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Abstract 

This study examines economic order quantity model for non-instant decaying goods with three-stage 
demand rates, linear holding cost and linear reciprocal partial backlogging amount. The average annual 
demand rates before goods start decaying, after goods start decaying and during stockouts are not the 
same and both taken as constant. Stockouts are permitted and incompletely backlogged, and the 
backlogging amount is flexible and varies on the waiting time for the subsequent top up. The model 
determined the best time with positive inventory, cycle length and order quantity that reduce entire 
flexible price. The essential and satisfactory situations for the occurrence and exclusivity of the best 
solutions are found. Arithmetical example was given to elucidate the theoretical outcomes of the model. 
Sensitivity scrutiny of some model constraints on best solutions is carried out and recommendations to 
reducing the entire variable cost of the inventory structure were similarly given. 
 
Keywords: Non-instant decaying, three-stage demand rates, linear holding cost, linear 
reciprocal partial backlogging amount. 
 
INTRODUCTION 
In order to ensure that the right amount of inventory is demanded so that the trader do not 
have to make order too frequently and there is no excess of inventory sitting at hand, an 
economic order quantity (EOQ) model that established that right amount to demand such that 
the entire variable cost has a minimum value is developed by Harris (1913), and expected that 
the demand amount is constant, goods have infinite shelf lives and no stock out condition. 
Nevertheless, there is depletion of the inventory attributable to decaying in some cases. 
Henceforth, decaying plays significant function in several inventory structures and its 
consequences cannot be overlooked. An inventory model for stylish goods decaying at the end 
of the prescribed storing time was first studied by Whitin (1957). Ghare and Schrader (1963) 
presented a revised form of the EOQ model for exponentially decaying goods with a constant 
amount of decaying, where the consumption amount of decaying goods is expected to be 
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closely interconnected to a negative exponential function of time. Covert and Philip (1974) 
extended Ghare and Schrader’s (1963) model to develop an EOQ model for instantaneous 
decaying goods, where the amount of decaying follows two-constraint Weibull distribution. 
Philip (1974) extended Covert and Philip’s (1974) model to develop an inventory model for 
instantaneous decaying goods, where decaying amount follows three-constraint Weibull 
distribution and stock out are not permitted to occur. Additionally, some interconnected 
studies on inventory models with the postulation that the decaying starts immediately the 
goods are received can be found in Tavakoli and Taleizadeh (2017), Chen (2018) and so on. 
 
The postulation that the decaying starts from the instant of arrival of goods, for example, 
stylish goods, microelectronics, cars, rice, beans, yam, maize and so on, in store is unsuitable 
for these types of goods in developing inventory strategies. Thus, unaware of feature of these 
types of goods might cause businesses to overrate the entire relevant inventory cost, causing 
in unsuitable decision-making. Ouyang et al. (2006) studied an inventory model for Non-
instant decaying goods with permissible delay in payment. Additionally, some interconnected 
studies on inventory models for Non-instant decaying goods under various postulations can 
be found in Chung (2009),  Geetha and Udayakumar (2016), Babangida and Baraya (2018, 
2019a, 2019b, 2020, 2021a, 2021b, 2022), Babangida et al. (2023) and so on. 
 
A lot of the researches on inventory models studied holding cost to be constant. Nevertheless, 
genuinely, the holding cost of several goods might be in a dynamic state as the time value of 
money and price index changes. The cost of storing decaying and fresh goods as soon as 
additional storing capabilities and services are required might continuously be extreme. The 
holding cost for some goods detained in store is a linear function of time over which goods are 
stored. Frequently, the cost of holding goods, for example, fruits, vegetables, fish, meat, milk 
etc., in the store is sophisticated as soon as better-preserving capabilities are used to preserve 
the newness and avoid putrefaction, and subsequently this lesser decaying amount. Singhal 
and Singh (2018) studied an integrated top up model for decaying goods with multiple market 
demand rates under volume flexibility, where the decaying amount varies on the quality level 
and time and follows a two-constraint Weibull distribution. Holding cost is expected a linearly 
growing function of time. Additionally, some interconnected studies on inventory models 
with time-varying holding costs can be found in Mishra and Singh (2011), Tyagi et al. (2014), 
Tayal et al. (2015) and so on. 
 
In the orthodox inventory model, stock out are not permitted. Nevertheless, occasionally 
clients’ demands cannot be realised by the seller from the existing stores, this circumstance is 
known as stock out or shortage condition. Genuinely, stock out is inevitable attributable to 
countless uncertainties. Deb and Chaudhuri (1987) developed a heuristic method for top up of 
trended inventories considering stock out. According to Sharma (2003), allowing stock out to 
occur surges cycle length, spread the ordering cost over a long time and subsequently reducing 
the entire variable cost. Choudhury et al. (2013) established an EOQ model for non-instant 
decaying goods with stock-reliant demand amount and time-varying holding cost over a finite 
and infinite time horizon. Stock out are permitted and wholly backlogged. 
 
Nevertheless, as soon as stock out occur, one cannot be sure that all clients are ready to hang 
on for a backorder attributable to clients’ intolerant and dynamic nature of human beings. As 
soon as stock out occur, some clients whose necessities are not acute at that time might hang 
on for the back-orders to be realised, while others might opt to buy from other sellers. 
Subsequently, the opportunity cost attributable to lost sales should be studied. Bello and 
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Baraya (2018) developed an inventory model for Non-instant decaying item with two-phase 
demand rates and constant partial backlogging amount.  
 
For the majority of goods, for example, stylish goods, microelectronics, cars and its spare parts, 
rice, beans, yam, maize, seasonal goods and so on, the extent of the waiting time for the 
subsequent top up would regulate whether or not the backlogging will be accepted. 
Consequently, the backlogging amount should be flexible and depend on the waiting time for 
the subsequent top up. That is, the longer the waiting time, the lesser the backlogging amount 
will be and vice versa. Additionally, some interconnected studies on inventory models with 
time-reliant incompletely backlogged stock out can be found in Geetha and Uthayakumar 
(2010), Babangida et al. (2023) and so on. 
 
This research studied EOQ model for non-instant decaying goods with three-stage demand 
rates,  linear holding cost and  linear reciprocal partial backlogging amount. The average 
annual demand rates before goods start decaying, after goods start decaying and during 
stockouts are not the same and both studied as constant. Stock out are permitted and 
incompletely backlogged, and the backlogging amount is flexible and varies on the waiting 
time for the subsequent top up. The model established the best time with positive inventory, 
cycle length and order quantity that reduce entire variable cost. The essential and satisfactory 
circumstances for the occurrence and exclusivity of the best solutions are founded. 
Arithmetical example was given to elucidate the hypothetical outcomes of the model. 
Sensitivity scrutiny of some model constraints on best solutions is carried out and 
recommendations to reducing the entire variable cost of the inventory structure were given. 
 
MATERIAL AND METHOD 
 
Notation and assumptions  
The inventory structure is settled based on the subsequent notation and postulations.  
 
Notations 
𝑂 The ordering cost per order. 
𝐶𝑝 The buying price. 

𝐶𝑏 Stock out cost per unit of time. 
𝐶𝜋 The unit cost of lost sales per unit. 
𝜔 The decaying rates function (0 < 𝜔 < 1). 
𝑥𝑑 The length of time in which the goods exhibit no decaying. 
𝑥1 Length of time in which the inventory has no stock out. 
𝑋 The length of the replenishment cycle time (time unit). 
𝑄𝑚 The maximum inventory level. 
𝐵𝑚 The backorder level during the stock out time. 
𝑄 The demand amount during the cycle length, i.e., 𝑄 = (𝑄𝑚 + 𝐵𝑚). 
 
Assumptions 
The model was developed under the subsequent postulations. 
1. The top up amount is infinite. 
2. The lead time is zero. 
3. During the fixed time, 𝑥𝑑 , there is no decaying and at the end of this time, the goods 

deteriorate at the amount 𝜔. 
4. There is no replacement or repair for decayed goods during the time under contemplation. 
5. The average demand rates before decaying begins, after decaying sets in and during stock 

out are respectively given by  𝛼, 𝛽 and 𝛾. 
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6. Holding cost 𝐶1(𝑥) per unit time is linear and is expected to be 𝐶1(𝑥) = ℎ1 + ℎ2𝑥; where 
ℎ1 > 0 and ℎ2 > 0. 

7. Stockouts are permitted and incompletely backlogged during the stock out time, the 
backlogging amount is flexible and is reliant on the extent of the waiting time for 
subsequent top up i.e. the longer the waiting time is, the smaller the backlogging amount 

will be. The backlogging amount for negative inventory is given by 𝐵(𝑥) =
1

1+𝜎(𝑋−𝑥)
, 𝜎 is 

backlogging constraint ( 0 < 𝜎 < 1)and  (𝑋 − 𝑥) is waiting time (𝑥1 ≤ 𝑥 ≤ 𝑋), 1 − 𝐵(𝑥) is 
the remaining fraction lost 

 
Formulation of the model 
At the commencement of each top up cycle (i.e., at time 𝑥 = 0), 𝑄𝑚 units of a single goods from 
the producer arrives. During the time interval [0, 𝑥𝑑], the inventory level is depleting 
progressively attributable to market demand only and it is expected to be 𝛼.  At time interval 
[𝑥𝑑 , 𝑥1], the inventory level is depleting attributable to combined consequences of demand 
from the clients and decaying and the demand amount at time is given by 𝛽. At time 𝑥 = 𝑥1, 
the inventory level depletes to zero. Stockouts occur at the time 𝑥 = 𝑥1 and are incompletely 
backlogged at the amount 𝜎 and the demand amount during time is given by 𝛾. The nature of 
the inventory structure is explained in figure beneath 

 
Figure 1 Graphical depiction of the Inventory 

 
Based on the explanation in Figure 1, during the time interval [0, 𝑋], the change of inventory 
at any time 𝑥 is characterised by the subsequent differential equations 

𝑑𝐼1(𝑥)

𝑑𝑥
= −𝛼,                                                                  0 ≤ 𝑥 ≤  𝑥𝑑                                                         (1) 

𝑑𝐼2(𝑥)

𝑑𝑥
+ 𝜔𝐼2(𝑥) = −𝛽,                                                   𝑥𝑑 ≤ 𝑥 ≤  𝑥1                                                    (2) 

𝑑𝐼3(𝑥)

𝑑𝑥
= −

𝛾

1 + 𝜎(𝑋 − 𝑥)
,                                                               𝑥1 ≤ 𝑥 ≤  𝑋                                    (3) 

with boundary conditions 𝐼1(0) =  𝑄𝑚, 𝐼1(𝑥𝑑)  = 𝐼2(𝑥𝑑) =  𝑄𝑑 and 𝐼2(𝑥1) = 𝐼3(𝑥1) =  0. 
 
The solution of equations (1), (2) and (3) are given by 

𝐼1(𝑥) =
𝛽

𝜔
(𝑒𝜔(𝑥1−𝑥𝑑) − 1) + 𝛼(𝑥𝑑 − 𝑥),                                  0 ≤ 𝑥 ≤  𝑥𝑑                                         (4) 
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𝐼2(𝑥) =
𝛽

𝜔
(𝑒𝜔(𝑥1−𝑥) − 1),                                                     𝑥𝑑 ≤ 𝑥 ≤  𝑥1                                             (5) 

and 

𝐼3(𝑥)  = −
𝛾

𝜎
[𝑙𝑛[1 + 𝜎(𝑋 − 𝑥1)] − 𝑙𝑛[1 + 𝜎(𝑋 − 𝑥)]]                        𝑥1 ≤ 𝑥 ≤  𝑋                       (6)  

  
From Figure1, Exploiting the condition 𝐼1(0) =  𝑄𝑚 in equation (4), the maximum inventory 
level is given by 

𝑄𝑚 =
𝛽

𝜔
(𝑒𝜔(𝑥1−𝑥𝑑) − 1) + 𝛼𝑥𝑑                                                                                                                 (7) 

Additionally, the value of 𝑄𝑑 can be derived at 𝑥 = 𝑥𝑑, and then from equation (5), it follows 
that 

𝑄𝑑 =
𝛽

𝜔
(𝑒𝜔(𝑥1−𝑥𝑑) − 1)                                                                                                                             (8) 

The maximum backordered units 𝐵𝑚 is gotten at 𝑥 = 𝑋, and then from equation (6), it follows 
that 

𝐵𝑚 = −𝐼3(𝑋) =
𝛾

𝜎
[𝑙𝑛[1 + 𝜎(𝑋 − 𝑥1)]]                                                                                                (9) 

Thus the demand size during entire time interval [0, 𝑋] is 

𝑄 = 𝑄𝑚 + 𝐵𝑚 =
𝛽

𝜔
(𝑒𝜔(𝑥1−𝑥𝑑) − 1) + 𝛼𝑥𝑑 +

𝛾

𝜎
[𝑙𝑛[1 + 𝜎(𝑋 − 𝑥1)]]                                             (10)  

The cost of backorder during the interval [𝑥1, 𝑋] is given by 

𝑆𝐶 = 𝐶𝑏 ∫ −𝐼3(𝑥)𝑑𝑥
𝑋

𝑥1

=  𝐶𝑏 ∫
𝛾


[ln [1 + (𝑋 − 𝑥1)] − ln[1 + (𝑋 − 𝑥)] 𝑑𝑥

𝑋

𝑥1

=
 𝐶𝑏𝛾


((𝑋 − 𝑥1) −

𝑙𝑛(1 + (𝑋 − 𝑥1))


).                                                              (11) 

 
The opportunity cost per cycle attributable to lost sales is given by 

𝐿𝐶 = 𝐶𝜋𝛾 ∫ (1 −
𝜆

1+𝜎(𝑋−𝑥)
) 𝑑𝑥

𝑋

𝑥1
 = 𝐶𝜋𝛾 [(𝑋 − 𝑥1) −

𝑙𝑛(1+𝜎(𝑋−𝑥1))

𝜎
 ].                                           (12) 

 
The entire variable cost per unit time is given by 

𝑍(𝑥1, 𝑋) =
1

𝑋
{Ordering cost + Inventory holding cost + Decaying cost + Back-ordered cost + 

Lost sales cost} 

=
1

𝑋
{𝑂 + ℎ1 [

𝛽𝑥𝑑

𝜔
𝑒𝜔(𝑥1−𝑥𝑑) +

𝛼

2
𝑥𝑑

2 +
𝛽

𝜔2
𝑒𝜔(𝑥1−𝑥𝑑) −

𝛽

𝜔2
−

𝛽𝑥1

𝜔
]

+ ℎ2 [
𝛽𝑥𝑑

2

2𝜔
𝑒𝜔(𝑥1−𝑥𝑑) +

𝛼

6
𝑥𝑑

3 +
𝛽𝑥𝑑

𝜔2
𝑒𝜔(𝑥1−𝑥𝑑) −

𝛽𝑥1

𝜔2
−

𝛽

𝜔3
+

𝛽

𝜔3
𝑒𝜔(𝑥1−𝑥𝑑) −

𝛽𝑥1
2

2𝜔
]

+ 𝐶𝑝

𝛽

𝜔
[𝑒𝜔(𝑥1−𝑥𝑑) − 1 − 𝜔(𝑥1 − 𝑥𝑑)]

+ (𝐶𝜋𝛾 +
𝛾𝐶𝑏

𝜎
) [(𝑋 − 𝑥1) −

𝑙𝑛(1 + 𝜎(𝑋 − 𝑥1))

𝜎
 ]}.                                            (13) 

Exploiting the famous estimates 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
+ ⋯ and 𝑙𝑛(1 + 𝑥) = 𝑥 −

𝑥2

2
+ ⋯, when −1 <

𝑥 ≤ 1, in equation (13) yields 

𝑍(𝑥1 ,𝑋 ) =
1

𝑋
{

1

2
𝐿1𝑥1

2 − 𝐿2𝑥1 + 𝐿3 +
𝛾(𝐶𝑏 + 𝐶𝜋𝜎)

2
𝑋2 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝑥1𝑋},                      (14) 

where 

𝐿1 = 𝛽 [ℎ1(𝑥𝑑𝜔 + 1) + ℎ2 (
𝑥𝑑𝜔

2
+ 1) 𝑥𝑑 + 𝐶𝜔] + 𝛾[(𝐶𝑏 + 𝐶𝜋𝜎)], 𝐿2 = 𝛽 [ℎ1𝑥𝑑

2𝜔 +
ℎ2

2
(1 +

𝑥𝑑𝜔)𝑥𝑑
2 + 𝐶𝑝𝑥𝑑𝜔] and 
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𝐿3 = [𝑂 + ℎ1 (
𝛼

2
𝑥𝑑

2 −
𝛽𝑥𝑑

2

2
+

𝛽𝑥𝑑
3𝜔

2
) + ℎ2 (

𝛼

6
𝑥𝑑

3 +
𝛽𝑥𝑑

4𝜔

4
) +

𝐶𝑝𝛽𝜔𝑥𝑑
2

2
].  

 
Optimal decision 

This unit establishes the best ordering strategies that reduce the entire variable cost per unit 
time. The essential and satisfactory circumstances for the occurrence and exclusivity of best 
solutions are founded. The essential circumstances for the entire variable cost per unit time 

𝑍(𝑥1, 𝑋) to be minimum are 
𝜕𝑍(𝑥1,𝑋)

𝜕𝑥1 
= 0 and 

𝜕𝑍(𝑥1,𝑋)

𝜕𝑋
= 0. The value of (𝑥1, 𝑋) gotten from 

𝜕𝑍(𝑥1,𝑋)

𝜕𝑥1 
= 0 and 

𝜕𝑍(𝑥1,𝑋)

𝜕𝑋
= 0 and for which the satisfactory condition {(

𝜕2𝑍(𝑥1,𝑋)

𝜕𝑥1
2 ) (

𝜕2𝑍(𝑥1,𝑋)

𝜕𝑋2 ) −

(
𝜕2𝑍(𝑥1,𝑋)

𝜕𝑥1 𝜕𝑋
)

2

} > 0 is satisfied gives a minimum value for the entire variable cost per unit time 

𝑍(𝑥1, 𝑋). 
The essential situations for the entire variable cost 𝑍1(𝑥1, 𝑋) in equation (14) to be the minimum 

are 
𝜕𝑍(𝑥1,𝑋)

𝜕𝑥1 
= 0 and 

𝜕𝑍(𝑥1,𝑋)

𝜕𝑋
= 0, which give 

𝜕𝑍(𝑥1, 𝑋)

𝜕𝑥1 
=

𝜆

𝑋
{𝐿1𝑥1 − 𝐿2 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝑋}. 

Setting 
𝜕𝑍(𝑥1,𝑋)

𝜕𝑥1 
= 0 gives 

𝐿1𝑥1 − 𝐿2 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝑋 = 0                                                                                                          (15) 
and 

𝑋 =
1

𝛾(𝐶𝑏 + 𝐶𝜋𝜎)
(𝐿1𝑥1 − 𝐿2).                                                                                                       (16) 

Note that 𝐿1𝑥1 − 𝐿2 = 𝛽 [ℎ1(𝑥𝑑𝜔(𝑥1 − 𝑥𝑑) + 𝑥1) +
ℎ2𝑥𝑑𝜔

2
(𝑥1 − 𝑥𝑑)𝑥𝑑 + ℎ2 (𝑥1 −

𝑥𝑑

2
) 𝑥𝑑 +

𝐶𝑝𝜔(𝑥1 − 𝑥𝑑) + 𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝑥1] > 0, since (𝑥1 − 𝑥𝑑) > 0. 

Similarly,  
𝜕𝑍(𝑥1, 𝑋)

𝜕𝑋
= −

1

𝑋2 {
1

2
𝐿1𝑥1

2 − 𝐿2𝑥1 + 𝐿3 −
𝑋2

2
𝛾(𝐶𝑏 + 𝐶𝜋𝜎)}. 

Setting 
𝜕𝑍(𝑥1,𝑋)

𝜕𝑋
= 0 gives  

1

2
𝐿1𝑥1

2 − 𝐿2𝑥1 + 𝐿3 −
𝑋2

2
𝛾(𝐶𝑏 + 𝐶𝜋𝜎) = 0.                                                                               (17) 

Substituting 𝑋 from equation (16) into equation (17) yields 

𝐿1(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))𝑥1
2 − 2𝐿2(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))𝑥1 − (2𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝐿3 − 𝐿2

2 ) = 0. (18) 

From equation (18), let 

𝐹(𝑥1) = 𝐿1(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))𝑥1
2 − 2𝐿2(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))𝑥1 − (2𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝐿3 − 𝐿2

2 ),             𝑥1

∈ [𝑥𝑑 , ∞)                                              (19) 
and 

∆= 𝐹(𝑥𝑑) = 𝐿1(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))𝑥𝑑
2 − 2𝐿2(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))𝑥𝑑 − (2𝛾(𝐶𝑏 + 𝐶𝜋𝜎)𝐿3 − 𝐿2

2 ). 

Then, the subsequent result is gotten. 
Lemma 2.1. 

(i) If ∆≤ 0, then the solution of 𝑥1 ∈ [𝑥𝑑 , ∞) (say 𝑥1
∗) which satisfies equation (18) not only occurs 

but similarly exclusive. 
(ii) If ∆> 0, then the solution of 𝑥1 ∈ [𝑥𝑑 , ∞) which satisfies equation (18) does not occur. 

 
Proof of (i): Taking the first-order derivative of 𝐹(𝑥1) with respect to 𝑥1 ∈ [𝑥𝑑 , ∞), it follows 
that 
𝐹(𝑥1)

𝑑𝑥1
= 2(𝐿1𝑥1 − 𝐿2)(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎)) > 0,  since (𝐿1𝑥1 − 𝐿2) > 0 and 

 (𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎)) = 𝛽 [ℎ1(𝑥𝑑𝜔 + 1) + ℎ2 (
𝑥𝑑𝜔

2
+ 1) 𝑥𝑑 + 𝐶𝑝𝜔] > 0.  
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Henceforth, 𝐹(𝑥1) is a strictly growing function of 𝑥1 in the interval [𝑥𝑑 , ∞).  Additionally, 
lim

𝑥1→∞
𝐹(𝑥1) = ∞ and 𝐹(𝑥𝑑) = ∆≤ 0. Consequently, by applying the intermediate value 

theorem, there occurs a exclusive 𝑥1 say 𝑥1
∗ ∈ [𝑥𝑑 , ∞) such that 𝐹(𝑥1

∗) = 0. Henceforth, 𝑥1
∗ is the 

exclusive solution of equation (18). Thus, the value of 𝑥1 (denoted by 𝑥1
∗) can be found from 

equation (18) and is given by 

𝑥1
∗ =

𝐿2

𝐿1
+

1

𝐿1
√

(2𝐿1𝐿3 − 𝐿2
2 )𝛾(𝐶𝑏 + 𝐶𝜋𝜎)

(𝐿1 − 𝛾(𝐶𝑏 + 𝐶𝜋𝜎))
.                                                                                       (20) 

Once 𝑥1
∗ is gotten, then the value of 𝑋 (denoted by 𝑋∗) can be found from equation (16) and is 

given by 

𝑋∗ =
1

𝛾(𝐶𝑏 + 𝐶𝜋𝜎)
(𝐿1𝑥1

∗ − 𝐿2).                                                                                                     (21) 

 
Equations (20) and (21) give the best values of 𝑥1

∗ and 𝑋∗ respectively for the cost function in 
equation (14) only if 𝐿2 satisfies the inequality given in equation (22) 

𝐿2
2 < 2𝐿1𝐿3.                                                                                                                                               (22) 

 
Proof of (ii): If ∆> 0, then from equation (19), 𝐹1(𝑥1) > 0. Since 𝐹1(𝑥1) is a strictly growing 
function of 𝑥1 ∈ [𝑥𝑑 , ∞), 𝐹1(𝑥1) > 0 for all 𝑥1 ∈ [𝑥𝑑 , ∞). Thus, a value of 𝑥1 ∈ [𝑥𝑑 , ∞) cannot be 
found such that 𝐹1(𝑥1) = 0. This completes the proof. 
Theorem 2.1  

(i) If ∆≤ 0, then the entire variable cost 𝑍1(𝑥1, 𝑋) is convex and reaches its global minimum at the 
point (𝑥1

∗, 𝑋∗), where (𝑥1
∗, 𝑋∗) is the point which satisfies equations (18) and (15). 

(ii) If ∆> 0, then the entire variable cost 𝑍1(𝑥1, 𝑋) has a minimum value at the point (𝑥1
∗, 𝑋∗), where 

𝑥1
∗ = 𝑥𝑑  and 𝑋∗ =

1

𝛾(𝐶𝑏+𝐶𝜋𝜎)
(𝐿1𝑥𝑑 − 𝐿2). 

Proof of (i): When ∆≤ 0, it is seen that 𝑥1
∗ and 𝑋∗ are the exclusive solutions of equations (18) 

and (15) respectively from Lemma 4.l(i). Taking the second derivative of 𝑍1(𝑥1, 𝑋) with respect 
to 𝑥1 and 𝑋 and then finding the values of these functions at the point (𝑥1

∗, 𝑋∗) yields  
𝜕2𝑍1(𝑥1,   𝑋)

𝜕𝑥1
2 |

(𝑥1
∗ ,   𝑋∗)

=
1

𝑋∗
[𝛽 [ℎ1(𝑥𝑑𝜔 + 1) + ℎ2 (

𝑥𝑑𝜔

2
+ 1) 𝑥𝑑 + 𝐶𝑝𝜔] + 𝛾[(𝐶𝑏 + 𝐶𝜋𝜎)]] > 0, 

𝜕2𝑍1(𝑥1,   𝑋)

𝜕𝑥1𝜕𝑋
|

(𝑥1
∗ ,   𝑋∗)

= −
𝛾

𝑋∗
(𝐶𝑏 + 𝐶𝜋𝜎), 

𝜕2𝑍1(𝑥1,   𝑋)

𝜕𝑋2
|

(𝑥1
∗ ,   𝑋∗)

=
𝛾

𝑋∗
(𝐶𝑏 + 𝐶𝜋𝜎) > 0 

and 

(
𝜕2𝑍1(𝑥1,   𝑋)

𝜕𝑥1
2 |

(𝑥1
∗ ,   𝑋∗)

) (
𝜕2𝑍1(𝑥1,   𝑋)

𝜕𝑋2
|

(𝑥1
∗ ,   𝑋∗)

) − (
𝜕2𝑍1(𝑥1,   𝑋)

𝜕𝑥1𝜕𝑋
|

(𝑥1
∗ ,   𝑋∗)

)

2

=
𝛾2𝛽(𝐶𝑏 + 𝐶𝜋𝜎)

𝑋∗2 [ℎ1(𝑥𝑑𝜔 + 1) + ℎ2 (
𝑥𝑑𝜔

2
+ 1) 𝑥𝑑 + 𝐶𝑝𝜔] > 0.                (23) 

It is Consequently determined from equation (23) and Lemma 4.1 that 𝑍(𝑥1
∗, 𝑋∗) is convex and 

(𝑥1
∗, 𝑋∗) is the global minimum point of 𝑍(𝑥1, 𝑋). Henceforth, the values of 𝑥1 and 𝑋 in 

equations (20) and (21) respectively are best. 

Proof of (ii): When ∆> 0, 𝐹(𝑥1) > 0 for all 𝑥1 ∈ [𝑥𝑑 , ∞). Thus, 
𝜕𝑍(𝑥1,   𝑋)

𝜕𝑋
=

𝐹(𝑥1)

𝑋2 > 0 for all 𝑥1 ∈

[𝑥𝑑 , ∞) which implies 𝑍(𝑥1, 𝑋) is a strictly growing function of 𝑋. Thus, 𝑍(𝑥1,   𝑋) has a 
minimum value when 𝑋 is minimum. Consequently, 𝑍(𝑥1,   𝑋) has a minimum value at the 

point (𝑥1
∗, 𝑋∗), where 𝑥1

∗ = 𝑥𝑑  and 𝑋∗ =
1

𝛾(𝐶𝑏+𝐶𝜋𝜎)
(𝐿1𝑥𝑑 − 𝐿2). This completes the proof. 
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Thus, after obtaining the best values of 𝑥1
∗ and 𝑋∗, the best Economic Order Quantity (denoted 

by 𝐸𝑂𝑄∗) can be computed as follows: 
𝐸𝑂𝑄∗ =Entire demand before decaying sets in+entire demand after decaying sets in+entire 

number of decayed goods + the entire number of goods back-ordered 

= ∫ 𝛼𝑑𝑥 +
𝑥𝑑

0

∫ 𝛽𝑑𝑥 +
𝑥1

∗

𝑥𝑑

[
𝛽

𝜔
(𝑒𝜔(𝑥1

∗ −𝑥𝑑) − 1) − 𝛽(𝑥1
∗ − 𝑥𝑑)] +

𝛾

𝜎
[𝑙𝑛[1 + 𝜎(𝑋∗ − 𝑥1

∗)]] 

= 𝛼𝑥𝑑 +
𝛽

𝜔
(𝑒𝜔(𝑥1

∗−𝑥𝑑) − 1) +
𝛾

𝜎
[𝑙𝑛[1 + 𝜎(𝑋∗ − 𝑥1

∗)]].                                                (24) 

Arithmetical examples 
This unit provides some arithmetical examples to elucidate the hypothetical outcomes of the 
model developed. 
 
Example 2.1 (Case 1). 
Study an inventory structure with the subsequent input constraints: 𝑂 = ₦350/order, 𝐶𝑝 =

₦45/units/year, ℎ1 = ₦15/units/year, ℎ2 = ₦5/units/year, 𝐶𝑏 = ₦20/units/year, 𝐶𝜋 =
₦5/units/year, 𝜔 = 0.05 units/year, 𝛼 = 980 units, 𝛽 = 180 units, 𝛾 = 15 units, 𝜆 = 450 units, 

𝑥𝑑 = 0.2136 year (78 days) and 𝜎 = 0.8. It is seen that ∆= −16.5278 < 0, 𝐿2
2 = 3.78255, 2𝐿1𝐿3 =

102.8074 and Henceforth 𝐿2
2 < 2𝐿1𝐿3. Substituting the above values in equations 

(20), (21), (14) and (24), the values of best time with positive inventory, cycle length, entire 
variable cost and economic order quantity are respectively gotten as follows: 𝒕𝟏

∗ = 𝟎. 𝟐𝟔𝟐𝟓 year 
(96 days), 𝑻∗ = 𝟎. 𝟓𝟏𝟖𝟔 year (189 days), 𝒁𝟏(𝒕𝟏

∗ , 𝑋∗) = ₦𝟏𝟖𝟑𝟕. 𝟖𝟎𝟏𝟐 per year and 𝑬𝑶𝑸∗ =
𝟑𝟐𝟕. 𝟔𝟗𝟑𝟏 units per year.  
 
Sensitivity analysis 
The sensitivity scrutiny of some constraints is carried out by varying each of these constraints 
from −20% to 20% taking one constraint at a time and keeping the remaining constraints 
unchanged. The consequences of changes of these constraints on decision variables for 
Example 2.1 is summarised in Tables 2.1. 
Table 2.1: Effect of changes of some constraints on decision variables for Example 5.1. 

Constraints % Change in in 
constraint 

% Change in 𝒕𝟏
∗  % Change in 𝑻∗ % Change in 

𝑬𝑶𝑸∗ 
% Change in 
𝒁(𝒕𝟏

∗ , 𝑻∗) 

 −20 0.6799 0.2240 0.1639 −0.0802 
−10 0.3377 0.1113 0.0814 −0.0398 
+10 −0.3334 −0.10982 −0.0804 0.0393 
+20 −0.6624 −0.2182 −0.1597 0.0782 

      
𝐶𝑝 −20 0.6553 0.2145 0.1613 −0.0796 

−10 0.3256 0.1066 0.0801 −0.0396 
+10 −0.3215 −0.1052 −0.0791 0.0391 
+20 −0.6390 −0.2091 −0.1572 0.0778 

      
𝜎 

 
−20 −0.8282 0.8951 1.6657 −0.8704 
−10 −0.4109 0.4421 0.8148 −0.4318 
+10 0.4045 −0.4315 −0.7809 0.4251 
+20 0.8027 −0.8528 −1.5299 0.8436 

      
𝐶𝑏 

 
−20 −5.4027 6.1367 4.7939 −5.6781 
−10 −2.5667 2.8261 2.2268 −2.6975 
+10 2.3366 −2.4433 −1.9532 2.4557 
+20 4.4746 −4.5786 −3.6828 4.7026 

      
𝐶𝜋 −20 −0.8282 0.8951 0.7090 −0.8704 

 −10 −0.4109 0.4421 0.3506 −0.4318 
 +10 0.4045 −0.4315 −0.3430 0.4251 
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DISCUSSION OF THE RESULTS 
Based on the computed outcomes shown in Table 6.1, the subsequent decision-making 
intuitions are gotten. 
(a) As soon as the amount of decaying, (θ), surges, the best time with positive inventory (𝑥1

∗), 
cycle length (𝑋∗) and Economic Order Quantity (𝐸𝑂𝑄∗ ) decrease, while entire variable 

cost (𝑍( 𝑥1
∗, 𝑋∗)) surges and vice versa. As soon as the number of decayed goods surges, 

then the entire variable cost will be extreme. Henceforth, the trader will demand fewer 
amount to avoid goods being decaying as soon as the decaying amount surges. This 
decreases the inventory holding cost and subsequently reducing the entire variable cost. 
The amount of decaying can similarly be reduced by refining the equipment in the silo. 

(b) As soon as the unit buying cost, (𝐶𝑝), surges, the best time with positive inventory (𝑥1
∗), 

cycle length (𝑋∗) and Economic Order Quantity (𝐸𝑂𝑄∗ ) decrease, while the entire 

variable cost (𝑍( 𝑥1
∗, 𝑋∗)) surges and vice versa. In a real market circumstances, the higher 

the cost of an item, the higher the entire variable cost and vice versa. The trader will 
demand fewer amount as soon as unit buying cost surges. 

(c) As soon as the backlogging constraint, (𝜎), surges, the best time with positive inventory 

(𝑥1
∗) and entire variable cost (𝑍( 𝑥1

∗, 𝑋∗)) increase, while the cycle length (𝑋∗) and 

Economic Order Quantity (𝐸𝑂𝑄∗ ) decrease and vice versa. This means that if few clients 
are ready to hang on for the backorder, the trader should demand large to avoid stock 
out and curtail the cycle length. 

(d) As soon as the stock out cost, (𝐶𝑏), surges, the best time with positive inventory (𝑥1
∗) and 

entire variable cost (𝑍( 𝑥1
∗, 𝑋∗)) decrease, while the cycle length (𝑋∗) and Economic Order 

Quantity (𝐸𝑂𝑄∗ ) increase and vice versa. This means that as soon as the Stockouts cost 
increase, entire variable cost surges and the number of back-ordered goods reduce 
drastically which in turn decreases the entire variable cost.  

(e) As soon as the cost of lost sales, (𝐶𝜋), surges, the best time with positive inventory (𝑥1
∗) 

and entire variable cost (𝑍( 𝑥1
∗, 𝑋∗)) decrease, while the cycle length (𝑋∗) and Economic 

Order Quantity (𝐸𝑂𝑄∗ ) increase and vice versa.  
 
CONCLUSION 
In this unit, EOQ model for non-instant decaying goods with three-stage demand rates, linear 
time-reliant holding cost and Stockouts is developed. Stockouts are permitted and 
incompletely backlogged. The extent of the Waiting time would regulate whether backlogging 
will be accepted or not. Henceforth, the backlogging amount is flexible and varies on the 
waiting time for the subsequent top up. The best time with positive inventory, cycle length 
and order quantity that reduce the entire variable cost are determined. Arithmetical example 
was given to elucidate the hypothetical outcomes of the model. Sensitivity scrutiny of some 
model constraints is carried out to see the effect of changes of these constraints on decision 
variables. The outcomes show that the trader reduces the entire variable cost by ordering fewer 
goods to curtail the best time with positive inventory and cycle length as soon as the amount 
of decaying, unit buying cost, stock out cost, backlogging constraint and cost of lost sales 
increase respectively.  
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