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Abstract: Analysis of variance (ANOVA) has been a fundamental method used for analysis of abundance and
incidence data. However, abundance and incidence data often violate the assumptions of ANOV A. Researchers
often ignore ANOVA assumptions, transform the data using arbitrarily chosen functions and then fail to
evaluate whether or not the transformation actually corrected the problem. The statistical power of the tests
used is also seldom reported. Therefore, the objectives of this paper are to demonstrate (1) implications of
using arhitrarily chosen transformations and ANOVA to the validity of statistical inference on pest
abundance and incidence and (2) the application of LMMs and GLMs for efficient analysis of such data.
Abundance data were analyzed assuming normal, Poisson and negative binomial error distributions. Incidence
data were analyzed assuming normal and binomia error distributions. Among the data transformation functions,
logarithmic transformation gave better description of abundance data compared with square root. Working logits
were better than angular or sguare root transformation of incidence data. The study has also demonstrated that
the choice of transformation can influence the statistical significance and power of test. Transformation of
either abundance or incidence data did not necessarily ensure normality or variance homogeneity. According
to the Akaike information criterion (AIC), a GLM assuming negative binomial error distribution was better for
description of most abundance datasets compared with a GLM assuming Poisson error distribution or LMM.
LMM based on working logits also gave a better description of the data than a GLM assuming binomial
distribution. It is concluded that LMMs and GLMs simultaneously consider the effect of treatments and
heterogeneity of variance and hence are more appropriate for analysis of abundance and incidence data than

ordinary ANOVA.
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1. Introduction

Abundance refers to the number of individuals per unit
area. It is a fundamental ecological parameter and a
critical consideration when making management and
conservation decisions. In most work in entomology,
pathology and weed sciences, counts are used as
proxies of abundance: In the case of counts a substantial
proportion of the vaues are zero, and the remainder
have a skewed distribution (Fletcher et al., 2005;
Martin et al., 2005; Warton, 2005). The term incidence
refers either to the number of plants (or plant units) that
is visibly diseased or affected by an insect (out of a
given tota number) (Madden and Hughes, 1995).
Pathologists and entomologists often collect incidence
data because in many instances, notably with plant
diseases caused by viruses, it is impractical to assess
diseases on the basis of pathogen abundance
(McRoberts et al., 1996). Similarly, with small
arthropods such as mites, thrips, aphids, psyllids and
leafhoppers, presence or absence is often easier to
establish than estimating abundance by counting
individuals. Recently, a positive relationship between
incidence and abundance of a species has been
demonstrated (Gaston et al., 2000). Based on such
relationships, Sileshi et al. (2006a) have demonstrated
that insect abundance can be estimated from incidence
or vice versa.

By their nature, abundance and incidence are not
normdly distributed (Madden and Hughes, 1995; Garrett
et al., 2004). Abundance is quantified by discrete
variables, and can be described well by the Poisson or
negative binomial  distributions. The Poisson
distribution is described by one parameter, 6, or the
mean. In the Poisson distribution the variance is equal
to the mean (Johnson and Kotz, 1969). The negative
binomial distribution (NBD) is more convenient model
for analyzing insect and weed counts or pathogen
density with over-dispersion (Anscombe, 1949;
McRoberts et al., 1996; Sileshi et al., 2006a; b). The
NBD is related to severa distributions. According to
Johnson and Kotz (1969) the NBD is a mixture of
Poisson distributions such that the expected values of
the Poisson distribution vary according to a gamma
(Type 111) distribution. This supports one of the four
derivations of the NBD (Anscombe, 1950). It has been
shown that the limiting digtribution of the NBD, as the
dispersion parameter (k) approaches zero, is the
Poisson. When k is an integer, the NBD becomes the
Pascal distribution, and the geometric distribution
corresponds to k=1. The log series distribution occurs
when zeros are missing and as k—oo (Saha and Paul,
2005).

Incidence is a binary variable because each observed
individual plant is either visibly affected or not, or
damage symptoms are present or absent (Madden,
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2002). Hence, it is characterized by a binomia or beta-
binomial distribution (Madden and Hughes, 1995;
Collette, 2002). Despite the many advantages of using
the binomia distribution (Collette, 2002), this
distribution only occasionally describes actual disease
incidence data. Diseased individuals typicaly are
clustered in nature, resulting in greater heterogeneity of
disease incidence than would be expected for arandom
pattern (Madden, 2002). More typicaly, the variance is
larger and the observed frequency of diseased
individuals is more skewed than that predicted by the
binomid distribution (Hughes and Madden, 1995). The
variance is a function of the mean in both incidence
(Hughes and Madden, 1995) and abundance (Taylor,
1961) data.

Statistical inference based on abundance and
incidence using conventiona statistical methods such as
analysis of variance (ANOVA) poses severd
challenges. There is a wide range of situations where
the assumptions of normality and homogeneity of
variance are not met for insect or weed abundance data
(Sileshi and Mafongoya, 2002; 2003; Sileshi et al.,
2002; 2006b). ANOVA models focus on null
hypothesis testing based on mean tendencies in the
data. These tests typically assume that the errors (after
fitting the model) are independent and identicaly
distributed as normal random variables with constant
variance. These techniques were developed, and to
some extent derive ther vaidity, from the
randomization underlying designed experiments
(Fisher, 1935). However, a large proportion of
entomologicad and pathologicad research consists of
observationa studies in which the goal is to explain a
pattern relative to a series of explanatory variables.

The standard methodd ogy in ANOV A has been to use
atransformation of the response variable that results in a
variable that is approximated by a normal digtribution. In
a sensg, this is forcing the data to fit a modd that was
developed for andysis of continuous variables, rather than
using an appropriate satisticd mode for the data a hand
(Hughes and Madden, 1995; Garett e al., 2004
Madden et al., 2002). Furthermore, variance-stabilizing
transformations may not, in fact, fully stabilize
variances in count (McArdle and Anderson, 2004) or
incidence data when some of the means are close to 0
or 100% (Madden, 2002). It is well known that
departures from the assumption of homogeneity can
result in inflated error rates (Cochran, 1947). Tests of
significance, standard errors, and contrasts of the means
can be affected if ANOVA is used for discrete and
binary data.

In ANOVA, coefficients are computed using ordinary
least square (OLS) methodology which minimizes the
sum of squared distances of data points to the parameter
estimate. An aternaive to OLS is provided by the
Restricced Maximum  Likelihood (REML) and
maximum likelihood (ML) estimation methods (Littell,
2002). REML is used in linear mixed models (LMM),
while ML can be used in both LMM and generalized
linear models (GLMs) (Collett, 2002). The LMM is an
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extension of ANOVA, and it ill assumes normdity
(Littell, 2002). However, it extends the ANOVA model
by alowing for both correlation and heterogeneous
variances. Wolfinger (1993) and Piepho et al. (2003)
provide detailed information on LMMs. Better till are
GLMs, which are more appropriate for anayzing
discrete and binary data (McCullagh and Nelder, 1989;
Callett, 2002, Madden, 2002; Hughes and Madden,
1995; Garrett et al., 2004; Turechek and Madden, 2002).
In GLMs, the response is assumed to possess a
probability distribution of the exponential form such as
the Poisson, NBD and binomia. In GLM coefficients
are computed using ML, which maximize the odds that a
dependent variable equals a given vdue. Here, afunction
of the expected value of Y is modelled as a linear
function of the variables of interest (Collett, 2002). This
function can be written as g(u), where u is the
expectation of Y[u=E(Y), and is known as the link
function. Thisis quite different from the regular normal
distribution-based approach of transforming Y to
produce g(Y) and then fitting a modd to g(Y). The
reader is referred to McCullagh and Nelder (1989) for
detailed information on GLMs, and to Hartley and Rao
(1967) and Harville (1977) for information on REML
and ML.

Despite the recent developments on LMM and GLM
methodology (Garrett et al., 2004; Madden, 2002;
Madden et al., 2002) and wider availability of computer
software, they have been little used by entomologists,
pathologists and weed scientists. Researchers still use
arbitrarily chosen data transformations and apply OLS
ANOQV. Veay few actudly are aware of the power of
these tests (Thomas and Krebs, 1997). The statistical
power of asignificance test isthe long-term probability
(given the population effect size, apha, and sample
size) of rgecting a fase null hypothesis. While power
analysis is a vita tool for study planning, it has been
largely ignored in entomology, pathology and weed
research. The objectives of this paper are to
demonstrate (1) implications of using arbitrarily chosen
transformations and ANOVA to the vaidity of
statistical inference on pest abundance and incidence
and (2) the application of LMMs and GLMs for
efficient analysis of such data.

2. Materialsand Methods

2.1. Source of Data

The datareanaysed in this study included abundance of
witch weeds (Striga asiatica), grass and broad leafed
weeds in maize, and two insect species, namdy the
leucaena psyllid (Heteropsylla cubana) and Exosoma
sp. The data on witch weed (Striga asiatica) comes
from Sileshi et al. (2006b) but is restricted to only one
of the experiments described in that paper. The
experiment was established in December 1991 and
consisted of maize grown in a mixed intercropped
system with the tree legumes Caliandra callothyrsus,
Flemingia macrophylla, Gliricidia sepium, Leucaena
leucocephala, Senna siamea, Seshania sesban. Details
of the treatments, plot layout, randomization and
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management of this experiment have been described in
Sileshi et al. (2005; 2006b). The abundance of witch
weed was monitored in 1995, 1996 and 1997 cropping
season, and the effect of trestment and year of sampling
was analyzed. The abundance of arable weeds was
assessed in alegume fall ow experiment established inthe
year 2000 at Msekera dtes The treatments in this
experiment consised of maize planted in pure-species
fdlows of Gliricidia sepium, Acacia anguistissima,
Leucaena collins, Calliandra calothyrsus, Senna
samea and maize monoculture with and without
fertilizer. Assessment was made by counting the number
of grass weeds (al weeds of the family Graminae) and
broad leafed weeds (al non-grass weeds) in an area
measuring 1 m by 1 m, and the effect of treatments on
abundance of grass and broad leaved weeds was
anal ysed.

Populations of the leucaena psyllid, Heteropsylla
cubana (Homoptera: Psyllidae), a pest of the tropica
agroforestry tree Leucaena leucocephalla were
monitored in April-May 2005 in four experiments
established in 1991, 1992, 1997 and 1999 at Msekera
These experiments have been described in detal in
Sileshi et al. (2005). In dl the trids, trees were cut to a
height of 30 cm above ground after three years of
growth and allowed to re-sprout in the subsequent years
where the shoots were cut back to fertilize maize crops.
A cluster of 10 adjacent stumps were selected in every
replicate of each experiment, and the numbers of
psyllids on a randomly selected shoot per stump were
recorded. The effect of site of establishment on the
abundance of psyllids was analyzed using the different
statistical modes.

The datasets on abundance of Exosoma came from
studies reported e sewhere by the author (Sileshi and
Mafongoya, 2002; and 2006b). Abundance data were
collected from various agroforestry treatments
involving Seshania sesban at Msekera, eastern Zambia
in 2002. In each treatment the numbers of Exosoma on
10 randomly selected plants were recorded and effect of
treatment on abundance anal ysed.

The incidence data used in this study included foliar
diseases (a complex of fungal diseases) of the
indigenous fruit Uapaca (Uapaca kirkiana), and termite
damage in maize reported by the author elsewhere
(Sileshi et al., 2005). The study on Uapaca foliar
diseases involved a randomized and replicated
experiment consisting of a factoria combination of
three potting mixtures (unsterilized forest soil, sterilized
forest soil and forest soil + saw dust), soil applied
fertilizer (with and without compound D), and a foliar
applied fertilizer (with and without). Data on foliar
disease incidence were collected in July and October
2002. The incidence of the insects and diseases was
determined by observing the disease status of single
whole plants used as the sampling unit. Incidence
constituted the proportion of plants in a row showing
foliar disease symptoms.

Termite damage was assessed in 2002 and 2003 in
two experiments established in 1991 and 1992 a
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Msekera. The treatments consi sted of maize grown fter
of Caliandra callothyrsus, Flemingia macrophylla,
Gliricidia sepium, Leucaena leucocephala, Senna
siamea and monoculture maize grown with and without
the recommended rate of fertilizer. Details of the
treatments, plot layout, randomization and management
of this experiment have been described in Sileshi et al.
(2005). In both experiments, damage was assessed by
recording the number of lodged plants per plot in 2002
and 2003, and the effect of falow length, year of
sampling and treatment on termite incidence was
analyzed.

2.2. Statistical Analyses of the Data

For andysis of abundance data, the normal, Poisson and
negative binomid digtribution models were used. The
normal distribution model applies ordinary least square
(OLS) ANOVA on transformed insect counts. The
probabilistic model using OLS assumes that the
underlying errors of the transformed data are al
uncorrelated with homogeneous variance, and hence
follow an approximate log-normal distribution
(McArdle and Anderson, 2004; Warton, 2005). In this
study, count data were transformed using natural
logarithms and sguare root functions because of the
popularity of these transformations. However, various
other types of transformation are available for count
data (Taylor, 1961; McArdle and Anderson, 2004).
Incidence data were transformed using the angular
(arcsing), square root functions and the working logit
(Cox, 1970) given by

1
Z=|nﬂ
n—-R+%

where Z is the working logit, R is the number
responding (e.g., infested plants) and n is the humber
observed. The working logit was tested because this
transformation has the advantage of being ableto take 0
and 100% response data into account.

Then tests for normality and homogeneity of variance
were conducted. Shapiro-Wilk statistic and the
Kolmogorov-Smirnov D statistic were used for testing
normality. The assumption of equality of variance in
the transformed data was tested using Bartlett’s and
Levene’s tests of homogeneity of variance via the GLM
procedure of the SAS system (SAS/STAT, 2003).
ANOVA was conducted on the transformed data using
the GLM procedure of the SAS. The statistical power of
the ANOVA was cdculated using the GLMPOWER
procedure of SAS system.

LMM was fitted to the transformed abundance and
incidence data using MIXED procedure of the SAS
system. All interaction effects were considered to be
random effects in the LMM. The MIXED procedure
was used because in most cases the experimental units
on which the data were recorded were grouped into
clusters (e.g. replications, rows etc.), and it was
assumed that data from a common cluster were
correlated. The Poisson and negative binomial
distributions were used to anayse the abundance data.
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A GLM to relate the mean abundance (x) to the
explanatory variables (X)), the following linear
probability model was used:
Log(u)=a+Iy X1+bpXy+...+bpn Xn
(Equation 1)

where a is the random intercept, X;, X; ... X, are
covariates and by, b, ... b, are parameters to be
estimated for the n' covariate. The log is the canonical
link for the Poisson and negative binomia distributions.

Incidence data were analyzed using the GLMs by
assuming binomia distribution of diseased individuals.
A GLM to reate the binomia parameter (p) of
incidence to the explanatory variables (X;) a linear
probability model of the following form was used:
Logit(p;) =a+by X1+ b X5 +...+ by Xn

(Equation 2)

where the logit function is the canonical link for the
binomia distribution. For the incidence of the foliar
diseases of Uapaca, X; , X5, X3 and X, stand for potting
mixture, foliar fertilizer, soil-applied fertilizer and
month of sampling, respectively. When over-dispersion
was noted, a dispersion parameter was introduced using
the ratio of the deviance to its associated degrees of
freedom (McCullagh and Nelder, 1989). Parameters of
equations 1 and 2 were estimated by the ML method
using the GENMOD procedure of SAS systems. For
GLMs, the residua deviance is of central importance
for determining goodness-of-fit of a model. Therefore,
the residua deviance divided by its degrees of freedom
(RD/DF) was used to detect goodness-of-fit to the
models. Values of RD/DF greater than 1 indicated over-
dispersion while values less than 1 indicated under-
dispersion. Evidence of over-dispersion or under-
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dispersion was used as an indication of inadequate fit of
the statistical model to the data. Akaike information
criterion (AIC) was used for comparing the statistical
models  (Burnham and Anderson, 2002) and
transformations. The second-order Akaike information
criterion (AIC;) correcting for smal sample size
(Hurvich and Tsai, 1989) was computed from the log
likelihood (LL) estimates as:
2K (K +1)
AlCc=—-2LL + 2K + K1
(Equation 3)
where K is the number of parameters in the model and n
is the sample size. The “smaler AIC. is better”
approach was used for comparisons among models.
Among the models under consideration, the one with
the smallest AICc has the smallest expected loss of
information, and was interpreted as the best.

3. Resaults

The transformations did not normalize the abundance
data except for grass and broad leafed weeds.
Transformations also failed to normalize the incidence
data. Levene’s and Bartlett’s tests indicated heterogeneity
of variance acrass years in both raw and the transformed
witch weed abundance data When treatment was
conddered, Levene’s test indicated homogeneous
variance in the raw data, while Bartlett’s test indicated
heterogeneity. Both Levene’s and Bartlett’s test indicated
variance heterogeneity across treatments in the raw as
well as the transformed data on grass weed, broad leafed
weed and Exosoma abundance (Table 1).

Table 1. Probability levels for Levene’s and Bartlett’s tests of homogeneity of variance in abundance before and after
transformation of the data using logarithmic and square root (SQRT) functions

Pest Fixed Levene’s test Bartlett’s test
group effect Before Logarithmic ~ SQRT Before Logarithmic  SQRT
Witch weeds Year 0.006 <0.001 <0.001 <0.001 <0.001 <0.001
Treatment  0.299 0.020 0.107 <0.001 0.044 <0.001
Grass weeds Treatment  0.004 0.003 0.003 0.006 0.004 0.113
Broad leafed weeds  Treatment <0.001 0.038 <0.001 <0.001 0.065 <0.001
Leucaena psyllid Ste 0.053 0.681 0.118 0.014 0.672 0.214
Exasoma sp. Treatment <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

On the other hand, variances of leucaena psyllid
abundance were homogeneous across dtes after
transformation compared with the raw data. Levene’s
and Bartlett’s test indicate heterogeneity of variance in
incidence of Uapaca leaf disease across months, potting
mixtures and soil applied fertilizers before and after
angular and square root transformation. However, foliar
fertilizer treatment had homogeneous variance before
and after transformation (Table 2). Incidence of termite
damage in maize had heterogeneous variance across

falow length and year of sampling while trestment had
homogeneous variance before and after angular and
square root transformation according to the Levene’s
test. Bartlett’s test indicated variance heterogeneity
across treatment in the raw daa and angular
transformed termite incidence, but homogeneity in the
square root transformed data Transformation usng
working logits homogenized variance across fdlow
length and years in termite incidence according to both
Levene’s and Bartlett’s tests (Table 2).
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Table2. Probability levelsfor Levene’s and Bartlett’s tests of homogeneity of variance in incidence data before and after
transformation using angular (Arcsine), squareroot (SQRT) and working logits (Logit)

Pest Fixed Levene’s test Bartlett’s test

group effect Before  Arcsne  SQRT Logit Before Arcsine SQRT Logit

UFD Month <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001<0.001
Potting mix  <0.001 <0.001 <0.001 0.008 <0.001 <0.001 <0.001 0.024
Soil applied  0.033 0.038 0.041 0.034 0.017 0.090 <0.001 0.045
Foliar fert 0.901 0.687 034 0.836 0889 0.735 0.064 0.843

Termites Falow 0.002 0.002 0.003 0419 <0.001 <0.001 <0.001 0.312
Year 0.005 0.087 0.037 0412 <0.001 <0.001 0012 0.291
Treatment 0.559 0.478 0.685 0151 <0002 0.717 0.499 0.008

Under the normd distribution assumption the fixed effects were not sgnificant before transformation of witch weed,

grass weed and Exosoma abundance (Table 3).

Table 3. Significance (P values) of effects on abundance of pest groups using different data transformation and

digtribution assumptions

Pest Fixed LMM (Normal distributi on) GLM

group effect Before Logarithrm  SQRT Poisson  NBD
Witch weed Year 0.144ns 0.021 0.164 <0.001 <0.001
Witch weed Treatment 0.364ns  0.124ns 0.195 <0.001 <0.001
Grass weeds Treatment 0.161ns  0.018 0.056 <0.001 <0.001
Broad |eafed weeds Treatment  <0.001 <0.001 <0.001 <0.001 <0.001
Leaucaen psyllid Site 0.025 0.049 0.025 <0.001 0.070ns
Exosoma sp. Treatment 0.384 0.320 0.342 <0.001 <0.001

ns= variances not sgnificantly different within fixed effect

Significant effects were indicated after logarithmic
transformation of witch weed and grass weed abundance
a the 5% level. On the other hand, the Poisson and
negative binomid modeds indicated highly sgnificant
(P<0.001) effects for al pest groups except the leucaena
psyllid (Table 3). The statistica power of ANOVA for
the various fixed effects was sufficiently high (>0.90)
for most abundance data except for the raw data on
witch weed abundance (Table 5).

If one were to analyze the raw data, one would
require twice the number of observations to achieve the

desired statistical power of 0.90. However, when data
were transformed using the logarithmic function, the
desired statistical power was achieved using the same
sample size. Under both the norma and binomia
distribution assumptions, the incidence of Uapaca foliar
disease significantly differed with month, potting mixture
and foliar application of fertilizer. The statistical power
of test for the effect of month, potting mixture and foliar
application of fertilizer were sufficiently high (>0.90)
(Table 4).

Table 4. Sgnificance (P values) of effects on and incidence of pest groups using different data transformation and

distribution assumptions

Pest Fixed LMM (Normal distribution) GLM (Binomid distribution)
group effect Before Arcsne  SQRT Logit
UFD Month <0.001 <0.001 <0.001 <0.001 <0.001
Potting mix <0.001 <0.001 <0.001 <0.001 <0.001
Sail applied <0.001 <0.001 <0.001 <0.001 0.007
Foliar fertilizer ~ 0.083 0.068 0.231 0.162 0.258
Termites Fdlow length 0.003 0.007 <0.001 <0.001 <0.001
Y ear 0.002 0.004 <0.001 <0.001 <0.001
Treatment 0.799 0.892 0.467 0.504 0.582
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Table 5. Statidticd power of test for ANOVA before and after logarithmic and square root (SQRT) transformation of
abundance of pest groups and additiona samplesrequired to achieve the desired gatistica power

Pest Fixed Sample Transformation
group effect sze Before Logarithmic SQRT
Witch weed Y ear 9% plots 0.77(1920  >0.90(0) 0.66 (96)
Treatment 9% plots 0.66 (1920  >0.90(0) 0.89 (96)
Grass weeds Treatment 63 plots >0.90 (0) >0.90 (0) >0.90 (0)
Broad |eafed weeds Treatment 63 plots >0.90 (0) >0.90 (0) >0.90 (0)
Leaucaen psyllid Site 360 shoots >0.90 (0) >0.90 (0) 0.72 (720)
Exosoma sp. Treatment 270 plants >0.90 (0) >0.90 (0) >0.90 (0)

Figuresin parenthessindicate additional sampling units required to achieve the desired statistical power of 0.90

However, incidence did not differ with soil application
of fertilizer. Statigtical power andysis showed tha the
lack of dgnificance was due to the inadequacy of the
sample sze used. If a meaningful concluson is to be

drawn about the effect of soil application of fertilizer, at
least 5-11 times more observations (or 2260-4972 Uapaca
plants) would be reguired (Table 6).

Table 6. Satigticd power of test for ANOVA before and after transformation of incidence data using the angular
(arcsine), square root (SQRT) functions and working logits and additiond samples required to achieve the desired

datistica power

Pest Fixed Sample Transformations

group effect sze Before Arcsne SQRT Logit

UFD Month 452 plants >0.90 (0) >0.90 (0) >0.90 (0) >0.90 (0)
Potting mix 452 plants >0.90 (0) >0.90 (0) >0.90 (0) >0.90 (0)
Sail applied 452 plants 0.80 (452) 0.80 (904) 0.81 (452) 0.84 (906)
Foliar fertilizer 452 plants 0.31 (1808) 0.33(2260) 0.18(4520) 0.22 (3624)

Termites Falow length 128 plots >0.90 (0) 0.66 (246) >0.90(0) >0.90 (0)
Y ear 128 plots >0.90 (0) 0.51(369) >0.90(0) >0.90 (0)
Treatment 128 plots 0.21 (640) 0.07 (4059) 0.25(512) 0.24 (612)

Figuresin parenthessindicate additional sampling units required to achieve the desired statistical power of 0.90

Similarly, ANOVA showed lack of trestment effects on
theinddence of termite damage in maize. Power anaysis
indicated that this was due to inadequate sample sze. To
make a valid conclusion about the effect of treatments 6-8

times more observati ons than the current sample (or 768-

984 plots) would be needed.

The DEV/DF values were greater than unity indicating
that the Poisson assumption of random distribution did
not hold for dl the abundance data The AIC scores
(Teble7)

Table 7. Second-order Akaike Information Criteria (AICc smaller is better) for selection of transformation functions and
satistica models appropriate for analysis of abundance and incidence of different pests

Pest Linear Mixed Model Generalized Linear Models
group Before SORT Log Arcsine  Logit Poisson NBD Binomial
A. Abundance

Witch weed 1227.4 5935 212.6 NAPP NAPP -59170.6 -70089.5 NAPP
Grass weeds 622.2 2703 6.8 NAPP NAPP -58671.9 -60142.8 NAPP
Broad leafed weeds  537.7  233.5 20.4 NAPP NAPP -11042.7 -11455.2 NAPP
Leucaenapsyllid 2848.1 1389.2 1046.4 NAPP NAPP -19828.0 -22376.6 NAPP
Exosoma sp. 623.0 88.3 -253.2 NAPP NAPP 304.2 264.2 NAPP
B. Incidence

UFD 39229 1511.2 NAPP 3819.7 1176.6 NAPP NAPP 1547.8
Termites 11329 5194 NAPP  913.8 388.1 NAPP NAPP 846.7

Bold entriesindicate the best transformation or model

NAPP = not applicable
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showed that the negative binomid mode is better for
description of the abundance data than the Poisson or
norma digtribution modeds. The only exception was
abundance of Exosoma sp (Table 7). In the case of Exosoma
sp, LMM (based on log transformation) was adequate for
andysis of the data Among the daa transformation
functions, logarithms gave the best description of the data
(smdlest AICc). According to AIC andysis of Uapaca
foliar disease and termite incidence without transformation
gives poorer description of the data than transformati on. For
Uapaca foliar disease and termite incidence, the best
transformation was working logits. LMM based on working
logits dso gave a better description of the data than logistic
regression (Table 7).

4. Discussion

The results presented indicate that transformation of
either abundance or incidence data do not necessarily
ensure normality. This isin agreement with the growing
body of literature on the subject matter in ecology
(Fletcher et al., 2005; McArdle and Anderson, 2004,
Martin et al., 2005; Warton, 2005). Even if approximate
normality is indicated by goodness-of-fit tests on the
transformed data, if the data come from some other
distribution than the normal then the significance tests
may be misleading. For instance, the Chi-sguare test of
normality is a non-specific test, in that the test criterion is
directed against no particular type of departure from
normality (Snedecor and Cochran, 1989). Examples occur
in which the data are noticeably skew, athough the
goodness-of-fit test does not reject the null hypothesis.
For small sample sizes, power of test is aso low for
detecting larger departures from normality that may be
important. It is only with larger sample sizes that
increasingly smaller departures from normadity can be
detected (Snedecor and Cochran, 1989).

The study has also demonstrated that transformation of
either abundance or incidence data do not necessarily
ensure homogeneity of variances, and that transformation
functions differed in their ability to ensure homogeneity.
Close scrutiny of the tests of homogenety of variance
revedled tha the two tests differed in their sendtivity in
detecting variance heterogeneity in abundance and
incidence. It is well known that ANOVA is less robust to
violations of homogeneity of variance than normality.
Homogeneity of variance is essential for the valid
application of parametric ANOVA. A transformation used
to normalize the data may lead to heterogeneity of
variance. This is because one transformation might be best
for ensuring homogeneity of variance, while another might
be best for ensuring normdity. In practice, only one of these
two trensformations can be used, so dl the satistica
requirements cannot be met with linear modes (Garrett et
al., 2004). Transforming the data to rectify the problem
can result in apparently grossy inflated type | errors,
altering the model under test and affect the spatial scale of
the hypothesis (McArdle and Anderson, 2004). Adding 1
to the zero counts during logarithmic transformations can
also result in strange distributions, which has led some
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workers to modd the zeros separately for count data
(McArdle and Anderson, 2004; Martin et al., 2005).
Among the data transformation functions used in this study,
logarithmic transformation gave better description of
abundance data compared with square root. Working logits
were better than angular or sguare root transformation of
incidence data. The study has demonstrated that the choice
of transformation can influence the statistical significance
and power of test. However, during stetistica analyses,
researchers al too often ignore the assumptions,
transform the data and then fail to evaluate whether the
transformation corrected the problem (McArdle and
Anderson, 2004). To test for homogeneity variances, the
Bartlett's and Leven€’s tests are often used. However, as
indicated by the results in Table 2 the sensitivity of these
tests differ. While Bartlett’s test has accurate Type I error
rates and optima power when the underlying distribution
of the data is normal, it can be very inaccurate if the
distribution is even dightly nonnormal (Box, 1953).

Researchers some times use nonparametric methods as
alternatives to parametric tests for analyses of abundance
and incidence when the data violate the assumptions of
ANOVA (Sileshi and Mafongoya, 2002; 2003). Until
recently (Brunner and Puri, 2001; Turecheck, 2004) the
use of nonparametric gpproach had been limited because
these tests are less powerful than parametric methods.
Secondly, they could only be used in one-way anaysis as
there had been no satisfactory theoretic foundation for
analysing data in factorial designs and repeated measures
(Shah and Madden, 2004). Unlike parametric ANOVA
and nonparameteric tests, GLMs enable appropriate
analyses of skewed frequency or binary data. In addition,
with GLMs, the properties of daa from discrete
digtributions such as the Poisson and negative binomid
digtribution (counts) and binomid distribution (proporti ons)
can be accounted for (Hughes and Madden, 1995; Callett,
2002). For example, the GLMs used in this study tested
whether the abundance distribution was random (Poisson)
or spatialy aggregated (negative binomial). The GLM
also demonstrated that the negative binomial model is
considerably more robust for analysis of the abundance
data compared with the LMM or the Poisson (Table 7).
Using the GLMs it was possible to simultaneously
consider the effect of treatments and variance
heterogeneity.

While common parametric approaches, such as
ANOVA ae wel known and convenient, their
assumptions may not aways be met in contexts studied
by plant pathol ogists, entomologists and weed biologists.
For example, if ANOVA shows lack of statistica
significance, it may be because there is no effect or
because the study design makes it unlikely that a
biologicaly real effect would be detected. When the
sample size is small and variance is high asis common in
abundance and incidence daa, biologicaly interesting
phenomena may be missed because ANOVA is unlikely
to yield significant results (e.g. Tables 5 and 6). Under
such situations computation of statistical power is as
important as significance testing. Power analysis can
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distinguish between these dternatives, and is therefore a
critical component of designing experiments and testing
results (Thomas and Krebs, 1997). For abundance and
incidence data, LMMs and GLMs offer tremendous
opportunities for improvement of statistica inference.
Just as standard ANOVA has been expanded to LMMs,
recent research has expanded GLMs to generaized linear
mixed models (GLMMs) (Garrett et al., 2004). While
biol ogists have traditionally stressed hypothesis testing as
adtatistical approach, emphasis has shifted in recent years
towards information theoretic approaches (Burnham and
Anderson, 2002). Information criteria such as AIC
provide a more objective way of determining which
model among a set of models is most appropriate for
analyses of the data at hand. Often one has no a priori
reason for selecting a specific data transformation to
normality. The AIC may be used as a potentially valuable
tool for selecting functions for data transformation. The
major limitation in using the methods described is that
they are computationally intensive. However, software
that handle such computations with relative ease are

appearing.
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