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Abstract 
In this paper, a mathematical model on the transmission dynamics and control of Lassa fever was 
developed and analyzed. We considered two interacting populations of humans and rodents. The human 
population is divided into six compartments including the compartment of individuals that recovered 
with complications. And the rodent population is partitioned into three compartments. Existence of 
disease-free and endemic equilibriums was established. Using the next generation operator approach we 

find the effective reproduction number h rR and R  which signifies local asymptotic stability of the 

disease-free equilibrium whenever h rR and R  is less than unity. Using Lyapunov theorem we further 

established the global asymptotical stability of the disease free equilibrium whenever

1 1h rR and R  . The paper has shown the possibility of a disease free equilibrium which can be 

globally stable. 
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INTRODUCTION 
Lassa Fever is an acute Viral Hemorrhagic Fever (VHF) first isolated in Lassa town in the 
Yedseran river valley in the present Borno State of Northern Nigeria in 1969 (Tara, 2004). Since 
its initial discovery in Lassa – Nigeria, rural and Nosocomial outbreaks of Lassa fever have 
occurred repeatedly on other parts of Nigeria: Jos, Onisha, Zonkwa, Ekpoma (Tomori, et al. 
1998). In 1969. An American missionary nurse named Laura Wine Came down with a 
troubling fever while working in the Nigeria town of Lassa. The local doctor thought it was 
probably malaria but Wine didn’t respond to the usual treatments. She eventually died. 
Shortly after, two more nurses contacted the same mysterious disease. One also died. The 
other, Lily Pinneo, was evacuated to Columbia-Presbyterian hospital, and survived. From her 
blood, and that of her colleagues, scientists isolated a new virus, which they named after the 
town where the infection began. Since then, scientists have learned a lot about Lassa fever, 
and the virus that causes it. They discovered that it resides within the Multimammate mouse 
and jumps into people who eat food contaminated by the rodent’s waste. They have shown 
that it is common in West Africa and causes many thousands of cases every year. (CDC, 2004). 
Promed, (2006) reported outbreaks in some cities of West African countries of Sierra leone, 
Liberia, Guinea, Cote d’ivoire, Ghana, Togo and Benin, no outbreak has ever been recorded 



Mathematical Modelling of The Transmission Dynamics and Control of Lassa Fever by Incorporating Isolation 
and Recovered with Complications Compartments  

 

G.H. Anka et al., DUJOPAS 9 (4b): 392-413, 2023                                                                                       393 

 

in the United Kingdom, though isolated cases show evidence of viral circulation (Gunther et 
al. 2001). Many of those infected by Lassa fever virus do not develop symptoms. When 
symptoms occur they usually include fever, weakness, headaches, vomiting and muscle 
pains. Less commonly there may be bleeding from the mouth or gastrointestinal tract. The 
risk of death once infected is about one percent and frequently occurs within two weeks of the 
onset of symptoms. Among those who survive, about a quarter have hearing loss, which 
improves over time in about half (WHO 2016). 
 
A total of 2787 confirmed cases and 516 deaths were reported in Nigeria from December, 2016 
to September, 2020. Increase in number of cases and deaths were observed with 298, 528, 796 
and 1165 confirmed cases and 79, 125, 158 and 158 deaths in 2017, 2018, 2019 and 2020 
respectively. Over 60% of the cases were reported in two states, Edo and Ondo states. The 
lassa fever cases spread from 19 states in 2017 to 32 states and Federal Capital Territory (FCT) 
in 2020. Ondo state (25.39%) had the highest of death rate from lassa fever over the four years. 
(CDC, 2020). Lassa fever is endemic in Nigeria, Liberia, Sierra leone, Guinea and other West 
African Countries, affecting about 2-3 million persons with 5,000 – 10,000 fatalities annually 
(McCormick et al. 1987). 
 
Despite various research works and the availability of various control strategies put in place 
by both the Government and other health organizations, the morbidity and mortality of the 
killer disease continue to increase globally. In the absence or limited access to pharmaceutical 
intervention such as vaccines and treatment, isolation remains one of the best choice of control 
strategy to reduce the transmission rate of infectious disease (WHO 2007). The effect of 
acquiring immunity, be it permanent or temporal have been of great interest to researches, 
aimed at gaining better insight into the complex transmission dynamics of infectious disease 
(li et al. 1999; Moghadas and Gumel, 2003; El-Doma, 2006; Kimbir, 2004). 
 
 
MATERIALS 
Bawa et al., (2013), developed a mathematical model for lassa fever with five different 

compartments of susceptible humans 
h

S , infected humans 
h

I , infant reservoirs 
R

I , adult 

reservoirs 
R

A and lassa in the environment  V . They obtained the basic reproduction number 

0
R which can be used to control the transmission dynamics of the disease and established the 

conditions for local and global stability of the disease free equilibrium. Vital dynamics, 
standard incidence, disease induced death and infection due to humans, reservoirs and 
aerosol transmission were incorporated. The analysis reveals that the disease can be control if 

the 
0

R  is less than one regardless of the initial population profile. Thus, every effort must be 

put in place by all concerned to prevent the virus infection by reducing R0 strictly less than 
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unity.  The model equations are given below

( )

( )

( )

1 2 3

1 2 3

H RH

H H H H H H

H RH

H H H H

R

R R R R R

R

R R R R

H H R R

I A VdS
b N S I S

dt N

I A VdI
S I

dt N

dI
b A I

dt

dA
I A

dt

dV
e I e A V

dt

  
 

  
  

  

  



+ + 
= − + −  

  


+ +  = − + +   



= − + + 


= − +


= + −



 

James et al., (2015a) partitioned the human population into the susceptible class ( )S t and the 

infected class ( )I t . Then the virus carrier (reservoir) population ( )R t . The result of the 

model analysis showed that the zero equilibrium state of the model equation will be stable 

when the birth rate of the human population is less than the death rate i.e 
1 1

  and same 

when the birth rate of the vector is less than the total death rate i.e 
1 1 2
   + . The model 

equations are given be

( )
( ) ( )( )

( )
( ) ( )

( )
( )

1 1 1 2 1

1 2 1 1 1

2 2 2

1
ds t

S I R S I
dt

dI t
I R S I I

dt

dR t
R

dt

      

     

  


= − − + + + − 




= + − + + + 



= − − 


  

 
Faniran, (2017), A model with incidence of dynamics of lassa fever within human hosts and 
rodents vector is proposed in which the non-drug compliance rate is incorporated into the 
system, which is the rate at which infectious human hosts do not comply with drugs. Model 
analyses were carried out. Disease free and endemic equilibrium solution were obtained and 

their stability was analyzed. It was established that for the basic reproduction number, 
0

1R 
, the disease free equilibrium solution is globally asymptotically stable so that the disease 

always dies out and if 
0

1R  , the disease free equilibrium is unstable. He observes that in 

order to reduce the basic reproduction number less than one, intervention strategies need to 
be focused on treatment and reduction on the contact between rodent vector and human host. 
Since the non-drug compliance rate of infectious human hosts causes reappearance of 

symptoms after a system free period, there is need to increase the parameter 
c

r which reduces 

the number of infectious human hosts who do not comply with drugs. There is also need for 
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isolation of the infectious human hosts in order to reduce the spread of lassa fever. The model 
equations are; 

1 2

1 2

1 3

1 3

H H R
H H nc H H H

H

H H R
c H c H nc H H H H

H

H
c H c H H H H

R R H
R R R

H

R R H
R R

H

dS S I
R I S

dt N

dI S I
I r I I I I

dt N

R
I r I R R

dt

dS S I
I

dt N

dI S I
I

dt N

 
  

 
   

  

 


 



=  − + + − 




= − − − − − 



= + − − 



=  − − 



= − 


 

 
This paper aimed at extending the work of Faniran (2017) by considering a model on the 
transmission dynamics of Lassa fever by incorporating isolation and recovered with 
complications compartment using all the model analysis tools described in the 
aforementioned authors.  

 
 

METHODOLOGY 
MODEL 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding mathematical equations of the schematic diagram can be described by a 
system of ordinary differential equations given below. 
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MODEL EQUATIONS 

( )1
I CdS rhh

S S
h h h h

dt T
h

 


+
=  − −      (1) 

( )
( )1

1

I CdL h rh
S L
h h h h

dt T
h

 
  

+
= − + +     (2) 

( )2 11 2

dI
h

L I
h h h h

dt
      = − + + + + +     (3) 

( )3 4 23

dJ
h

I J
h h h

dt
     = − + + + +     (4) 

1 4

dR
k

I J R
h h h k

dt
  = + −        (5) 

( ) ( )2 31 2 3

dR
L R
h h h h

dt
I J     = + + + + −    (6) 

( )2

h

CdN rr
Nr r r r r

dt T
N


 =  − − +      (7) 

( )2

h

CdL rr
N Lr r r r r

dt T


  = − + +      (8) 

( )
dCr

Lr r r r r
dt

C  = − +       (9) 

Where  

T S L I J R R
h h h h kh

= + + + + +
         (10) 

T N L Cr r rr
= + +         (11)

 
The following assumptions are taken into account in the construction of the model: 

(i) There is homogeneous mixing of the population, where all people are equally 
likely to be infected by the infectious individuals in case of contact. 

(ii) The natural recovery of the infectious individuals largely depends on the 
strongness of the immune system. 

(iii) Government provides centre where individuals with lassa fever symptoms are 
isolated and treatment is administered to them. 

 
( )1 hI C

r
h

T
h

 


+
=         (12) 
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2Cr

r
Tr


 =          (13) 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 3 3 4

2 3 6 7

,1 2 1 21 1 2 3

, ,
4 2 5 3

,

,r r r r

k k k
h h h h

k k k k r

             

        

= + + = + + + + + = + + + +

= + = + = + = + +

 

Hence equations (1) - (9) becomes  

 
dS

h
S S

h h h h h
dt

 =  − −        (14) 

 1

dL
h

S k L
h h h

dt
= −         (15) 

 2

dI
h

L k I
h h h

dt
= −         (16) 

 3

dJ
h

I k J
h h

dt
= −         (17) 

 1 4

dR
k

I J R
h h h k

dt
  = + −        (18) 

 4 51

dR
L k I k J R
h h h h

dt
 = + + −       (19) 

 
6

dNr
N k Nr r r r

dt
=  − −        (20) 

 
7

dLr
N k Lr r r

dt
= −         (21) 

 
6

dCr
L k Cr r r

dt
= −        (22) 

Now, the human total population size ( )
hT t can be determine from the differential equation 

1 2
h

h h

T
T I J

h h h

d

dt
  =  − − −       (23) 

And also, the total rodents population size ( )
rT t  is written as 

dTr
Tr r r

dt
=  −         (24) 
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Boundedness of Solution 
Consider the region 

( )0 0 0 0 0 0 0 0 0
1

D S L I J R R N L Ch h h h k r r r=           (25) 

It can be shown that the set D1 is positively invariant and a global attractor of all positive 
solutions of the system (1)- (9) 
Lemma 1: The region D1 is positively invariant for the system (1) - (9) 
Proof: The rate of change of the total human population is given as  

dT dS dL dI dJ dR dRh h h h h k

dt dt dt dt dt dt dt
= + + + + +     (26) 

1 2

dT
h

T I J
h h h h h

dt
  =  − − −       (27) 

By standard comparison theorem, 

dT th hT e
hh hdt


+          (28)    

Solving (28) using the integrating factor method 

dT t t th h h he T e e
h h h

dt

  
+         (29) 

( ) ( )t t
h hT e e dt

h h

 
          (30) 

( ) ( )0 1
t thh hT T e e

h h
h

 



− −
= + −      (31) 

And the rate of change for the rodents population 

dT dN dL dCr r r r
Tr r r

dt dt dt dt
= + + =  −      (32) 

By Standard comparison theorem, 

dT tr rT er r r
dt


+          (33) 

Solving (33) using the integrating factor method 

r r rt t tr
r r r

Td
e T e e

dt

  +         (34) 

( ) ( )r r

r r

t t
d T e e dt

 
          (35) 

( ) ( )0 1
t trr rT T e er r

r

 



− −
= + −      (36) 

If ( )0
r r

If T then Tr r
r r 

 
         

So, D1 is a positively invariant set under the flow described in (1) - (9) 
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Hence, no solution path leaves through and boundary of D1. Also, since solution path cannot 
leave D1, solutions remain non-negative for non-negative initial conditions. Solutions exist for 
all time t. In this region, the model (1) - (9) is said to be well posed mathematically and 
epidemiologically. 
 

Existence of Equilibria, 
*E  

At equilibrium state the rate of change of each variable is equal to zero. i.e 

0
dS dL dI dJ dR dN dL dCdRh h h h k r r r

dt dt dt dt dt dt dt dt dt
= = = = = = = = =   (37) 

Thus, the model equations become 

0S S
h h h h h

 
  

 − − =        (38) 

01S k L
h h h

  

− =         (39) 

2 0L k I
h h h


 
− =         (40) 

3 0I k J
h h


 
− =         (41) 

1 4 0I J R
h h h k

  + − =        (42) 

4 5 01L k I k J R
h h h h

 
   
+ + − =      (43) 

6 0N k Nr r r r
  

 − − =        (44) 

0
7

N k Lr r r
  

− =         (45) 

6 0L k Cr r r
 
− =         (46) 

From (38) to (46) 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

2

, , ,

1 1 1 2 3

1 4 1 2 33 3 4 5
, ,

1 2 3 1 2 3

76 6

,

h h h h h h h h h
S L I J
h h h h

k k k k k k
h h h h h hh h

k k k k k k
h h h h h h h h h h h h h h

R R
k

k k k k k k
h h h h h h

r r r
N Lr r

k k kr r

    

      

            

     



 

  
      

= = = =
  
+ + ++

    
 +   +  +  

= =
 
+ +


  

= =
 
+ + ( )76 6

, r r r
Cr

k k kr

 






=

+

           (47) 

For *
r  

From (13)
 

* 2
Cr

r
T
h


 =
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* * * * 21 0
7 76 6 6 *

76 6

r r
k k T k k k Tr rh h

k k k T
h

 
 

  
  + − =
   

  

   (48) 

This implies that, 

* * * * 20 1 0
7 76 6 6 *

76 6

r r
or k k T k k k Tr rh h

k k k T
h

 
 

 
 = + − =
 
 

   (49) 

Solving the above 

* 2 1
6 *

76 6

r r
kr

k k k T
h

 


 
 = −
 
 

       (50) 

For 
h
  

From (12) 

( )1 hI C
r

h
T
h

 


+
=

       

 

After Substituting, we have 

( ) ( )1
76 61 2*

h h h r r r

k k kk k rh h
h T

h

   


 


   +
  + +

 
=     (51)

   Substituting 0r
 = in (51) we’ve 

( )1
1 2*

h h h

k k
h h

h T
h

 


 


 
 

  +
 

=       (52)

 ( ) 0
1 2 1 2 1

k k T k k T
h h h h h h h
      + −  =     (53) 

Either 0, 0
1 2 1 2 1

or k k T k k T
h h h h h h h
     = + −  =   (54) 

1R
h h h
   = −

 
        (55) 

Therefore, the four different equilibriums are given as 

1) 
* *0 0and rh

 = =        (56) 

2) * *1 1 0

1 2

h h and rh h k k T
h h

 
  



 
 = − =
  

    (57) 

3) 
* * 20 1

6 *
76 6

r r
and krh

k k k T
h

 
 

 
 = = −
 
 

    (58) 
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4) * *1 21 1
6 *

1 2 76 6

r rh h and krh h k k T k k k Th h h

   
  



   
  = − = −
     

  (59) 

3.4 Disease Free Equilibrium State (E0) 
At the disease free equilibrium state there is absence of infection. Thus, all the infected classes 
will be zero and the entire population will comprise of susceptible human and rodents.  
Lemma 2: A diseases free equilibrium state of the model exists at the point.  

( ) 0 0 0 0 0 0 0

6

h rS L I J R R N L Cr r rh h h h k k
h



  
 =
 
 

 

           (60) 
Proof: At the disease-free equilibrium state, let  
Consider an arbitrary equilibrium, this gives 

0
0S

h h h
 − =         (61) 

6

0
0k Nr r − =         (62) 

 
0 0 0 0 0 0L I J L Cr rh h h
= = = = =

     (63) 

From (61), gives  

0 hS
h

h



=

      (64)

 

From (62), gives 

0

6

rNr
k


=

      (65) 

Hence the Lemma is proved. 
 
Basic reproduction number and Local stability of the disease free equilibrium 

The basic reproduction number (denoted by 
0

R ) is a measure of how transferable a disease 

is. It is the average number of people that a single infectious person will infect over the course 

of their infection. A better widely accepted and used method in finding 
0

R that reflect its 

biological meaning is the next generation operator approach described by Diekmann and 
Heesterbeek (2000) and subsequently analysed by Van de Driessche and Watmough (2002). 
Helen and Maria (2009) defined the effective reproduction number as the parameter that 
estimates the average number of secondary cases per infectious case in a population made up 
of both susceptible and non- susceptible hosts. It is obtained by taking the largest (dominant) 
eigen-value (spectral radius) of the next generation matrix (Driessche and Watmough, 2012). 

( )

( )
( )

1

0 0

0

i i

ij

f x V x
R

xx

−    
 =  

           (66) 
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0 0 0 0
1

0 0 0
2

0 0 0
3

0 0 0 0
7

0 0 0
6

k

k
h

kV

k

kr







 
 
− 
 

−=  
 
 
 −
 

  

           (67) 

In order to determine the matrix 1V − , we use the Gauss-Jordan elimination method as 
explained in Kreyszig (2005) and Stroud and Booth (2003).  
The final computation gives 

  

1 1 1 10 0

71 2 2 6 6

0 0 0 0 0 01

0 0 0 0 0 0

2 20 0 0 0

76 6

0 0 0 0 0 0

rh

k k k k k k

FV

r

k k k

      

  

 
 
 
 
 
 − =  
 
 
 
 
 
 
 

   (68) 

The spectral radius is given by 

( )1 1 2max ,

71 2 6

rhFV
k k k k

   


  − =  
  

      (69) 

The following result is established using Van den Driessche & Watmough, 2002. 

Theorem 1: The DFE of the system (1) - (9) is locally asymptotically stable if 1R
h
  and 

1Rr   and  unstable if 1R
h
  and 1Rr  . 

The value 𝑅ℎ is the humans effective reproduction number since there is the presence of 
control strategies and 𝑅𝑟  is the rodents basic reproduction number. 
The threshold quantity 𝑅ℎ is the humans effective or control reproduction number for the 
model (1) - (9). By Theorem 1, Lassa fever is eliminated from the human population when 𝑅ℎ< 
1 and rodents population when 𝑅𝑟< 1 if the initial sizes of the populations of the model are in 
the region of attraction of 𝐷. However, the disease free equilibrium may not be globally 
asymptotically stable even if 𝑅ℎ< 1 and 𝑅𝑟< 1 in the case when a backward bifurcation occurs. 
That is, there is the presence of a stable EEP co-existing with the DFE. 
 

Global stability of disease free equilibrium ( )0E
  
 

Global stability of equilibrium removes the restrictions on the initial conditions of the model 
variables. In global asymptotic stability, solutions approach the equilibrium for all initial 
conditions. There are many ways of proving the global stability of disease free equilibrium 
which include among others the Lyapunov theorem and the Castillo-Chavez, et. al (2002). 

Theorem 2: The disease free equilibrium, 0E  of (1) - (9) is globally asymptotically stable (GAS) 

if 1R
h
  and  1Rr   and Unstable if  1R

h
  and  1Rr  . 

0 0 0
1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0
2

0 0 0 0 0

F

  



 
 
 
 =
 
 
  
 



Mathematical Modelling of The Transmission Dynamics and Control of Lassa Fever by Incorporating Isolation 
and Recovered with Complications Compartments  

 

G.H. Anka et al., DUJOPAS 9 (4b): 392-413, 2023                                                                                       403 

 

Proof: Constructing a linear lyapunov function to prove the GAS of the DFE when 1R
h
  

We now select the infected classes to construct the lyapunov function: 

1 2 3 4 5
V P L P I P J P L P C

h h h r r
= + + + +      (70) 

For V to be a lyapunov function, the coefficients must be chosen such that 

 0, 0, 0, 0
1 2 3 4

P P P P    and 0
5

P       

Take the time derivative of V and substitute the corresponding right hand side of (70) into the 
derivative of V. We then have  

. . . . . .

1 2 3 4 5
V P L P I P J P L P C

h h h r r
= + + + +      (71) 

( )
( ) ( ) ( )

.
1 2

1 1 2 2 3 3 4 7 5 6

I C Cr rh
V P S k L P L k I P I k J P N k L P L k C

h h h h h h h r r r r rT Trh

  
  

 +  
 = − + − + − + − + − 
       

         
  (72)

 
.

1 21 1
1 2 3 6 7

6 7

C Nrh r rV k k S I k J k k C
h h h rT k k Trh

      
    − − + −
   
   

  (73) 

Therefore,  

 
.

1 1
1 2 3 6 7

V k k R I k J k k C Rrh h h r
  − − + −
 

    (74) 

.
0V   if 1R

h
 and 1Rr  , additionally 

.
0V =  if 0I

h
=  and 0Cr = . Therefore, for 

0L I J L Cr rh h h
= = = = = , it shows that ( ) / , / ,S t and r rh h h

 →   as t → .  

Hence the largest compact invariant set in ( )
.

, , , , , , , , : 0
1

S L I J R R S L I D Vr r rh h h h k

  
  

  

is 

the singleton set 0E .Therefore from LaSalle’s invariant principle, we conclude that 0E is 

globally asymptotically stable in 
1

D    if 1R
h
  and 1Rr  . 

3.7 Endemic Equilibrium Point 
**(E )  

The endemic equilibrium state is the state in which the disease persists in both humans and 
rodents populations. That is the coordinates should satisfy the conditions: 
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0

0

0

0

0**E

0

0

0

0

,

I
hI

h J
J

k
k R

R
Nr

Nr Lr
Lr Cr
Cr I R T N L C Tr r

S
hS

h L
hL

h

h
h R

R

S L J R r rh k hh h h

 
 

 
 

 
 

 
  =  
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 


 
 
 

 
 

+ + + + +  + + 
  


 
 

 (75) 

Lemma 3: The endemic equilibrium state of the model (1) - (9) exist if the human control 

reproduction number, 1hR  and rodents reproduction number, 1.rR   

Proof: At the endemic equilibrium point, let 
Consider the system (38) - (46), gives 

( ) ( ) ( )

( ) ( )

( )

, , ,

1 1 2

1 43
, ,

1 2 3 1 2 3

1 2 3 3 4 5
,

1 2 3

h h h h h h
S L I
h h h

k k k
h h h hh h

k
h h h h h hh h h

J R
h k

k k k k k k
h h h h h

k k k k k
h h h h h h h h r

R Nr
k k k rh h h

  

    

      

    

      

   

 
    

= = =
 

+ ++

 
 +  

= =
 

+ +

  
 +  +   

= =


+ ( )

( ) ( )

6

7 76 6 6

,

k

r r r r r
Lr r

k k k k kr r

C
  

 


+

 
  

= =
 

+ +

 

        (76) 

Now, as earlier proved for positivity of solutions, it is observed that **
h
 cannot be negative 

but can be greater than or equal to zero. Thus, ** 0
h
 =  

Hence, a unique Lassa fever endemic equilibrium exist (i.e ** 0
h
  ) when 1

0
R  . 

Now at **E , implies that 

( ) ( )
1*

1
76 61 2

h h h r r r
h Tk k kk k r hh h

   
 

 

   
= +   ++ 

 

      (77) 

By simplification 
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    

   

2
1 1 1

7 7 71 2 6 6 1 2 6 6 1 2 6 6

1 1 1 0
71 2 6 6 1 2 6 1 2 6

k k k k k T R k k k k k T k k k k k T R Rr rh h h h h h h

k k k k k T R k k k R k k k Rr r r r r rh h h h h h

  

       

   − + − − −
 

  − − −  − −  − =
 

  

           (78) 

A
2

h
   - B 

h
   - C = 0        (79) 

Where  

 17 71 2 6 6 1 2 6 6
A k k k k k T R k k k k k Trh h
= − +       (80) 

 1 1 1
7 71 2 6 6 1 2 6 6

B k k k k k T R R k k k k k T Rrh h h h h h
    = − − − −

   
  (81) 

 11 2 6
C k k k Rr r rh

  =  −        (82) 

2** ** 0A B
h h
 − =          (83) 

By factorization 

( )** ** 0A B
h h
  − =          (84) 

Either 

** **0
B

or
h h A
 = =         (85)  

By substituting (80) and (81), we have 

 

 

1 1 1
7 71 2 6 6 1 2 6 6**

1
7 71 2 6 6 1 2 6 6

k k k k k T R R k k k k k T Rrh h h h h h
h k k k k k T R k k k k k Trh h

 


   − − − −
   

=
− +

  (86) 

** 1R
h h h
   = −

 
         (87) 

Thus, (87) greater than unity if 1hR   and 1rR  . Substituting into (38) - (46), gives an 

equilibrium state, 

Hence, the endemic equilibrium state of model exist if 1hR   and 1rR   

 
RESULTS AND DISCUSSION 
 
Variables and Population Dependent Parameters Values 
The model variables and population dependent parameters values usually have to be 
estimated base on Lassa Fever epidemiology and the demographic profile of the population 
concerned. Hypothetical values and Nigeria demographic values for variables and population 
dependent parameters of the model are set out in Table 4.1 Reasons for these values are 
explained in details except for hypothetical variables values which were assumed. 
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Table 4.1: Hypothetical, Nigeria (2019) Model Variables and population dependent 
parameters Values  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Population Independent Parameters Value 
Population independent parameters values usually have to be estimated based on the Lassa 
Fever epidemiology and published data. In table 4.2 parameter values are set out. 
 
Table 4.2 The Values for Population independent parameters of the model 

S/N Parameter Value Unit Source(s) 

1. 
1  

0.5 - Adewale et al. (2016) 

2. 
2  

0.6  - Adewale et al. (2016) 

3. 
1 2,   

0.01,0.15 Individuals/day WHO (2017) 

4. 
r  

0.5 Rodents/day Assumed 

5. 
 1  0.04 Individuals/day Obasi and Mbah (2019) 

6. 
2  0.006 Individuals/day Obasi and Mbah (2019) 

7. 
3  0.37 Individuals/day Obasi and Mbah (2019) 

8. 
h  0.048 Individuals/day Adewale et al. (2016) 

9. 
r  0.7 Rodents/day Assumed 

10. 
1  0.05 Individuals/day Obasi and Mbah (2019) 

S/N Variable/ 
parameters 

Nigeria Values 

1 ( )S t
h

 
202,713,887 

2 ( )L t
h

 
32,000 

3 ( )I t
h

 
16,000 

4 ( )J t
h

 
12,000 

5 ( )R t
k

 
20,000 

6 ( )R t  
5,000 

7 ( )S tr  
10,946,000 

8 ( )L tr  
6,998,000 

9 ( )I tr  
4,000 

10 ( )T t
h

 
202,802,887 

11 ( )T tr  
11,000,000 

12 
h  

0.00005 

13 
r  

0.0009 

14 
h

 
10,140 

15 
r

 
3,666,300 
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11. 
2  0.01 Individuals/day Obasi and Mbah (2019) 

12. 
3  (0,1) - Control parameter 

13.   0.16 - Adewale et al. (2016) 

14.   (0,1) - Control parameter 

 
Validation and Extension of Analytical Results by Numerical Method 
Numerical methods of solutions for differential equations are of great importance to the 
engineers, epidemiologist and physicist because practical problems often lead to differential 
equations that cannot be solved exactly by straight forward analytical methods. Also, there 
are differential equations as for which the solutions in terms of formulas are so complicated 
that one prefers to apply a numerical method to such equations since numerical method have 
no such limitations. Numerical experiment is also performed to demonstrate the concordance 
of the numerical results with the theoretical results. That is, it confirms (validate), extend and 
illustrate the various theoretical (analytical) results obtained. 
 
We used Maple software to obtain the numerical simulation of the model (1) to (9). Initial 
variables and parameters value are from Table 4.1 and 4.2. We then presented some numerical 
simulations to monitor the dynamics of the full model for various values and associate it with 
the effective basic reproduction number in order to confirm our analytical results on the global 
stability of the disease free equilibrium as well as show the global stability of the endemic 
equilibrium. 
 
Global asymptotic stability of equilibrium  

 
Fig. 4.1: Global asymptotic stability of the disease free equilibrium whenever 1Rc  , i.e 

0.4032 1Rc =  . The curves are plotted with 0.5, 0.01
1 1
 = = and 0.001 = and the remaining 

parameters are as in Table 4.2. With different initial condition of infectious humans, this 
clearly shows that the disease dies out in the human population irrespective of how large the 
initial infectious humans are introduced into the society as long as the control reproduction 
numbers are less than unity.  
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Fig. 4.2: The Global asymptotic stability of the endemic equilibrium point whenever 1Rc   

i.e 1.6260 1Rc =  . The curves are plotted with 0.2, 0.000003
1 1
 = = and 0.001 =  the 

remaining parameters are as in Table 4.2. With different initial condition of infectious humans, 
this indicates that the disease persists in the society irrespective of how small the initial 
infectious humans are introduced into the society as long as the effective reproduction 
numbers are greater than unity. 
 
Global Asymptotic Stability of Equilibrium of Rodents Population 
The Global asymptotic stability of the disease free equilibrium and endemic equilibrium of 
the model were analytically shown in Theorem 2 and 5 respectively. Also, they are 
numerically supported by Fig. 4.3 and 4.4 

 

Fig. 4.3: Global asymptotic stability of the disease free equilibrium whenever 1Rc  , i.e 

0.62376  1Rc =  . The curves are plotted with 0.5, 0.01
1 1
 = =  and 0.6 = and the remaining 

parameters are as in Table 4.2. With different initial condition of carrier rodents, this clearly 
shows that the disease dies out in the human population irrespective of how large the initial 
carrier rodents are introduced into the society as long as the control reproduction numbers 
are less than unity. 
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Fig. 4.4: The Global asymptotic stability of the endemic equilibrium point whenever 1Rc   

i.e 1.8947 1Rc =  . The curves are plotted with 0.2, 0.8, 0.09
2 r r  = = =  and the 

remaining parameters are as in Table 4.2. With different initial condition of carrier rodents, 
this clearly shows that the disease is endemic in the rodents’ population irrespective of how 
small the initial carrier rodents are introduced into the rodents population as long as the 
effective reproduction numbers are greater than unity. 
 
Assessing the Impact of killing Rodents to Human Population 
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Fig. 4.5:  It is well known how rodents are disseminated in every nook and cranny of our 
homes where a large number of this rodents harbor and transmit the lassa virus to humans. 
As such, rodents are further reduced in the population due to human activities i.e physical 
killing, hunting, the use of trap, spray of poisonous powder etc. Fig. 4.5 shows the impact of 
killing this rodents, to the human population. It shows clearly how drastic the rodents 
population reduces due to human activities. Conclusively, this implies the more the rodents 
are reduced in the society, the closer we are to mitigating lassa fever virus in our society. 
Intensifying human activities which lead to reduction in rodent population will go a long way 
in curbing the spread of lassa fever in the human population. 
 
 
Impact of Induce Death of Human 

 
 Cumulative Incidence Varying Different Control Parameters 
Variation of control parameter will be considered in this section. All the parameter values 

used here are in Table 1 above with 1.2456Rc = . 

 

 
Fig. 4.7: Cumulative Incidence for Humans Varying Isolation Rate 
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Fig. 4.7 shows clearly the role played by isolating infectious humans in curbing the menace of 
lassa-fever in the society. The infectious humans is a function of isolation rate. The graph 
shows how massively the number of infection falls due to isolation. The solid line represents 
the rate at which the disease persists in the society, but adopting isolation as a control strategy 
in the population of infectious human the disease dies out, the broken line represents how the 
disease is being curtailed in a very short period of time. Increase in the isolation rate of 
infectious humans is seen to have a positive impact on the dynamics of lassa fever as this leads 
to a reduction in the cumulative number of cases. 

 
Fig. 4.8: Cumulative Incidence for Humans Varying Treatment Rate 
Fig. 4.8 is showing the cumulative incidence for humans varying treatment rate. Ribavirin, an 
antiviral drug is considered to be the most effective to lassa-fever patient. The graph shows if 
given in the early days in the course of the illness. With this control strategy, the broken line 
in fig. 4.8 keep approaching zero which is an indication that the disease dies out completely 
from the population. 
 
 
CONCLUSION 
This work has been examined, using deterministic model for the Lassa Fever Virus 
transmission dynamics in a population, the model has various control strategies that could be 
implemented to bring down the burden of Lassa fever in a society. The following findings are 
made: 

1) The model consists of four equilibriums: Disease free equilibrium in both 
humans and rodents’ population endemic in humans’ population only, 
endemic in rodents’ population only and endemic in both population, 

2) Existence and local stability of disease free equilibrium (DFE) if 1hR   and 

1rR  . 

3) Global stability of disease free equilibrium if 1hR   and 1rR  .  

4) Existence and local stability of endemic equilibrium point (EEP) if 1hR   and 

1rR   

5) Global stability of endemic equilibrium point (EEP) if 1hR   and 1rR  . 
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6) Applying all the control parameters in this model simultaneously leads to a 
smooth and unique way of curbing Lassa Fever in a society. 

7) Reducing rodents population helps in Lassa fever mitigation in a society. 
The following contribution to knowledge where achieved: 

1) The work has improved on the existing models on the transmission dynamics 
and control of Lassa Fever disease. 

2) The work has shown positive ways to control Lassa Fever in any society, 
3) The work has shown the possibility of a disease free equilibrium which can be 

globally stable. 
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