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Abstract 
 
The restricted three-body problem (R3BP) is a formulation which defines the motion of a passively 
gravitating test particle having infinitesimal mass and moving in the gravitational environment of 
two bodies, called primaries. The R3BP is still an exciting and active research field that has been 
getting attention of scientists and astronomers because of its applications in dynamics of the solar and 
stellar systems, lunar theory, and artificial satellites. The equations of motion are usually the starting 
point in the investigations of the dynamical predictions of the infinitesimal mass. Therefore, in this 
paper, we examine the derivations of the dynamical equations of the R3BP with Poynting-Robertson 
(P-R) Drag force and variable masses. In this model formulation, both primaries are assumed to vary 
their masses under the combined Mestschersky law (CML) and they move in the frame of the Gylden-
Mestschersky equation (GME). Further, the bigger primary is assumed to be emitting radiation force, 
which is a component of the radiation pressure and the P-R drag. The non-autonomous dynamical 
equations of the model are derived and converted into the autonomized equations with constant 
coefficients using the Mestschersky transformation (MT), the CML, the particular solutions of the 
GMP, and a transformation for the time dependent velocity of light. We observed that the P-R drag of 
the bigger primary depends on the mass parameter, radiation pressure, velocity of light and the mass 
variation constant . The derived systems of equations with variable and constant coefficients can be 
used to model the long-term motion of satellites and planets in binary systems.  
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INTRODUCTION 
The restricted three-body problem (R3BP) describes motion of an infinitesimal mass moving 
in the gravitational environment of two main masses, called primaries, which move in 
circular orbits around their center of mass on account of their common attraction and the 
infinitesimal mass not influencing the motion of the primaries (Szebehely 1967). There are 
several examples of the R3BP in space dynamics. One of these is the Sun-Earth-Moon 
combination which describes the motion of the moon. One of the main idea in space science 
is the creation of artificial bodies, which are required to move in the vicinity of two natural 
astronomic bodies, this is also analogous to the R3BP. 
         
The classical R3BP considers masses in the R3BP to be constant. However, several celestial 
bodies change their masses during evolution. Hence, the phenomenon of absorption in stars 
made scientists to frame the R3BP with variable masses. The problem of the dynamics of 
celestial bodies with variable mass has lots of remarkable applications in galactic, planetary, 
and stellar dynamics. As an example, we could mention the motion of a satellite nearby a 
radiating star enclosed by a cloud and changing its mass as a result of the particles of the 
cloud. Also, comets loose part or all of their mass as they travel round the Sun (or other 
stars) due to their contact with the solar wind which blows off particles from their surfaces. 
Due to the inclusion of mass variations, many researchers such as Bekov (1988), Luk’yanov 
(1989), Singh & Leke (2010,2012,2013a, b, c), Ansari et. al (2019), Leke & Singh (2023), Leke & 
Shima (2023), Leke & Mmaju (2023) and more recently Leke & Orum (2024), have carried out 
various investigations to include mass variation of the primaries when the mass of the third 
body is kept constant while the formulation of the R3BP when the three masses vary with 
time, researchers such as El-Shaboury (1990), Bekov et al. (2005); Letelier & Da Silva (2011), 
and Singh & Leke (2013d), have investigated this formulation under different classifications. 
  
The model formulation of the classical R3BP did not characterize the primaries to be sources 
of radiation pressure. Radiation pressure acts as an orbital perturbation and can displace a 
dust grain from its position. Radzievskii (1950,1953) discussed the introduction of radiation 
pressure of one and both primaries and observed that their presence allows for the existence 
of additional EPs. In view of this, several investigations have been carried out when one or 
both primaries are emitters of radiation pressure. Notable among these are Singh & Ishwar 
(1999), Singh & Leke (2010, 2012, 2013a) and Singh & Sunusi (2020).  
 
Further, characterization of the primaries which involves the force of radiation, is the effect 
of Poynting–Robertson (P–R) drag. This force is a part of the radiation force and can sweep 
dust grain particles of the solar system into the Sun at a cosmically fast rate. Several authors 
have conducted researches on the R3BP with P-R drag, amongst them are Ragos and 
Zafiropoulos (1995), Kushvah (2008), Das et. al (2009) Singh & Abdulkarim (2014), Singh & 
Amuda (2019), Amuda et. al (2021), and Amuda & Singh (2022). 
    
In this current paper, we aim to formulate the dynamical equations of the R3BP with 
variable masses in which the bigger primary emit radiation pressure and P-R drag. The 
paper is an extension of the dynamical equations of motion given by Gelf’gat (1973), Bekov 
(1988) and Luk’yanov (1989) when the bigger primary is a radiation source with P-R drag 
component.  
 
The setup of the paper, is in the following order. Section 2 gives the description of the 
dynamical equations. Sections 3 and 4, give the discussion and conclusion, respectively.  
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DESCRIPTIONS OF THE DYNAMICAL EQUATIONS  
Gylden-Mestschersky Problem, Unified Mestschersky Law and Mestschersky 
Transformation 
The absolute motion of the points is described by the Mestschersky (1902) equation for a 
point of variable mass, 

                                     ( )F mv v u m= + −                                                                             (1) 

where F is the sum of the forces acting on the body and v is the velocity, both of which is 
measured in an inertial coordinate system. Further, u  is the velocity of the center of mass of 
the absorbed mass before its attachment with the body (or of the ejected mass after its 
ejection). The over dot depicts derivation with respect to the timeu . 

The relative motion of mass 2m about mass 1m under the action of mutual gravitational 

force, was represented as the sum of the masses of these points as varying with time by a 
certain law Gylden (1884) 

                                      ( )1 2m m t+ =                                                                                   (2) 

Gylden (1884) wrote the differential equation of the formulation in the form 

                                       
( )
3

0
t

r r
r


+ =                                                                                    (3) 

Later, Mestschersky (1902) revealed that the Gylden (1884) problem (3) is a special case of 
the problem of two bodies with variable mass under the condition that the laws of variation 
of the two masses are the same.   

Now, when the mass is expelled with the same velocity of the body at any time ( )v u= , that 

is, mass discharge does not produce responsive forces. In this occasion, equation (1) reduces 
to the form 

                                          F mv=                                                                                             (4)  
 When this occurs, the relative motion of the problem of two bodies with variable masses is 
defined by the equation 

                                          
( )1 2

3

m m
r G r

r

+
= −                                                                            (5) 

Equation (5) is similar to the equation of the classical two-body problem with constant 
masses, with the alteration that now; the sum of the masses is a function of time and is 
referred to as the Gylden-Mestschersky equation (GME).    
    Mestschersky (1902), reduced the GMP through the introduction of new variables and 
“time” to the equations of the classical problem of two bodies with constant masses by a 
transformation, known as the Mestschersky transformation (MT) and is given as 

                        ( ),x R t= ( ),y R t= ( ),z R t= 2 ( )
dt

R t
d

=  

                        12 ( )r R t= , ( ), ( 1,2)i ir R t i= = ,                                                                      (6) 

where            ( ) 2 2R t t t  = + +  ; , , ,    are the new variables and,  ,, and 12 are 

constants. 
Later, Mestschersky (1952) came up with a law which considers the masses and their sum to 
vary in the same proportion in such a way that  

           ( )
( )
0t

R t


 = ,  ( )

( )
10

1 t
R t


 = , ( )

( )
20

2 t
R t


 =                                                         (7) 

where      ( ) ( )1 1t Gm t = , ( ) ( )2 2t Gm t =  ,   ( ) ( ) ( )1 2t t t  = + ,  10 and 20 are constants.                 
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The law (7) is called the combined Mestschersky law (CML) and it guarantees that the centre 
of the mass of the system moves initially. 
Now, the GME has the particular solutions of the forms 

                               
( )

( )

2

12 3
r

R t

 


−
=                                                                                          (8)  

                              ( )
( )
0

2
t

R t


 =                                                                                                  (9)   

                                     2r C =                                                                                                (10)  

where 

                      
2 2

0

2
0

  




− +
=             

(11) 
Equation (10) is a particular integral of the GME and   is a constant, and is such that 
0     
 
Equations of Motion  
The study of the motion of a satellite using the model of the R3BP under the condition that 
the motion of the variable-mass primaries is governed by the Gylden-Mestschersky problem 
with isotropic mass variation of the primaries varying in proportion to each other in 
accordance with the UML has been studied by Bekov (1988), Singh & Leke (2010, 2012, 
2013a, b, c). Therefore, following the methodology, we consider a rotating frame of 

reference zyx    0 , where 0 is the origin. Further, we let 1m  and 2m  be the masses of the 

primary bodies and 3m  is the mass of the satellite. Also, let the distance from 3m  to 1m  

be 1r and from 3m  to 2m  be 2r  while the distance between the two primaries be r . Finally, we 

let   be the angular velocity of revolution of the primaries. We consider same formulation 
by Bekov (1988) with further assumptions that the smaller primary is a radiation source 
having P-R drag force. In this premise, the kinetic energy in the rotating frame of reference 
0xyz  is given by (Szebehely, 1967) 

2 2 2 2 2 2

3 3 3

1 1
( ) ( ) ( )

2 2
T m x y z m xy yx m x y = + + + − + +                                                         (12)   

Now, let xp , yp  and zp be the generalized components of momentum, then 

         ( )3x m x y = −  ,   ( )3y m y x = + ,   3z m z =                                                          (13)        

 Now using equations (13) in the Hamiltonian H and simplifying, gives 

( ) ( ) Uxppyppp
m

H yxzyx −−+++= 222

32

1
                                                                            (14)      

Therefore, we have     

x

U
pp yx




−=   , 

y

U
pp xy




−−=  , 

z

U
pz




−=                      

(15) 
Now since the primaries move within the context of the GME and their masses change with 

time in agreement with the CML, then , ,x y zp p p and the angular velocity will all be time 

dependent. Thus, differentiating system xp , yp  and zp  with respect to time, respectively, 

we get 

                 ( )3xp m x y y = − − ,         ( )3yp m y x x = + + ,           3zp m z=
                  

(16)                                                                                                                                                                                                                                    
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From systems (15) and (16), we have 

x

U
pyyx y




−=−−    

y

U
pxxy x




−−=−+                                                        (17) 

z

U
z




−=                 

Next, the equations of motion of the CR3BP under effects of radiation pressure and P-R drag 
is written (Ragos et al.): 

( )18
)().()1(

)(2 11

1

1

1

111

1

1

2

1

11

3

2

22

3

1

111











 +
−












 +
−

−
−−−=++

dd c

rr

r

r

rc

rrr

r

r

r

q

r

r

r

rq
rva








 



 

where 1q is the radiation pressure of the bigger primary, dc is the dimensionless velocity of 

light and 

,kzjyixr


++= ,kzjyixv










++= ,kzjyixa











++=  

,)(1 kzjyixr


+++=  ,)1(2 kzjyixr


++−+=  ),( jxiyv







−−=  

),()( jyixr


+−=    ,)1()(22 kzjxyiyxrr 








 +−+++−=+                                  (19) 

 zzyyxxrrr 


 ++−++=+ )1().( 222   

Comparing equations (17) and (18), and equating the coefficients of , and , kji


on both sides, 

we get 

( ) ( ) ( )
( )  








−+++−

−
−

−
−

−
−+=− yxzzyyxxx

r

xx

r

W

r

xx

r

xxq
yxyx 


 

12

1

1

2

1

1

3

2

22

3

1

11122  

( )  ( )







−++++−−−−−=+ 112

1

2

1

1

3

2

2

3

1

1122 xxyzzyyxxx
r

y

r

W

r

y

r

yq
xyxy 


               (20) 

( )  







+++−−−−= zzzyyxxx

r

z

r

W

r

z

r

zq
z 

12

1

2

1

1

3

2

2

3

1

11 
 

where  

( )( )
( )tc

qt
W

d

11
1

1−
=


                                        (21) 

represents the P-R effect of the bigger primary and ( )tcd .is the velocity of light which 

depends on time, ( ) ( )tGmt ii = , ( ) 2222 zyxxr ii ++−= , ( )2,1=i                                 

These equations describe the dynamics of the satellite in the gravitational environment of 
the variable mass primaries under radiation pressure and P-R effects of the bigger primary.  

        Now from the property of the center of mass 1 at 1( ,0,0)x and 2 at
 2( ,0,0)x with the 

consideration that coordinates is barycentric, we have  

                        2
1

1 2

r
x



 
= −

+
 ,   1

2

1 2

r
x



 
=

+
                                                                            (22) 

The equations (22) unite the barycentric coordinates 1x and 2x with the common distance r . 
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Autonomization of the equations with variable coefficients  
The derived dynamical equations (20) are not integrable and the solutions even for 
particular steady-state solutions –the EPs are difficult to seek directly from equation (20), 
because these equations contain unknown functions of time. In order to transform system 
(20), we use the MT (6); the CML (7); the particular integral (10) and solutions of the GME (8-
9).   
From the MT (6), we have                     

        ( )x R t=    
1
22( 2 )x t t   = + +  

We differentiate w.r.t t  and denotes differentiation w.r.t. by dashes, we get 

   
( )

( ) ( )

t
x

R t R t

   +
= + ,

( )

( ) ( )

t
y

R t R t

   +
= + ,

 

( )

( ) ( )

t
z

R t R t

    +
= +                                        (23)                                           

  

 

2

3 3

( )

( ) ( )
x

R t R t

   −
= +  , 

2

3 3

( )
,

( ) ( )
y

R t R t

   −
= +    

2

2 3

( )

( ) ( )
z

R t R t

    −
= +                                                                                       

Also, from a particular solution (9) of the GMP, we get 

                                           0

4

2 ( )

( )

t

R t

  


+
= −               

Additionally, we assume that the velocity of light varies in such a way that 

( )
( )tR

c
tc d

d

0=                                                                    (24) 

where  0dc  is a constant velocity of light.                           

Substituting all the above in system (20) and simplifying, yields    

( ) ( ) ( ) ( )
( )





−+




+





+−

−
−

−
−

−
−−−=−















 12

1

1

2

1

10

3

2

220

3

1

111022

002
Wq

 

( ) ( )  ( )







−++++−−−−−−=+ 112

1

2

1

10

3

2

20

3

1

10122

002 













Wq

      

( ) ( )  







+++−−−−−= 












 12

1

2

1

10

3

2

10

3

1

1102 Wq
          (25)      

where 

( )

0

110

10

1

dc

q
W

−
=


                                         (26)                                   

 Performing same substitution on 2

1r and 2

2r , and simplifying gives 

                  2 2 2 2
1 1( )    = − + + , 2 2 2 2

2 2( )    = − + +                                               (27) 

                         20
1 12

0


 



−
= ,   10

2 12

0


 


=                                                                           (28)                       

Next, we make choice for units of measurements such that at initial time 0t , we choose   

                    0 G =                                                                                                                   (29) 

For the unit of time and length, we choose them, respectively, such that 

                     12 1 =                                                                                                                      (30) 

We now introduce the mass parameter , expressed as  
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                  10

0

1





= − ,  20

0





=   ,   where 

1
0

2
                                                              (31) 

Substituting (29) in (31), we have 

                    ( )10 1G = −    ,   20 G =                                                                                (32) 

 Now from the particular integral (10) and (29), we get 

                    G =                                                                                                                       (33)   
If these measurements are substituted in equation (11), we get       

                    ( )  −=− 22

01                                                                                               (34) 

where  is the constant of integration of the GMP. 
Therefore, substituting the units of measurement in equations of system (25), (26), (27) and 
(28), we get  

( )( ) ( ) ( )
( )  








−++++

+
−

−+
−

+−
−=− 














2

1

2

1

10

3

2

3

1

1 11
2

Wq

 

( )
( )  ( )








++++++−−

−
−=+ 














2

1

2

1

10

3

2

3

1

1 1
2

Wq
   (35) 

( )
( )

( )  







++++−−

−
−−= 














2

1

2

1

10

3

2

3

1

1 1
1

Wq
 

where
( )( )

0

1
10

11

dc

q
W

−−
=


,  0                                                                               (36) 

( ) 2222

1  +++= ,   ( ) 2222

2 1  ++−+=                                                       (37) 

 
Equations (35-37) gives the equations of motion of the autonomized system with constant 
coefficients, when the bigger primary emits radiation force.  
 
DISCUSSION  
The paper investigates derivations of the dynamical equations of an inactively gravitating 
satellite in the gravitational environment of two-variable mass primaries when the bigger 
primary emit radiation pressure and P-R drag. The equations of motion of the time-
dependent system have been derived in equations (20) and thereafter converted to the 
autonomized forms with constant coefficients (35) with the help of the MT, the particular 
solutions of the GME, the CML.  It is seen that the equations of motion of the non-
autonomous system (20) is different from those of Bekov (1988, 2005), Luk’yanov (1989), 
Singh & Leke (2010, 2012, 2013a), Taura & Leke (2022), and, Leke & Singh (2023) due to the 
appearance of the P-R drag of the bigger primary. Also, the equations of motion (33) with 
constant coefficients are different from those of Kushvah (2008), Singh & Amuda (2014, 
2017), Amuda et. al. (2021) and Amuda & Singh (2022) due to the presence of the 
parameter . Also, the P-R drag of our study depends on the mass variation constant .      
  The investigations of the R3BP is of immense historical, educational, theoretical and 
practical importance, and in its many modifications, has had significant implications in 
numerous scientific fields, comprising among others; chaos theory, celestial mechanics, 
galactic dynamics and molecular physics. The R3BP is still a stimulating and vigorous 
research field that has been receiving significant attention from scientists and astronomers 
because of its vast applications in stellar and solar systems dynamics, lunar theory, and 
artificial satellites. It can be hope that the derivations of the dynamical equations of this 
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problem will provide more insight into further investigations of the R3BP with mass 
variations and P-R drag.   
 
CONCLUSION 
The R3BP illustrates motion of a test particle having infinitesimal mass and travelling in the 
gravitational environment of two massive bodies, called primaries. The equations of motion 
are usually the starting point in the investigations of the dynamical predictions of the 
infinitesimal mass. Therefore, in this paper, we examined the dynamical equations of the 
R3BP with Poynting-Robertson (P-R) drag force and mass variations of the primaries. We 
assumed both primaries to vary their masses in agreement with the combined Mestschersky 
law (CML) and they move under the context of the Gylden-Mestschersky equation (GME). 
Further, the bigger primary is assumed to be an emitter of radiation force, which is a 
component of the radiation pressure and the P-R drag. The non-autonomous equations of 
the dynamical frameworks are derived and converted into the autonomized equations with 
constant coefficients with the aid of the Mestschersky transformation (MT), the CML, the 
particular solutions of the GME. We found that the P-R drag of the bigger primary is defined 
by mass variation constant , mass parameter, radiation pressure of the bigger primary and 
the velocity of light. The derived systems of equations with variable and constant 
coefficients can be used to model the long-term motion of satellites and planets in binary 
systems.  
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