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Abstract: The implementation of a tool to perform two-dimensional forward and inverse gravity data 
modeling that can be used to interpret the subsurface geologic structure is presented in this article. The 
approach subdivides the subsurface into regular shape prisms and reconstructs the geologic structures 
by assigning variable densities to the different prisms. To obtain the subsurface density distribution one 
will first use the forward modeling tool and generate a plausible model of the subsurface to use it later 
as the initial model in the inversion program. The inversion tool makes use of the compact gravity data 
inversion algorithm to iteratively model the subsurface. The advantage of this approach is that the 
desired geological characteristics are automatically incorporated into the model with a minimum 
subjective judgment on the part of the interpreter. The method was demonstrated by inversion of 
synthetic and real data. The synthetic data is generated from a two–dimensional model consisting of a 
regular array of identical blocks whose densities can be individually specified. While testing the 
application on real data that were collected around Filwoha (Addis Ababa), the resulting subsurface 
structural model produced gravity data that matched with the observed gravity data, within a predefined 
acceptable root mean square error.  
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1. Introduction 
The physical properties of the earth’s interior can be deal 
with different methods such as gravity, resistivity, 
electromagnetic and seismic reflection. Among these 
methods, the gravity technique is used to map the 
subsurface structure of the earth (density contrast) by 
measuring the gravitational field variation on the surface of 
the earth. The basis for this method is Newton’s law of 
gravitation, which states that the gravitational attraction 
between two particles is directly proportional to the mass 
of the two particles and inversely proportional to the 
square of the distance between their centers of mass of the 
particles (Bouguer, 1977). The proportionality constant is 
the gravitational constant G. A gravity survey mainly 
involves the collection of data in the target area using a 
relative gravimeter, which can be referred to an absolute 
gravity value at a base station. The measurement of the 
gravitational field at a series of measurement points 
demands the determination of station spacing before the 
survey is carried out. The selection of the station spacing 
depends upon the problem at hand and it should be 
chosen optimally to prevent an aliasing effect (Willian,  
1987, XU, 2005). The collected data are then reduced to 
remove all undesired temporal and spatial variations that 
are not related to the body of interest to produce what is 
called the complete Bouguer Anomaly. Depending on the 
need, this anomaly can be separated further into long and 
short wavelength signals that are related to deep and 
shallow seated causative bodies, respectively.  
   It is then possible to carry out qualitative and 
quantitative interpretation of the gravity data to determine 
the shape, size and location of the causative body. 
However, the determination of the size, shape and 
position of the subsurface structure is a challenging 

process for the problem is non-unique in nature. To 
overcome this problem, it is necessary to constrain the 
inversion process using a priori information from previous 
geophysical surveys, borehole data or any other geological 
information. 
   In the modeling process different geological models are 
constructed by fitting the model generated with the 
measured data. Among the plausible different models the 
one that best define the a priori information is chosen to 
represent the subsurface physical property. The means 
that, even if the density of the subsurface cannot be 
uniquely determined from gravity measurements, one can 
often develop a class of models which will give a ‘closest 
fit ‘to the anomaly based on a priori information. In this 
process one can try to find a best fit of measured and 
computed gravity curves using either the density parameter 
of the XY-coordinates or the geometry of the model 
(Nagy, 1966; Carmichael, 1977; Casten et al., 2004). There 
are in general two approaches which enable either the 
shape or the density of the causative body to be fixed. The 
approach that we have chosen in this work is to subdivide 
the subsurface using prismatic bodies and fix the shape 
and size of the prisms to vary their density so that the 
horizontal variation of the density can be modeled.  
   The modeling can be done using either forward and 
inverse gravity modeling or both. In forward modeling, the 
interpreter starts from an initial model, Mo, computes the 
predicted data values and compares them with the 
observed ones manually. Then, by considering all available 
information and using personal judgment, one can apply 
corrections to Mo in order to minimize the misfits between 
the computed and observed data. The procedure is 
repeated until a satisfactory result is obtained. On the 
other hand, the inversion modeling automatically 
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determines the position, the density contrast and the 
geometry of a causative body, provided that sufficient 
prior information about the source is incorporated by the 
method (Tarantola, 1987; Krzysztof, 2005). 
   A classical problem in gravity exploration is the 
computation of theoretical anomalies caused by idealized 
models of known shapes. Towards this end, many 
researchers have published different methods for carrying 
out such computation, and textbooks on potential theory, 
e.g. (Parker, 2005) have used numerical integration 
techniques for the computation of the fields due to models 
of arbitrary shape by dividing them into polygonal prisms 
or laminas. (Valeria el al., 1994) tried to find depth and 
density values using gravity data. (Last el al., 1993) 
estimated subsurface density distribution with recursive 
inverse solution techniques. (Krzysztof, 2005) used the 
Genetic algorithm 
   In this article the aim is to present a new modeling tool 
that has been developed based on the compact gravity 
inversion algorithm (Elias, 2007; Last el al., 1993), which 
makes use of fixed shapes to estimate the physical 
parameters of buried objects in terms of maximum 
compactness of the anomalous sources. The modeling tool 
that can be used in the forward and inverse modeling 
mode and it has the capacity to use the forward developed 
model as an initial model for the inverse modeling 
algorithm.  
 
According to Willian (1987) XU (2005), gravity methods 
have played increasingly important roles in the search for 
new reserves of ore since the development of highly 
portable gravimeters that have a high degree of precision. 
Measurements of gravity data provide information about 
densities of rocks in the earth’s subsurface.  For example, 
rocks of differing densities may occur on the opposite 
sides of a fault. Hence, the developed gravity modeling 
tool can be applied to find the offset of the bedrock 
caused by faulting, which might control water of the 
ascending geothermal system.  In general, with the help of 
gravimeter, the end product of this work will be useful to 
the researcher in acquiring knowledge about the 
subsurface geological structure or at least some of its 
elements, in terms of the anomalous mass distribution 
(density contrast) without destroying the environment. 
 

2. Methodology and Procedures 
Most geologic problems demand critical observation, 
which will lead to inquiry as to the cause of the observed 
facts. Hence, the examination of subsurface properties of 
the earth, using geophysical data is generally made using 
geophysical inversion methods, and demands the 
experience of the geophysicist as well as the available a 
priori information so that result will be unique in the loose 
sense. There are a number of subsurface inversion 
techniques and in each assumes that that a physical law 
holds. In gravitational- field inversion, for example, the 
law are described by the gravitational attraction. With this 
technique an algorithm based on a physical law enables us 

to invert the observed data for the subsurface 
characteristics which gave rise to the observations. To this 
end, we classified our procedures for gravity modeling and 
quantitative interpretation into two namely, Data Filtering 
and Model-Fitting  
 
2.1. Data Filtering  
Before we proceed to model-fitting, the gravity data must 
be corrected systematically for all factors that influence the 
magnitude of gravity at any particular location, other than 
those which represent subsurface densities. The filtered 
gravity value is then obtained after the elevation (Free-air) 
correction, correction for latitude, and the Bouguer 
correction have been done (Tarantola, 1987).  
 
2.2. Model-fitting 
Once we have removed the effect of all factors except the 
variation in the lateral density contrast of the subsurface 
from the measured gravity data, we can then model the 
subsurface structure that caused the gravity anomalies. 
This was done in three steps.  
 
2.2.1. Parameterization  
This refers to identifying an appropriate list of parameters 
that determine the model characteristics such as geometry, 
density, depth and station interval.  
 
2.2.2. Selecting Modeling method  
This determines the approach to be used in deciding the 
method for computing the theoretical data using the 
identified model parameters. To obtain the gravity effect 
of a given mass distribution using precise mathematical 
expression we used Regular Shaped Methods. It considers 
the earth (the geological volume to be simulated) is 
composed of many simple elements, for example equally 
sized rectangular prisms. Because the geometry of the 
model structure underlying the gravity profile remains 
constant, only the variable parameters are the densities of 
the blocks. Hence, the subsurface gravity is then the sum 
of the gravity effects of each cell. By changing the density 
of the selected cells, the interpreter changes the modeling 
structure which is assumed to be simple and good in 
realizing the expected model.  
 
2.2.3. Modeling 
This is the reconstruction of the model parameters 
iteratively based on certain criteria so as to obtain a good 
match with the observed data. It can be performed in two 
major ways, namely, forward and inverse gravity modeling.  
 
2.2.3.1. The Forward gravity modeling  
The forward gravity modeling procedure consists of a 
code that computes gravity fields from an assumed 
subsurface density distribution. To make it clear, let us 
denote the forward gravity modeling process as a 
transformation f = T (x) , where f is the model response, x 
is a vector containing the set of subsurface model 
parameters, and T is some transformation which we will 

mathematically describe an observed physical process. 
With this assumption, each geophysical data set is inverted 

with a forward model selected to simulate the particular 
physical process producing the recordings. Thus, a gravity 
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simulation algorithm might produce a synthetic gravity 
field that is to be matched to a set of observed gravity 
readings. All such algorithms are designed to minimize 
some measure of the difference between the observed and 
the computed data (Krzysztof, 2005; XU, 2005).  
 
In order to minimize the difference between the observed 
and the computed data, we start out with an initial guess of 
the model parameters and for all successive steps the 
optimization algorithm yields a set of adjusted or updated 
parameter estimates. These updated parameters are then 
"plugged" into the theoretical model, and the resulting new 
theoretical response should produce an improved match 
to the data. If this happens, the inversion is said to 
converge; if not, it is necessary to do these calculations 
iteratively. The above procedure must be applied many 
times in succession until a satisfactory degree of agreement 
between the theoretical and the recorded gravity responses 
has been achieved. 
 
In this work, a finite region in the X-Z plane (Figure 1) is 
divided into M rectangular prisms. Each has constant 
density but density variations among different prisms are 
allowed.  

 
Based on Figure 1, in order for forward gravity modeling 
to compute the vertical gravity anomaly at a point due to 
an arbitrary body of two-dimensional (rectangular prism) 

shape we used the algorithm which is developed by (Nagy, 
1966); that is, let the horizontal and vertical distance from 
the center of the reference system to the center of the jth 

rectangular prism be Xj and Zj respectively. If the width 
and height of the rectangle are W and H, respectively, the 
vertical gravity anomaly at the ith measurement point due 
to the entire jth rectangular block can be obtained by 
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Where G = The universal gravitational constant; W = 
Prism width; H = Prism Height; Xi = The horizontal 
distance from the center of the reference point to the 
center of the rectangular prism; Yj = The vertical distance 
from the center of the reference point to the center of the 
rectangular prism. 
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2.2.3.2. Inverse Gravity Modeling  
Given a set of measured data and an algorithm for the 
problem, inverse modeling would help us to determine the 
model parameters, position, density and the geometry of a 
causative body, provided that sufficient prior information 
about the source is mathematically translated and 
automatically incorporated by the method. However, the 
basic difficulties encountered in an inverse problem are 
not only the lack of a guaranteed solution or the probable 
existence of many solutions giving the same answer (non-
uniqueness) but also it is "ill-posed". That means, small 
variations in the solution vector x can produce large 
fluctuations in the model response f, and small fluctuations 
in the observed data y can produce large fluctuations in 
the solution vector x (Tarantola, 1987; Krzysztof, 2005). 
Thus, the algorithm to be used for gravity data inversion 
should handle parameterization, measurement and data 
processing error to avoid problem of instability. Moreover, 
it should also be flexible enough to accommodate prior 
information that can avoid the inherent problem of non- 
uniqueness. This is achieved by adjusting the solution 
space, minimization criteria and the mathematical 
regularization criteria. 

In general, most of the inversion algorithms that lead to 
a solution can be grouped either as Bayesian or 
deterministic approaches. In the Bayesian approach, one 
can assumes that a prior density function can be assigned 
to the model and tries to solve the problem by maximizing 
the posterior probability of the model (Griffths, 1965; 
Götze, 1988; Chakravarthi, 2002). On the other hand, the 
deterministic approach assumes that there is no prior 
information and tries to solve the problem by using as 
much information as possible from the measured data.      

These approaches try to find a solution that has several 
local minima, through an iterative application to achieve 
“global optimization”. To attain this global optimal value, 
the density of a rectangular prism was considered as a 
weighting matrix (Wm) to get the compact subsurface mass 
distribution. The inversion procedure converges to a 
compact model that is not necessarily single density; and 
mostly it will give a large density model that is not realistic. 
To overcome this problem, we put a density constraint 
that can limit the upper boundary of the density. Any 
block that cross the density barrier (Xo) will then be set to 
Xo and the algorithm automatically freezes this block in 
the next iteration by assigning it a very small weight. Using 
matrix notation the expression is rewritten as follows: 
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Where G = The data vector whose elements are the data 
that are filtered at a point; A = Matrix whose jth element 
contains the vertical gravitational attrition of the jth block 

with a unit density on the ith measuring point; 
TA  = The 

transpose of matrix A; X  = A vector that contains M 

number of unknown parameters; 
1

mW  = The parameter 

weighting matrix; 
2

m  = The variance of the parameter 

values; 
2

e  = Variance of the deviation between filtered 

and computed gravity anomalies. 
   In summary, forward gravity modeling needs iterative 
numerical trial and correct error procedures, which in turn 
are time consuming and difficult for complicated 
problems. On the other hand, in inverse modeling it is 
often difficult to quantify all the qualitative knowledge of 
experts, and we will end up with conceptual geological 
targets which cannot be adequately described by numerical 
data. This therefore calls for a possible combination of the 
methods in order to give a better result.  
 

3. Results and Discussion 
3.1. System Design and Implementation 
The series of activities that will be performed during 
gravity data interpretation may be summarized as follows: 
by means of modeling software, the interpreter creates an 
initial density model using his knowledge about the region 
of investigation. The initial model is then sent to the 
inversion program, the model resulting from the inversion 
is then analyzed and the eventual corrections are applied 
and repeated until a satisfactory result is obtained. To this 
end, during requirement analysis, the system was described 
completely from the theoretical point of view and does not 
contain information about the internal structure of the 
system or how the system should be realized. However, in 
system design we decompose the system into smaller 
subsystems that can be realized at the time of 
implementation, and are organized in a menu format. 
 

3.2. Tests 
To set up the forward or inverse model, a station file in 
ASCII format is developed, that includes two variables: 
distance and measured gravity anomaly. These must first 
be available to the system and then the subsurface 
information is generated automatically. The structures 
generated by the program have the following features: all 
blocks at the same depth have the same height, and the 
width of a block cannot vary with depth or along the 
profile. The proper size of the block has a direct effect on 
the quality of the interpretation of relatively small bodies. 
For example, if the size of the block is too big, the 
resulting structure will be rough. On the other hand, the 
use of two small blocks will generate a large number of 
prisms and makes the modeling process a tedious task 
.The model resolution and the number of observation 
points influences the physical size of the model. Hence, 
one should keep in mind that the size of the model and 
the time needed to calculate its gravity anomaly is directly 
proportional to the product of the number of stations and 
prisms. 
 
3.2.1. Testing the Tool Using Synthetic Gravity Data 
To test our system, we generated synthetic data using a 
forward model as shown in Figure 2. This figure has two 
active sub-windows: the partitioned subsurface 
representation being the bottom one, and the graph area, 
the upper one. The curve in this figure indicates the 
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synthetic gravity data which were produced by taking a 
random density value. For example, we can assume the 
existence of some buried body whose density is 0.8 g cm-3. 
The small rectangles that are arranged in rows and 
columns indicate the subsurface division. These rectangles 
were generated from a reference point in the study area 
along the earth’s surface and at a certain depth below this 
reference point. The list of numbers and color spectra, 
density contrast, color, and density of substance, that are 
arranged to the right side of this windows provide a legend 
which can indicate the possible types of substances in the 
study area and what types of substances are buried under a 
given modeling process.  
 

 
 
Figure 2: Synthetic data  
In order to check the result of an inverse model, the 
generated artificial data in Figure 2 were put into the 
inverse modeling model.  

 
 
Figure 3: Inverse modeling result for Figure. 
 
Figure 3 above depicts the generated artificial gravity data 
(dotted line) and the resulting estimated gravity value (solid 
line) along with the buried body-boundary for a particular 
iteration. The two graphs which are found on the upper 
left and right corners of this Figure  indicate the criteria 
that were set in order to know whether each iteration was 
converging to some value or not. As can be seen from this 
figure the response obtained by this technique was close to 
the randomly fabricated data within the predefined root 
mean square error. Hence, it seems reasonable to accept 
the inverse modeling as a useful reference for other real 
gravity data inversion purposes.  
3.2.2. Testing the Tool Using Borehole Data 
We also used real gravity data around the Filweha area, 
Addis Ababa, Ethiopia, at localities having different 
geologic settings and borehole (drilled subsurface) data, as 
shown in Table 1. The purpose of testing our system in 
this area of hot springs was to determine the location of 
faults which have offset the bedrock and which might 

possibly control the ascending thermal waters of the 
Filweha geothermal system. In order to start the forward 
gravity data modeling, the interpreter first selects certain 
prism(s) and changes the density of these prisms and 
observes the effect. If there is a significant gap between 
the forward modeling result and the actual gravity data, the 
interpreter continues to carry out modifications. Using the 
data in Table 2 for the subsurface splitting parameters, and 
after a number of modifications, the fitted model may look 
like that shown in Figure 4.      
 
Table 1. Measured gravity data in miliGal. 

Station No. Distance Measured gravity (miliGal) 

1 0 0.575 

2 40 0.6 

3 80 0.575 

4 120 0.475 

5 160 0.35 

6 200 0.175 

7 240 0.1 

8 280 0 

9 320 -0.05 

10 360 -0.075 

11 400 -0.1 

12 440 0.025 

13 480 0.125 

14 520 0.2 

15 560 0.275 

16 600 0.35 

17 640 0.4 

18 680 0.4 

19 720 0.325 

20 760 0.35 

21 800 0.3 

22 840 0.325 

23 880 0.4 

24 920 0.45 

25 960 0.55 

26 1000 0.6 

 
Table 2. Subsurface splitting values. 
 

No. Parameters Value(in meter)  

1 Prism width 10 
2 Prism Height 10 
3 Depth 80 
4 Profile Length 1000 

 

The small black dots represent the actual filtered gravity 
values at each survey station that is assumed to provide 
information about the distribution of subsurface structure 
during inversion. The solid line indicates the estimated 
gravity anomaly. As can be seen from the above figure, our 
system showed a subsurface structure that is in acceptable 
agreement with that of the expected geological structure.  
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 Figure 4: Inferred subsurface structure based on real 
gravity data. 
 

4. Conclusion  
The geophysical interpretation of gravity data is a 
complicated and often intensive task that requires a lot of 
experience from an interpreter. On the other hand, 
interactive modification of model parameters and direct 
visualization of both computed and measured fields of 
gravity data enable the subsurface structure to be 
interpreted as realistically as possible. Towards this end, 
we have discussed the steps in processing and 
interpretation of gravity data: parameterization, and a 
forward and inverse gravity data inversion in terms of the 
causative bodies. To minimize the parameterization 
problem, we assumed the subsurface of the earth to be 
represented by a set of small rectangular blocks. However, 
limitations of computer power and memory forced us to 
restrict implementation of the model to 2-D bodies, which 
prevented its application to the rectangular blocks 
methods in modeling of high resolution density structures. 
Forward modeling is the important technique in gravity 
interpretation in certain simple cases. However, in order to 
speed up the interpretation significantly and to overcome 
the limitation of this modeling technique, we combined 
the forward and inversion methods. Nevertheless, an 
inversion needs an appropriate target parameter which 
totally depends on the interpreter’s prior knowledge of the 
study area. The program was tested on several sets of 2-D 
synthetic and real gravity profiles data and the misfits 
analyzed using statistical testing techniques. To this end, 
the maximum threshold of the mean square error was set 
to 10µGal, but in most cases after a few iterations the 
inversion algorithm was able to generate a compact model 
which satisfied the threshold set at the onset. The 10 µGal 
threshold is generally set based on the accuracy of 
measurement. In general the models satisfied the 
constraints set on the basis of the a priori information and 
it can be concluded that the tool was able to achieve the 
desired goal.  
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