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Abstract 
The use of relevant information from auxiliary variables at the estimation stage and design stage to 
obtain reliable and efficient estimates is a common practice in a sample survey. Several Estimators of 
population variance have been suggested. However, these estimators do not consider the situation of 
non-response due to non-availability of respondents, refusal to respond, presence of hard-core 
respondents or due to non-understanding of the question thereby, reducing the efficiency of the 

estimators and the parameters of the auxiliary variable 2, XX S  used are sensitive to outliers or extreme 

values which can either lead to underestimation or overestimation. To address the aforementioned 
observations, classes of variance estimators under the simultaneous influence of non-response and 
measurement errors using outlier-free parameters as well as calibration approaches were proposed. The 
properties (Bias and MSE) of the modified estimators were derived up to the first order of approximation 
using the Taylor series approach. The efficiency conditions of the proposed estimators over the existing 
estimators considered in the study were established. The empirical studies were conducted using 
simulation and the results revealed that the proposed class of estimators have minimum MSEs and 
higher PREs among all the competing estimators. These imply that the proposed estimators are more 
efficient and can produce a better estimate of the population mean compared to other existing estimators 
considered in the study.                              
 
Keywords; Non-response, Estimators, Measurement error, Calibration, Efficiency 
 
INTRODUCTION 
The population parameters of interest that are often estimated in sampling survey includes 
population mean, population variance, population proportion, population total etc. Various 
estimators can be used to estimate these parameters and they include; Ratio, Product, 
Regression, Exponential ratio, Exponential product, Dual to ratio, Dual to product and many 
more. The Ratio estimators can be used when there is a strong positive correlation between 
the study and the auxiliary variables and it was initiated by Cochran (1940). The product 
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estimator can also be used when there is a negative correlation between auxiliary and study 
variables, Murthy (1964). Regression Estimator can be applied for the estimation of 
parameters for both situations, Singh and Singh (2001b), Khan and Shabbir (2017), Southwick 
and Robinson (1957), Subramani and Kumarapandiyan (2012, 2015), Shabbir and Gupta 
(2010), Olufadi and Kadilar (2014), Prasad and Singh (1992), Muili et al (2018), Kadilar and 
Cingi (2006), Koyuncu (2013), Grover (2010), Audu et al. (2016a, b, c), Upadhyaya and Singh 
(1999). Other authors that have worked in this direction are Reed and Das (1988), Audu and 
Singh (2015), Deville and Särndal (1992), Haq et al.(2017) and many more for the estimation of 
population mean.  In many studies, variance estimation is a crucial concern and the variance 
estimator uses auxiliary information to improve the efficiency of estimators. One of its 
applications is that it is used to study variations of produce or yields in the manufacturing 
and pharmaceutical industries, (Audu et al., 2022). Ratio, product and regression estimators 
are formulated using auxiliary variables. It is widely accepted that the information on 
auxiliary variables such as the population mean, variance, kurtosis, skewness etc. enhance the 
efficiency of estimators. Authors like Das et al. (1978), Srivastava and Jhajj (1981), Isaki(1983), 
Upadhyaya and Singh (1983), Singh et al. (1988), Biradar and Singh (1994), Singh and Singh 
(2001a), Lin et al. (2003), Singh and Vishwakarma (2008), Singh et al. (2011), Audu and Singh 
(2015), Ishaq et al. (2020), Yunusa et al. (2022), Olayiwola et al. (2021), Adejumobi et al. (2022) 
have developed variance estimators using auxiliary information. It is a well-known fact in 
sample surveys that there are two major non-sampling error problems encountered by survey 
statisticians during a survey. The problems are non-response and measurement errors. These 
errors are so serious that their occurrence may lead any estimation strategy to either 
overestimation or underestimation. For example, in a mail questionnaire survey where 
respondents are expected to give their actual age, instead, they give an approximate age. 
Hence, there is an occurrence of measurement error in this situation. Also, when we use an 
instrument that is faulty during a survey, the observations to be obtained will not be accurate, 
hence measurement error is present. Apart from measurement error, there is another error in 
the survey which is non-response. This error arises as a result of respondents not responding 
to item(s) of a questionnaire either due to a lack of understanding of the question or, not 
willing to disclose vital information, and as a result of this, the questions are unanswered. 
Thus, non-response arises. Hansen and Hurwitz (1946) were the first to consider the problem 
of non-response in estimation theory by using the technique of sub-sampling from non-
respondents. The estimation of unknown population parameters with the presence of non-
response and measurement errors influences the properties of the estimators to a greater 
extent. In statistical analysis, it is often assumed that all the observations are measured 
correctly, but in reality, it is not true. Several authors like, Cochran (1968), Shalabh (1997), 
Srivastava (2002), Allen et al. (2003), Singh and Karpe (2010), Singh et al. (2011), and Singh et 
al. (2022) have considered the influence of measurement error on the estimators of mean and 
variance under simple and stratified random sampling. Authors such as Kumar and Krishna 
(2011), Singh et al. (2018), Audu et al. (2021), Audu et al. (2022), defined estimators under the 
simultaneous influence of non-response and measurement errors respectively. 
 
Various techniques have been adopted to improve the efficiency of variance estimators and 
other parameters of the study variable in sampling literature, they include the use of unknown 
weight, power transformation, linear combination of estimators, exponential transformation, 
logarithmic transformation, use of non-conventional robust measures, use of conventional 
and non-conventional measures, etc. Another technique that can provide an improved 
estimate of population variance is Calibration.  
 
Calibration estimation is a technique that makes use of auxiliary information to modify the 
original design weights in order to improve the accuracy of the estimators. It is also a method 
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of adjusting the original strata weights by reduction of a given distance measure based on a 
set of calibration constraints. Works in this field on mean estimation were done by Tracy et al. 
(2003), Singh et al. (2018), Koyuncu (2018), Zaman and Bulut (2019), Garg and Pachori (2020), 
Shahzad et al. (2021). Singh (2001) were the first to extend the Calibration approach to a 
stratified sampling design. Others include: Arnab and Singh (2005), Särndal (2007), Kim and 
Park (2010), Clement et al. (2014), Koyuncu and Kadilar (2016). Outliers or extreme values are 
the observations in a dataset that appear to be inconsistent with the rest of that dataset, 
(Lemonaki, 2021). Zaman and Bulut (2020) used robust methods for the estimation of mean 
and variance in the presence of outliers or extreme values. Abid et al. (2018) Variance 
estimators use traditional central moments yet, their estimators are sensitive to outliers. To 
resolve this problem, L-moments were introduced. L-moments are based on linear 
combinations of order statistics. Singh et al. (2018) adopted L-moments for estimation of 
population mean considering calibrations approach, under stratified random sampling, other 
authors include Zaman and Bulut (2020), Zaman and Bulut (2021), Shahzad et al. (2021) 
adopted the L-moment and calibration approach for variance estimation under stratified 
random sampling. 
 
Recently, Singh et al. (2021) suggested variance estimators which were studied under 
measurement error without considering the influence of non-response error in their study. In 
this present study, classes of variance estimators under the simultaneous influence of 
measurement errors and non-response using a calibration approach are proposed. 
The usual variance estimator in the presence of measurement error is given by (1.1),  
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The bias and mean square errors are given by (1.2) and (1.3) respectively 
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Singh et al. (2021) proposed variance estimators in the presence of measurement errors under 
stratified random sampling. Three classes of estimators for the estimation of population 
variance under stratified random sampling when both the study and auxiliary variable are 
characterized with measurement errors are given by (1.4), (1.5) and (1.6) respectively as 
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The biases and mean square errors of the estimators are given by (1.7), (1.8), (1.9), (1.10), (1.11) 
and (1.12) respectively as 
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Their study confirmed that the proposed estimators are better than the usual unbiased 
estimators theoretically. Singh et al. (2021) also concluded that the presence of measurement 
errors incorporates larger mean square error than the absence of measurement error, through 
exhibiting the impact of measurement error on the MSE of the estimators. However, the study 
does not consider the simultaneous influence of measurement error and non-response. 

Additionally, the parameters of the auxiliary 
2,
hh xX S used in the estimators can easily be 

influenced by the presence of outliers or extreme values in the data thereby leading to 
underestimation or underestimation. 
 
MATERIALS AND METHODS 
 
Proposed Variance Calibration Estimator  
Having studied the work of Singh et al. (2021) variance estimators, the following class of 
variance estimators in the presence of measurement errors and non-response is proposed. 
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respectively in the presence of non-response and measurement error. 

To obtain bias and MSE of the estimators, 
piT = 1, 2, …5, function in (2.1) was used. 
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Where, q is the number of sample variances in the estimators, q = 2 
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The MSEs of the estimators is obtained using function in (14) 
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To obtain the calibration weight estimators and properties of the estimator Tpi, we define the 
Lagrange function as 
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where 1a and 
2a are Lagrange’s multipliers. 

Differentiate (2.5) partially with respect to *2
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obtain (2.6), (2.7) and (2.8) after simplification. 
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Substitute (2.6) into (2.7) and (2.8) and simplify to generate two simultaneous equations in 
(2.9) and (2.10) respectively as  
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2 2 *

1 2 ( )

1 1

ˆ 0
L L

h h h h x e h

h h

a W a W 
= =

+  =  ,       (2.9) 

( )2 * 2 * 2 * *

1 ( ) 2 ( ) ( ) ( )

1 1 1

ˆ ˆ ˆ
L L L

ih h x e h ih h x e h h x h x e h

h h h

a W a W W 
= = =

 +  =  −   ,    (2.10) 

Solving equations (2.9) and (2.10) simultaneously, the results obtained are, 

2

2 2 * 2 *

( ) ( )

1 1 1

1 2

2 2 * 2 *

( ) ( )

1 1 1

ˆ ˆ

ˆ ˆ

L L L

h ih x e h h xh h x e h

h h h

L L L

h ih h ih x e h ih h x e h

h h h

W W W

a

W W W



  

= = =

= = =

 
−   −  

 =
    

 −     
    

  

  

,                (2.11) 

( )

2

2 2 * 2 *

( )

1 1 1

2 2

2 2 * 2 *

( ) ( )

1 1 1

ˆ

ˆ ˆ

L L L

ih h h h x e hx h
h h h

L L L

h ih h ih x e h h h x e h

h h h

W W W

a

W W W



  

= = =

= = =

  
 −   

  =
    

 −     
    

  

  

,    (2.12) 

Substituting (2.11) and (2.12) into (2.6) and simplify, we obtained the calibration weights as, 

( )

( )
2

* 2 2 * 2 * *

( ) ( ) ( ) ( )

1 1 1*2 2 2

2
2 * 2 2 *

( ) ( )

1 1

ˆ ˆ ˆ

ˆ ˆ

L L L

x e h h h h ih x e h h x h x e h

h h h

h h ih h L L

h ih x e h h ih h ih x e h

h h

W W W

W W

W W W

 

 

  

= = =

= =

   
 −   −   
   = +

   
 −    

   

  

  

,  (2.13) 

 By substituting (2.13) into calibration schemes defined in (2.1), we obtained the proposed 
estimators Tpi, i= 1, 2, 3, ..5 as 

( )
2

2 2
* * *

( ) ( ) ( )

1 1

ˆ
L L

h h
pi y e h i x h x e h

h hh h

W W
T s

n n


= =

= +  −  ,      (2.14) 

where 
( ) ( )

( ) ( )

2 2

2

2 * * 2 2 * 2 *

( ) ( )

1 1 1 1

2

2 * 2 2 *

1 1 1

ˆ ˆ

ˆ ˆ

L L L L

h ih y e h h ih h ih y e h h ihx e h x e h
h h h h

i
L L L

h ih h ih h ihx e h e h
h h h

W s W W s W

W W W

   



  

= = = =

= = =

     
 −      

     =
    

 −     
    

   

  

 ,  

Table 4.1: Members of the proposed estimators Tpi 

i 
i  ih  

*

( )x h  
*

( )
ˆ

x e h  
Estimators 

1 
1  1 

1xh  
1 ( )
ˆ

x e h  ( )( )
2

2
*

1 ( ) 1 1 1 ( )

1

ˆ
L

h
p y e h xh x e h

h h

W
T s

n
  

=

= + −  

2 
2  ( )

1

1 ( )
ˆ

x e h
−

 1xh  
1 ( )
ˆ

x e h  ( )( )
2

2
*

2 ( ) 2 1 1 ( )

1

ˆ
L

h
p y e h xh x e h

h h

W
T s

n
  

=

= + −  

3 
3  ( )

1

2 ( )
ˆ

x e h
−

 1xh  
1 ( )
ˆ

x e h  ( )( )
2

2
*

3 ( ) 3 1 1 ( )

1

ˆ
L

h
p y e h xh x e h

h h

W
T s

n
  

=

= + −  

4 
4  ( )

1
2

2 ( )
ˆ

x e h
−

 1xh  
1 ( )
ˆ

x e h  ( )( )
2

2
*

4 ( ) 4 1 1 ( )

1

ˆ
L

h
p y e h xh x e h

h h

W
T s

n
  

=

= + −  

5 
5  1

2 ( )

1 ( )

ˆ

ˆ
x e h

x e h





−

 
 
 
 

 

1xh  
1 ( )
ˆ

x e h  ( )( )
2

2
*

5 ( ) 5 1 1 ( )

1

ˆ
L

h
p y e h xh x e h

h h

W
T s

n
  

=

= + −  
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 To obtain the bias of the estimators
piT , take expectation of (2.16), under the assumption that 

( )i iE   = , where  

2 2

2

2 2 2 2

1 1 1 1

1 2

2 2 2

1 1 1

L L L L

h xh yh h h yh h xh

h h h h

L L L

h xh h h h

h h h

W S W W S W

W W W

 = = = =

= = =

     
 −      

     =
    

 −     
    

   

  

             (2.15) 

( ) ( ) ( )( )
22 * 2 * *

( ) ( ) ( )
ˆ

pi h y e h i h x h x e hE T W E s W E= +  −       (2.16) 

( )* *

( ) ( )
ˆ, x e h x hSince E  =           

( ) ( )2 2 2 * * 2 2

( ) ( )

1 1 1

L L L

pi h yh i h x h x h h yh

h h h

E T W S W W S
= = =

= +  − =       (2.17)  

This implies that the proposed estimator is unbiased estimators 

Differentiating 
piT i = 1, 2, 3, 4, 5 partially with respect to

2*

( )y e hs and ( )
*

e h
x , we obtained  

( )

2

*2
1

1
L

pi

h

hy e h

T
W

s =


= =


          (2.18) 

( )

2

*
1

L
pi

i h i

he h

T
W

x
 

=


= − = −


         (2.19) 

 

The mean square errors of the estimators
piT , i = 1, 2, 3, 4, 5. are obtained as 

( )
1

L
T

pi jh jh jh

h

MSE T
=

=           (2.20)  

( )  
( ) ( )( )

( )( ) ( )( )

2 2

2

* * *

( ) ( )

* * *

( )

1
1

y e h y e h e h

pi i

i
y e he h e h

Var s Cov s x
MSE T

Cov x s Var x




 
  = −    − 

  

  (2.21) 

( ) ( ) ( )( ) ( )( )
2 2* * * 2 *

( ) ( )2pi y e h i y e h ie h e h
MSE T Var s Cov s x Var x = − +    (2.22) 

 
2.2 Efficiency Comparison 
In this section, conditions for the efficiency of the new estimators over Singh et al, (2021) are 
established. 

The proposed estimator 
piT are more efficient than Singh et al, (2021) estimators if  

( ) ( )2ˆ    1,2,3,4,5pi aMSE T MSE S i =       (3.1) 

( ) ( )( ) ( )
( )

( )( )
2 2

4
2

* * * 2 * 2

( ) ( ) ( ) 213
1

2 ,
L

h yh

y e h i y e h i e h yh he h x h
h h

W S
Var s Cov s x Var x A

n
   

=

− +  − (3.2) 

( ) ( )( ) ( )
( )

( )( )
2 2 2 2

4
2

* * * 2 * 2

( ) ( ) ( ) 213
1

2 ,
L

h yh

y e h i y e h i x e h yh hx e h x h
h h

W S
Var s Cov s s Var s A

n
   

=

− +  −          (3.3) 

( ) ( )( ) ( )
( ) ( )

( )

2 2

4 2
2 2

21* * * 2 *

( ) ( ) ( ) 3
1

1
2 ,

L
h yh h

y e h i y e h i e h yhe h
h h x h

W S
Var s Cov s x Var x A

n A


 

=

 −
 − +  −
 
 

       (3.4) 
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( ) ( ) ( )
( ) ( )

( )

2 2 2 2

4 2
2 2

21* * * 2 *

( ) ( ) ( ) ( ) 3
1

1
2 ,

L
h yh h

y e h i y e h y e h i x e h yh

h h x h

W S
Var s Cov s s Var s A

n A


 

=

 −
 − +  −
 
 

          (3.5) 

( ) ( )( ) ( ) ( ) ( ) ( )

( )

2 2 21 03 22* * * 2 * 2

( ) ( ) ( )

1
ˆ2 ,

h hx h

y e h i y e h i e h ae h

x h

Var s Cov s x Var x MSE S
A

   
 

 − −
 

− +  − (3.6) 

( ) ( )( ) ( ) ( ) ( ) ( )

( )

2 2 2 2 21 03 22* * * 2 * 2

( ) ( ) ( )

1
ˆ2 ,

h hx h

y e h i y e h i x e h ax e h

x h

Var s Cov s s Var s MSE S
A

   
 

 − −
 

− +  −

       (3.7) 
 
Empirical Study 

In this section, simulation studies to assess the performance of the proposed estimators 
piT

with respect to Singh et al. (2021) estimators under the effect of measurement error only were 
conducted. Data of size 1000 units were generated for the study population using functions 
defined in Table 3. A sample of size 100 was selected by the method of Simple Random 
Sampling without replacement (SRSWOR) 1000 times. The Biases, MSEs and PREs of the 
considered estimators were computed using (4.1) (4.2) (4.3).      

( )
1000

1

1
( )

1000 j

Bias T T Y
=

= −       (4.1) 

( )
21000

1

1
( )

1000 j

MSE T T Y
=

= −        (4.2) 

( )
( ) 100

( )

OMSE t
PREs T

MSE T

 
=  
 

                  (4.3) 

where T  are any of the existing or proposed estimators. 
 
Table 1: Population Used for Simulation Study 

Population Auxiliary Variable (X) Study Variable (Y) 

1 
1 1

2 2 3 3

1 1

2 2 3 3

~ ( , , ) 10, 40,

30, 70, 20, 50,

1 5
~ ( , ) , ,

3 7

1 3 1 5
, , , ,

2 4 5 6

h h h

h h h

X N N

X gamma

   

   

   

   

= =

= = = =

= =

= = = =

 

 
20.5 0.5h h h hY X X e= + +  

Where, ( )~ 0,1he N  

 
 
 
 

2 
1 1

2 2 3 3

1 1 2

2 3 3

~ ( , , ), 10, 40,

30, 70, 20, 50,

~ ( , ), 1, 2, 2,

3, 1, 5

h h h

h h h

X N N

X LN

   

   

    

  

= =

= = = =

= = =

= = =
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Table 2: Biases, MSEs and PREs of the proposed and existing estimators using data from 
pop 1 

Estimators Biases MSEs PREs 

Sample mean 0t  1.516123e+44 1.094586e+89 100 

Singh et al. (2021) 
2

1aS   2.726755e+44  3.540569e+89 30.91553 

2

2aS   1.360998e+45  8.820555e+90 1.240949 

2

3aS   -9.041514e+43  3.892808e+88 281.1815 

2

4aS   -9.041514e+43  3.892808e+88  281.1815 

2

1bS   1.524502e+44  1.106718e+89  98.90377 

2

2bS   1.507744e+44 1.082521e+89 101.1146 

2

3bS   7.458111e+44  2.648734e+90  4.132486 

2

4bS   7.559851e+44  2.721492e+90  4.022006 

2

5bS   7.559851e+44  2.721492e+90  4.022006 

2

1cS   1.556495e+44  1.153656e+89  94.87974 

2

2cS  -4.593109e+44  1.004763e+90  10.89397 

2

3cS   8.919776e+43  3.789692e+88  288.8324 

2

4cS    3.077535e+44  5.426608e+89  20.17072 

2

5cS   1.216811e+44  3.440941e+89  31.81066 

2

6cS   1.439426e+46  2.748697e+93  0.003982199 

Proposed estimator PiT  

1pT  3.034099e+43 4.383693e+87 2496.949 

2pT   3.034433e+43  4.38466e+87  2496.398 

3pT   3.034434e+43  4.384661e+87  2496.398 

4pT   1.51616e+44  1.094639e+89  99.99512 

5pT  3.034098e+43  4.383691e+87 2496.951 

 
Table 2 displays the outcomes of biases, mean squared errors (MSEs), and percentage relative 
efficiency (PREs) for several existing and suggested estimators, using population 1 as defined 

in Table 2 as the basis. The findings indicate that, with the exception of 4PT , all of the proposed 

estimators exhibit lower MSEs and higher PREs in comparison to the existing estimators 

considered in this investigation. Moreover, 4PT  falls short in this regard. Consequently, the 

proposed estimators 
1pT , 

2pT , 
3pT  and  

5pT    under both calibration and L-Moment techniques 

prove to be more efficient than the competing estimators in the study. They are better suited 
for producing more accurate estimates of the population parameters, particularly in scenarios 
involving measurement errors 
 
 
 
Table 3: Biases, MSEs and PREs of the proposed and existing estimators using data from 
pop 2 
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Estimators Biases MSEs PREs 

Sample mean 
0t   2.363867e+17  2.771558e+35 100 

Singh et al. (2021) 
2

1aS   NaN  NaN  NaN 

2

2aS   1.676693e+18 1.415123e+37 1.958527 

2

3aS   -1.869346e+17  1.76151e+35 157.3399 

2

4aS   -1.869346e+17 1.76151e+35  157.3399 

2

1bS   2.378271e+17 2.805544e+35 98.78861 

2

2bS   2.349463e+17 2.737779e+35 101.2338 

2

3bS   1.097652e+18  5.994453e+36 4.623537 

2

4bS   1.113641e+18  6.170415e+36  4.491687 

2

5bS   1.113641e+18  6.170415e+36  4.491687 

2

1cS  NaN  NaN NaN 

2

2cS   -6.378649e+17  2.089354e+36  13.26514 

2

3cS   NaN NaN  NaN 

2

4cS   3.670738e+17  9.33445e+35  29.69171 

2

5cS   1.751355e+17 2.475958e+35  111.9388 

2

6cS   6.500598e+17 3.983928e+37  0.6956847 

Proposed estimator PiT  

1pT   7.060793e+16 2.465067e+34 1124.333 

2pT   6.980662e+16 2.466054e+34  1123.884 

3pT   7.064596e+16  2.467694e+34  1123.136 

4pT   2.41163e+17  2.885744e+35  96.04309 

5pT  7.05868e+16  2.46368e+34 1124.967 

 
Table 3 shows the outcomes regarding biases, mean squared errors (MSEs), and percentage 
relative efficiencies (PREs) for various existing and newly proposed estimators derived from 
population 2, as defined in Table 3. The results indicate that, in general, the proposed 
estimators exhibit the smallest MSEs and the highest PREs compared to the existing estimators 

in this research, with the exception of 4PT
 
that is inferior to certain existing estimators ( 2

3aS , 
2

4aS , 2

1bS , 2

2bS and 2

5cS ). Specifically, the proposed estimators (
1pT , 

2pT , 
3pT , 

5pT ) outperform all 

considered existing estimators except for one instance where they perform worse than a few 
of them. Consequently, the proposed estimators in this context are more effective than their 
competitors in the study and are likely to yield superior estimates of population parameters, 
especially in scenarios involving measurement errors. 
 
CONCLUSION 
From the results of the empirical study, it was obtained that the proposed estimators are more 
efficient than other estimators considered in the study and therefore it is recommended for 
use for estimating population variance in the presence of non-response and measurement 
error in stratified random sampling. 
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