated with the reverse derivation *d* on *R*. If $F(ab) \pm aob = 0$, $\forall a, b \in R$, then the ring *R* is commutative. Proof:

$$F(ab) \pm aob = 0, \forall a, b \in R$$
(1)

$$0 = F(zab) - zaob, \forall a, b, z \in R$$
By definition 1.2
$$0 = F(ab)z + abd(z) - (aob)z + (aob)z - zab - baz, \forall a, b, z \in R$$
(2)

$$\begin{split} \tilde{0} &= F(ab)z + abd(z) - (aob)z + (aob)z - zab - baz, \forall a, b, z \in R \\ 0 &= (F(ab) - (aob))z + abd(z) + abz - baz - zab - ba, \forall a, b, z \in R \\ (3) \\ 0 &= (F(ab) - (aob))z + abd(z) + [ab, z] + b[a, z], \forall a, b, z \in R \\ (4) \\ Since F(ab) - aob &= 0, then \\ 0 &= abd(z) + [ab, z] + b[a, z], \forall a, b, z \in R \\ (5) \\ Put y &= xy \\ 0 &= a^2bd(z) + [a^2b, z] + ab[a, z], \forall a, b, z \in R \\ 0 &= a^2bd(z) + a[ab, z] + [a, z]ab = ab[a, z], \forall a, b, z \in R \\ (6) \\ From equation (5) right multiplying by a \\ 0 &= a^2bd(z) + a[ab, z] + ab[a, z], \forall a, b, z \in R \\ (7) \\ (6) minus (7) we have, \\ 0 &= [a, z]ab, \forall a, b, z \in R \\ (8) \\ Put z &= zu, u \in R, we have \\ 0 &= [a, zu]ab, \forall a, b, z, u \in R \\ (z[a, u]]ab + [a, z]uab = 0, \forall a, b, z, u \in R \\ z[a, u]ab + [a, z]zuab = 0, \forall a, b, z, u \in R \\ z[a, z]aub = 0, \forall a, b, z, u \in R \\ [a, z]zuab = 0, \forall a, b, z, u \in R \\ [a, z]uab$$

Mohammed H., Balogun F., Abdullahi T., DUJOPAS 9 (4b): 55-59, 2023

(14) minus (15), we have	
$[a, z]uzab - [a, b]uazb = 0, \forall a, b, z, u \in R$	(16)
$[a, z](zuab - uazb) = 0, \forall a, b, z, u \in R$	
$[a, z](u(zab - azb)) = 0, \forall a, b, z, u \in R$	(17)
$[a, z](u(za - az)b) = 0, \forall a, b, z, u \in R$	
$[a, z]u[z, a]b = 0, \forall a, b, z, u \in R$	(18)
Put $b = 1$	
$[a, z]u[z, a] = 0, \forall a, z, u \in R$	
$[a, z]R[z, a] = 0, \forall a, z \in R$	(19)
Since <i>R</i> is a prime ring we have	
$[a, z] = 0 \text{ or } [z, a] = 0, \forall a, z \in R$	
$az - za = 0$ or $-az = 0$, $\forall a, z \in R$	
Hence,	
$az = za \text{ or } za = az, \forall a, z \in R.$	
Therefore the ring <i>R</i> is commutative, hence our result.	

CONCLUSION

In this work, we established some new results on skew-derivation and generalized reverse derivation for prime and semi-prime rings by extending some existing results. In particular, we proved the following for semi-prime rings with skew-derivations: *if* $d(a)d(b) \pm ab = 0$ *for all* $a, b \in R$ *then* d = 0. Furthermore, by introducing new differential identities, we proved that a prime ring R with a generalized reverse derivation F, which is associated with a reverse derivation d on R, is commutative if $F(ab) \pm aob = 0$, $\forall a, b \in R$.

REFERENCES

- Aboubakr, A. and Gonzalez, S. (2015) Generalized reverse derivations on semiprime rings. *Seberian Mathematical Journal* 56(2): 199-205.
- Balogun, F. (2014). A study on derivations on lattices. *Mathematical Theory and Modeling*, 4(11): 14-19.
- Bell, H. E., and Kappe, L. C. (1989). Rings in which derivations satisfy certain algebraic conditions. *Acta Math. Hng*, 53(3-4): 339-346.
- Bresar, M. and Vukman, J. (1989). On some additive mappings in rings with involution. *Aequationes Mathematicae* 38: 89-93.
- Chaudhry, M. A. and Ullah, Z. (2011). On generalized α , β –derivations on lattices. *Quaestiones Mathematicae*, 34: 417-424.
- Hvala, B. (1998). Generalized derivations in prime rings. Commun. Algebra, 26: 1147-1166.
- Herstein, I. N. (1957). Jordan derivations of prime rings. Proc. Amer. Math. Soc., 8: 1104-1110.
- Mohammed, H. R., Balogun, F., and Yusuf, T. A. (2023). Commutativity of prime rings with multiplicative (generalized-reversed) derivation. *Science World Journal*, 18(3):386-388.
- Posner, E. C. (1957). Derivations in prime rings. *Proceeding of the American Mathematical Society*, *8*(6): 1093-1100.
- Khan, M. A., Madugu, A., and Yusuf, T. A. (2020). Extension of Posner's first theorem via skew-derivations. *International Journal of Trends in Research and Development*, 7(2): 151-153.
- Sandhu, G. S. (2018). A note on Posner's theorems. *Annals of Pure and Applied Math.*, 17: 147-150.