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Abstract 

One of the main initiatives to reduce carbon emissions and make construction more sustainable is the 
use of geopolymer/activated pozzolans concrete. Accurately predicting the compressive strength of 
activated pozzolanic concrete is essential for the use and acceptance of such a complex system of concrete. 
This study employed the use of eight input variables to predict the compressive strength of hybrid 
laterized ordinary Portland cement-activated metakaolin (OPC-AMk) concrete using four machine 
learning (ML) models namely: Adaptive Boosting (Adaboost), K-Nearest Neighbour (KNN), extreme 
gradient boosting (XGBoost), and random forest (RF). A total of 192 concrete specimens were produced 
to obtain data for training and testing in ratio of 80:20. Adaboost, KNN, XGBoost, and RF had 
respective R2 values of 0.8895, 0.9188, 0.9300, and 0.9299; meaning that the absolute fraction of 
variance (R2) for XGBoost was the highest. XGBoost also gave the lowest mean absolute error (MAE) 
and root mean squared error (RMSE). Thus XGBoost can be adjudged the best among the four ML 
considered for this research. A check on the impact of the variables on strength predictions using 
SHapley Additive exPlanations (SHAP) revealed that the most significant factors are curing age, 
Portland cement content, activator/water ratio and water/binder ratio. 
 
Keywords: Activated pozollan, Geopolymer concrete, Laterized concrete, Strength prediction.  
 
 
INTRODUCTION 
Sustainability is key for the future of our world. The construction industry has a big role to 
play in ensuring the safety and resource security of the planet. Low energy binder such as 
activated pozzolans is important and will no doubt help in saving the environment from the 
destructive effect of high CO2 emitting production process such as ordinary Portland cement 
(OPC) manufacturing. The safety of our world can only be guaranteed with a reduction in 
green house polluting gases. 
 
However, the acceptability and continual use of activated pozzolans is hinged on accurate 
prediction of its strength parameters. Ability to correctly predict the compressive strength of 
activated pozzolanic concrete will not only help in ensuring safe design but will also help in 
faster project delivery by reducing cost and time associated with destructive testing  
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Machine learning (ML) models have come into high reckoning in concrete strength prediction 
due to their computational capability and accuracy (Awoyera et al., 2020). According to de-
Prado-Gil et al. (2022), ML was found to be very effective in predicting the strength 
performance of self compacting concrete. Lyngdoh et al., (2022) while predicting the strength 
of concrete was able to demonstrate the potency of XGBoost among various approaches to 
predict the strength of concrete with missing data when ensembled with k-nearest neighbors 
(kNN). Xu et al. (2021) and Mai et al. (2021) attested to the efficacy of random forest and 
xgboost regressors in concrete strength prediction judging by the low mean absolute 
percentage error (MAE) obtained in their use; thus resulting in reduced experimental cost.  
 
The advantage of ML in concrete strength prediction is portrayed in their ability to handle the 
intricate and often non linear relationship which often existed between the dependent and 
independent variables of the concrete matrix be it OPC, geopolymer or activated pozzolan 
binder (Ghosh and Ransinchung, 2022; Pan et al., 2022). AdaBoost and Random Forest models 
have been shown to perform well in concrete strength prediction, this can be attested to by 
the outcome of statistical indices such as the coefficient of determination (R2), root mean 
squared error, mean absolute percentage error, and relative root mean square error (Ahmad 
et al., 2021). Kalabarige et al., (2024) found out that RF, XGBoost and KNN were the best 
performing algorithms in their prediction of compressive strength of concrete containing 
different industrial byproducts.  
 
This study explored the predictability of compressive strength of hybrid laterized ordinary 
Portland cement-activated metakaolin (OPC-AMk) concrete by considering eight input 
variables and using four machine learning (ML) models namely: Adaptive Boosting 
(Adaboost), K-Nearest Neighbour (KNN), extreme gradient boosting (XGBoost), and random 
forest (RF). Although there have been numerous works on OPC concrete strength prediction, 
not much is available on predicting the compressive strength of concrete when OPC is 
hybridized with activated metakaolin as binder. Especially with the use of ensemble machine 
learning approach as done in this research. The influence of each of the input (independent) 
variables on prediction was also checked. 
 
METHODOLOGY 
 
Materials  
The binders for the OPC-AMk concrete are mainly ordinary Portland cement of grade 32.5R 
which satisfied the BS/EN 197–1:2000 standard, and activated metakaolin which was 
obtained by calcinatng kaolin in an electric furnace at a temperature of 600 °C. The total sum 
of Fe2O3, SiO2 and Al2O3 oxides in the metakaolin after calcination was 86%, this confirmed its 
suitableness as a natural pozzolan based on ASTM C618-19, The metakaolin was activated 
using a combination of sodium hydroxide solution (NaOH) and sodium silicate (Na2SiO3) 
with combine specific gravity of 1.53; these were obtained from African Fertilizer and 
Chemicals, Agbara in Ogun state, Nigeria. Crushed granite of sizes 4.75 to 19 mm was used 
as coarse aggregate while the fine aggregates were river sand (conforming to BS 882:1992  
and laterite of fineness modulus 3.98 (classification as coarse-fine according to ASTM 
C136/C136M ). 

 
Design Mix   
Mix ratio of 1:2:4 (binder:fine aggregate:coarse aggregate) was used for both the control and 
laterized OPC-AMk hybrid concrete specimens. As shown in Table 1, the control mix was 
without laterite and activated metakaolin, while the other mixtures contained activated AMk 
and laterite in various proportions. The batching and mixing of materials was by weight in 
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kilogram (kg). Ordinary Portland Cement was replaced with AMk at 10%, 20% and 30% while 
laterite was also used to replace river sand at 10%, 20% and 30%respectively. 
 
Table 1.  Mix proportions of OPC- AMK concrete (kg/m3) 

Group  Designation* OPC 
 

MK Coarse 
Aggregate 

Sand Laterite Activator Total 
Water 

C Control 326.0 0 1304 652.0 0 0 238 

C1 326.0 0 1304 586.8 65.2 0 238 

C2 326.0 0 1304 521.6 130.4 0 238 

C3 326.0 0 1304 456.4 195.6 0 238 
M1 M1A 293.4 32.6 1304 652.0 0 14.67 239.4 

M1B 293.4 32.6 1304 586.8 65.2 14.67 239.4 

M1C 293.4 32.6 1304 521.6 130.4 14.67 239.4 

M1D 293.4 32.6 1304 456.4 195.6 14.67 239.4 
M2 M2A 260.8 65.2 1304 652.0 0 29.34 248.7 

M2B 260.8 65.2 1304 586.8 65.2 29.34 248.7 

M2C 260.8 65.2 1304 521.6 130.4 29.34 248.7 

M2D 260.8 65.2 1304 456.4 195.6 29.34 248.7 
M3 M3A 228.2 97.8 1304 652.0 0 44.01 251.1 

M3B 228.2 97.8 1304 586.8 65.2 44.01 251.1 

M3C 228.2 97.8 1304 521.6 130.4 44.01 251.1 

M3D 228.2 97.8 1304 456.4 195.6 44.01 251.1 

* C = concrete with 100% OPC,  M1 = concrete with 10% MK,  M2 = concrete with 20% MK,  M3 = concrete with 
30%, MK,  A = 0% laterite, B = 10% laterite, C = 20% laterite, D = 30% laterite, 

Specimen Description 
Compressive strength which was the target variable in the ML prediction models was 
obtained by crushing concrete cube specimens of size 150mm x 150mm x 150 mm. The 
concrete samples were cured in water for 7, 28, 56 and 91 days. The compressive strength was 
taken as load (kN) at failure divided by the cross sectional area (mm2) of the cube.  
 
Machine Learning Models 
 
Adaboost  
Adaptive Boosting, which is also known as Adaboost was developed by Yoav Freund and 
Robert Schapire in 2003. It is an algorithm that can be used for statistical classification as well 
as regression. The performance of other learning algorithms can be improved by combining 
with Adaboost. Adaboost is adaptive because it favors instances previous 
classifiers/regressors wrongly classified by adjusting succeeding feeble learners. In several 
cases, Adaboost had been observed to be less susceptible to over fitting in comparison to many 
other learning algorithms. Giving the weak learners whose error is small larger weight in 
system will enhance the general accuracy of the strong learners (Feng et al., 2020). AdaBoost 
is suitable for unbalanced datasets but under-performs in the existence of noise. Training 
AdaBoost is slower and its difficult to optimize the hyper-parameters (Misra and Li, 2020). 
 
K-Nearest Neighbour (KNN) 
K-Nearest Neighbour is one of the simplest ML algorithms based on supervised learning 
method. The theory of KNN algorithm assumes the presence of similar nearby objects ( Amor 
et al., 2023). KNN algorithm take on the similarity between the new case/data and available 
cases and put the new case into the category that is most similar to the available class. The k-
nearest neighbor is a non parametric algorithm, meaning that underlying data will not be 
subject to any assumption. In KNN, the represented class is assigned an unclassified structure 
by a bulk of its k nearest neighbors (Huang et al., 2019). It is also known as a lazy learner 
algorithm because it does not immediately learn from the training set rather it stored the 
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samples and works on them at the time of classification (Shi et al., 2022). The three basic factor 
in the algorithm of KNN are K, which is the number of measured instances, the metric of the 
distance and the classification’s decision regulation. The limit of the neighborhood property, 
k is germane to the accuracy of KNN regression/classification model. Abnormalities is the 
usual when k is too small. According to Liu et al., (2018). When we have a set of grouped 
instances M={(x1,y1),(x2,y2),…,(xn ,yn)}, where xi is the feature vector of the unlabeled instance, 
yi is the label and yi=c1,c2,…,cK, i =1,2,…n (Shi et al., 2022). 
 
Therefore for a training data (x,y), the k-NN algorithm searched for the k nearest instances to 
x based on a given distance metric. nk(x) is the k instances neighbourhood. The calculation of 
test sample x label based on decision rule is thus given by (1): 

𝑦 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗
= ∑ 𝐼(𝑦𝑖  =  𝑐𝑗), 𝑖 = 1,2,3, . . 𝑛;  𝑗 =  1,2,3, . . . 𝐾

xi∈nk(x)

                         (1)   

where I is the indicator function. 
 
The advantage of KNN is its simplicity of implementation, using it in concrete strength 
prediction resulted in low MAE and high coefficient of determination (Beskopylny et 
al.,2022) 
 
XGBoost 
Extreme Gradient Boosting (XGBoost) ML is an efficient and scale-able execution of the 
gradient boosting framework by Friedman (2001). XGBoost, which is an ensemble tree based 
machine learning algorithm was developed by Chen and Guestrin. According to Li et al.,(2018) 
XGBoost which is a branch of boosting algorithm mainly combine various feeble classifiers to 
form a powerful one, a lifting tree model which merged numerous tree model into a robust 
classifier . XGBoost can be used for both regression and classification. Its utilization in concrete 
strength prediction has shown its robustness and efficiency. 

 
Predicted parameters and results can be expressed as (2):  

𝐿(𝜙) = ∑ 𝑙(𝑦𝑖𝑖 𝑦𝑖̂)  + ∑ 𝛺𝑘 (𝑓𝑘)                 (2) 
Where 𝐿(𝜙) denotes the expression in linear space, i means the number of i th samples, k is 
the number of k th tree, and 𝑦𝑖̂ is the prediction value of i th sample in 𝑥𝑖. 
 
XGBoost is good in making predictions for unorganized data, which has found its application 
in diverse fields including traffic accident classification, risk assessment, concrete mix design 
optimization and shear strength predictions to mention a few. Wang et al., (2024) using several 
ML algorithm for the prediction of concrete compressive strength found XGBoost to possess 
the highest accuracy among all the algorithm explored.  
 
Random Forest 

ML approach called random forest (RF) is created by a process known as bagging, which is 
shorthand for bootstrap aggregation. To develop trees independently throughout the entire 
data set in RF, a bootstrap sample is utilized. As per Shaqadan, (2016), the primary parameters 
to adjust when adopting RF trees are the number of trees to be grown and the attributes 
selected at each split. The ability of RF to manage a high number of variables with a relatively 
small data set and its application in determining feature importance—an evaluation of each 
variable's impact on the model as a whole—are two of its strong points Denil et al., (2014). 
Data are split into homogenous groups called nodes for regression purposes; this partition is 
based on data of splitting variables. Tracing the path from the root node based on the split can 
then be used to forecast the result. 
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The excellent accuracy of RF algorithm as confirmed by statistical error analysis showed that 
it is one of the best ML that can predict the compressive strength of concrete (Gupta, 2023 ; 
Zhu, 2023). RF can predict the compressive strength of non conventional concrete better as 
evident in the accuracy and goodness of fit.This can significantly lessen test requirement, time 
and cost; an advantage in concrete mix design [Wang et al., 2023; Mai et al., 2021; Zhang et al., 
2023] 
 
Data Description 
To predict the compressive strength of OPC-AMk concrete, eight independent variables were 
used. They are; ordinary Portland cement (OPC), metakaolin (Mk), sand, laterite, slump value, 
water/ cement ratio, Alkaline activator / water ratio and age of concrete. The response 
variable was the concrete compressive strength (CS). The details of the input variables were 
as described on Table 2. Data was obtained from 192 concrete specimens which were splitted 
for training and testing in ratio 80:20. The statistical relationship between the variables were 
checked using Pearson correlation coefficient, a widely used means of measuring relationship 
between variables (Xu et al., 2021), Pearson correlation heat map as shown on Figure 1 was 
done to show the relationship among the variables. The perfect negative correlation between 
OPC and Mk, sand and laterite and the near perfect relationship between water-cement ratio 
and activator-water ratio are expected because Mk was used to replace OPC, likewise laterite 
was used to replace sand in the concrete mix. Also, water/cement ratio and alkali 
activator/water are directly related by water used in the concrete.   
 
Table 2:  The Details of The Input Data Used For Analysis. 

Input Variables Minimum Maximum Range 

Ordinary Portland Cement (OPC) (kg/m3)C 228.2 326 97.8 
Metakaolin (MK) (kg/m3) 0 97.8 97.8 
Fine Aggregate (Sand) (kg/m3) 456.4 652 195.6 
Fine Aggregate (Laterite) (kg/m3) 0 195.6 195.6 
Slump Value (mm) 10 65 55 
Water / OPC ratio 0.67 1.04 0.37 
Alkaline Activator / Water ratio 0.0 0.2 0.2 
Age (days) 7 91 84  
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Figure 1.  Correlation Coefficients for the Independent and Dependent Variables 

Parameter Settings for Models 
First, starting parameter values were assigned to each machine learning model. Nevertheless, 
it was found that the optimal tuning/setting for each ML was obtained using hyper-parameter 
tweaking using "GridSearchCV," which is a Python "sklearn" library feature. "GridSearchCV" 
functions by recommending the optimal configuration based on factors that yield the 
maximum R2. For the ML models, the parameters provided by "GridSearchCV" were thus 
employed. 
 
Variable Importance 
The influence of each of the independent variables on the target variable can be better 
understand through sensitivity analysis or variable importance plot. Higher sensitivity value 
is an indication of higher significance or impact such a variable has on the output variable. 
According to Shang et al., (2002), the input variables have a notable effect on the prediction of 
the output variables. To measure the importance and impact of each input variable on the 
compressive strength, SHAP (SHapley Additive exPlanations) was used to assess the feature 
significance (measured as the mean absolute Shapley values) and feature value (impact on 
model output). 
 
Model Evaluation Metrics 
Evaluating a model is very important in data analysis. Three main metrics ( 3) to (5) were 
used for evaluation in these models. Namely: 
i. R Square/Adjusted R Square,  

𝑅 =
𝑛𝛴𝑦𝑦′−(𝛴𝑦)(𝑦′)

√𝑛(𝛴𝑦2)−(𝛴𝑦)2√𝑛(𝛴𝑦′2)−(𝛴𝑦′)2 
                  (3) 

ii. Mean Square Error (MSE)/Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦 − 𝑦′)2𝑛

𝑖=1                      (4) 

iii. Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦′|𝑛

𝑖=1               (5) 

Where y is the measurement, y’ is the corresponding prediction and n is number of data point  
 
In R2 the closer the value is to 1, the better the model fits. The disparities between predicted 
and actual values are expressed in terms of mean absolute error (MAE) and root mean squared 
error (RMSE). Their value should be around zero for a good fit. When squaring to amplify 
deviation, RMSE gives outliers greater weight than MAE. As a result, although MAE is more 
resilient to outliers and more accurately represents the actual condition of predicted value 
errors, RMSE is more susceptible to outliers and reflects the variance of error. The metrics 
were employed to evaluate how well the different ML techniques performed. λ was 
introduced to indicate the difference between RMSE and MAE in order to better illustrate the 
magnitude of the prediction error change (Li et al., 2018).  

 
RESULTS AND DISCUSSION 
 The age of concrete (curing days), OPC content and activator/water ratio were found to be 
the most important inputs contributing to increase in compressive strength of hybrid OPC-
AMk concrete. OPC content is almost as important as age of concrete in strength formation. 
The variable that has the least effect on the prediction outcome was Mk content. This is shown 
in Figure 2a-2c.  



Performance of Compressive Strength Prediction Models for Laterized Ordinary Portland Cement - Activated 
Meta-Kaolin Concrete 

  

F. Faluyi, O. Adetayo, O. O. Amu, DUJOPAS 11 (1c): 212-223, 2025                                   218 
 

 
Figure 2a.  SHAP feature importance measured as the mean absolute Shapley values 

 
From the beeswarm plot in Figure 2b, it was observed that higher age caused an increase in 
predicted compressive strength, similarly in OPC content and slump an higher values forced 
an increase in predicted strength. Although activator/water ratio was the third most 
influential input as shown in Figure 2a (feature importance), an higher value of it only implied 
a reduction in the compressive strength of the concrete. The quantity of water available in the 
freshly mix concrete to dilute the activator can impact the strength of activated pozzolan/ 
geopolymer concrete. As the sand content increased, there was reduction in compressive 
strength of the resulting concrete. This is logical since higher sand to cement ratio lead to a 
weakened matrix. The same applies to the water/cement ratio. With increasing water cement 
ratio, compressive strength of hybrid OPC-activated pozzolanic concrete reduced (Faluyi et 
al., 2022). 
 

 
Figure 2b. SHAP Bee swarm plot 
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Figure 2c. SHAP feature waterfall plot 

 
From the values obtained on the four ML models used for the prediction, it can be deduced 
that KNN, XGBoost, Adaboost and RF can be effectively used to predict the compressive 
strength of hybrid OPC-AMk concrete as seen on Table 3. 
 
Table 3 Evaluation Metrics 

Metric Adaboost  
 

KNN XGBoost RF 

R2 0.8895 0.9188 0.9300 0.9299 
RMSE 1.7830 1.8812 1.6442 1.6864 

MAE 1.2528 1.4013 1.1856 1.2289 
 λ 0.5302 0.4799 0.4586 0.4575 

 
R-Square 
Among the four ML algorithm used for the compressive strength prediction, XGBoost has the 
highest R2 as observed from Table 3 and Figure 3b. With a score of 0.93, XGBoost was the best, 
while Adaboost with a score of 0.8895 has the least R score among the four ML models. 
 
RMSE and MAE 
XGBoost has the lowest mean absolute error (MAE) and root mean square error (RMSE), at 
1.1856 and 1.6442, respectively, as seen on Table 3 and Figure 3a. KNN has the highest RMSE 
and MAE values, 1.8812 and 1.4013, although its R2 value indicated it should be a better model 
than Adaboost. As a measure of model stability and a better way to express the size of the 
prediction error, λ was introduced, which is the difference between RMSE and MAE. Out of 
the four machine learning models examined, RF with the lowest λ value of 0.4575 is deemed 
to be the most stable and effective, as demonstrated in Figure 3c. Adaboost performed the 
poorest, with the greatest λ value of 0.5302, whereas XGBoost was marginally better by RF. 
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(a) 

 

   
(b)                                 ( c) 

Figures 3 a-c  Bar plot of the evaluation metrics 

 
A plot of true values against the predicted values using the test data as shown In Figures 4a-
d showed that KNN, XGBoost and RF models being more linear in plot performed better than 
Adaboost. KNN and Adaboost, having more outliers showed that they are slightly less 
accurate in predicting the concrete strength when compared to RF and XGBoost. 
 

  
(a) Adaboost model       (b) KNN model 
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(c) XGBoost model                   (d) RF model 

Figures 4 a-d  Plot of true values against model predicted values using testing data 

 
CONCLUSION  
In this study, the compressive strength of OPC-AMk concrete was predicted using four 
machine learning models. The concrete's age (curing days) has the largest positive influence 
on the compressive strength, according to the influence and relevance of the input variables. 
Concrete gets stronger the older it gets. Portland cement content followed age on the scale of 
importance, showing that even though activated Mk is supposed to benefit from the hydration 
heat of OPC, Portland cement controls the compressive strength of hybrid OPC-Mk when 
water curing is used. 
 
It was discovered that the laterite content had the least impact on the compressive strength of 
the matrix. When the four ML models were compared, XGBoost with an R-square value of 
0.9300, outperformed RF (0.9299), KNN (0.9188), and Adaboost (0.8895). XGBoost was 
deemed the best model overall, despite the fact that RF had the lowest λ out of the four ML 
used.    
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