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Abstract: Analysis of variance (ANOVA) has been a fundamental method used for analysis of abundance and 
incidence data. However, abundance and incidence data often violate the assumptions of ANOVA. Researchers 
often ignore ANOVA assumptions, transform the data using arbitrarily chosen functions and then fail to 
evaluate whether or not the transformation actually corrected the problem. The statistical power of the tests 
used is also seldom reported. Therefore, the objectives of this paper are to demonstrate (1) implications of 
using arbitrarily chosen transformations and ANOVA to the validity of statistical inference on pest 
abundance and incidence and (2) the application of LMMs and GLMs for efficient analysis of such data. 
Abundance data were analyzed assuming normal, Poisson and negative binomial error distributions. Incidence 
data were analyzed assuming normal and binomial error distributions. Among the data transformation functions, 
logarithmic transformation gave better description of abundance data compared with square root. Working logits 
were better than angular or square root transformation of incidence data. The study has also demonstrated that 
the choice of transformation can influence the statistical significance and power of test. Transformation of 
either abundance or incidence data did not necessarily ensure normality or variance homogeneity. According 
to the Akaike information criterion (AIC), a GLM assuming negative binomial error distribution was better for 
description of most abundance datasets compared with a GLM assuming Poisson error distribution or LMM. 
LMM based on working logits also gave a better description of the data than a GLM assuming binomial 
distribution. It is concluded that LMMs and GLMs simultaneously consider the effect of treatments and 
heterogeneity of variance and hence are more appropriate for analysis of abundance and incidence data than 
ordinary ANOVA. 
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1. Introduction 
Abundance refers to the number of individuals per unit 
area. It is a fundamental ecological parameter and a 
critical consideration when making management and 
conservation decisions. In most work in entomology, 
pathology and weed sciences, counts are used as 
proxies of abundance. In the case of counts a substantial 
proportion of the values are zero, and the remainder 
have a skewed distribution (Fletcher et al., 2005; 
Martin et al., 2005; Warton, 2005). The term incidence 
refers either to the number of plants (or plant units) that 
is visibly diseased or affected by an insect (out of a 
given total number) (Madden and Hughes, 1995). 
Pathologists and entomologists often collect incidence 
data because in many instances, notably with plant 
diseases caused by viruses, it is impractical to assess 
diseases on the basis of pathogen abundance 
(McRoberts et al., 1996). Similarly, with small 
arthropods such as mites, thrips, aphids, psyllids and 
leafhoppers, presence or absence is often easier to 
establish than estimating abundance by counting 
individuals. Recently, a positive relationship between 
incidence and abundance of a species has been 
demonstrated (Gaston et al., 2000). Based on such 
relationships, Sileshi et al. (2006a) have demonstrated 
that insect abundance can be estimated from incidence 
or vice versa.  

   By their nature, abundance and incidence are not 
normally distributed (Madden and Hughes, 1995; Garrett 
et al., 2004). Abundance is quantified by discrete 
variables, and can be described well by the Poisson or 
negative binomial distributions. The Poisson 
distribution is described by one parameter, è, or the 
mean. In the Poisson distribution the variance is equal 
to the mean (Johnson and Kotz, 1969). The negative 
binomial distribution (NBD) is more convenient model 
for analyzing insect and weed counts or pathogen 
density with over-dispersion (Anscombe, 1949; 
McRoberts et al., 1996; Sileshi et al., 2006a; b). The 
NBD is related to several distributions. According to 
Johnson and Kotz (1969) the NBD is a mixture of 
Poisson distributions such that the expected values of 
the Poisson distribution vary according to a gamma 
(Type III) distribution. This supports one of the four 
derivations of the NBD (Anscombe, 1950). It has been 
shown that the limiting distribution of the NBD, as the 
dispersion parameter (k) approaches zero, is the 
Poisson. When k is an integer, the NBD becomes the 
Pascal distribution, and the geometric distribution 
corresponds to k=1. The log series distribution occurs 
when zeros are missing and as k→∞ (Saha and Paul, 
2005). 
   Incidence is a binary variable because each observed 
individual plant is either visibly affected or not, or 
damage symptoms are present or absent (Madden, 
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2002). Hence, it is characterized by a binomial or beta-
binomial distribution (Madden and Hughes, 1995; 
Collette, 2002). Despite the many advantages of using 
the binomial distribution (Collette, 2002), this 
distribution only occasionally describes actual disease 
incidence data. Diseased individuals typically are 
clustered in nature, resulting in greater heterogeneity of 
disease incidence than would be expected for a random 
pattern (Madden, 2002). More typically, the variance is 
larger and the observed frequency of diseased 
individuals is more skewed than that predicted by the 
binomial distribution (Hughes and Madden, 1995). The 
variance is a function of the mean in both incidence 
(Hughes and Madden, 1995) and abundance (Taylor, 
1961) data. 
   Statistical inference based on abundance and 
incidence using conventional statistical methods such as 
analysis of variance (ANOVA) poses several 
challenges. There is a wide range of situations where 
the assumptions of normality and homogeneity of 
variance are not met for insect or weed abundance data 
(Sileshi and Mafongoya, 2002; 2003; Sileshi et al., 
2002; 2006b). ANOVA models focus on null 
hypothesis testing based on mean tendencies in the 
data. These tests typically assume that the errors (after 
fitting the model) are independent and identically 
distributed as normal random variables with constant 
variance. These techniques were developed, and to 
some extent derive their validity, from the 
randomization underlying designed experiments 
(Fisher, 1935). However, a large proportion of 
entomological and pathological research consists of 
observational studies in which the goal is to explain a 
pattern relative to a series of explanatory variables.  
   The standard methodology in ANOVA has been to use 
a transformation of the response variable that results in a 
variable that is approximated by a normal distribution. In 
a sense, this is forcing the data to fit a model that was 
developed for analysis of continuous variables, rather than 
using an appropriate statistical model for the data at hand 
(Hughes and Madden, 1995; Garrett et al., 2004; 
Madden et al., 2002). Furthermore, variance-stabilizing 
transformations may not, in fact, fully stabilize 
variances in count (McArdle and Anderson, 2004) or 
incidence data when some of the means are close to 0 
or 100% (Madden, 2002). It is well known that 
departures from the assumption of homogeneity can 
result in inflated error rates (Cochran, 1947). Tests of 
significance, standard errors, and contrasts of the means 
can be affected if ANOVA is used for discrete and 
binary data.  
   In ANOVA, coefficients are computed using ordinary 
least square (OLS) methodology which minimizes the 
sum of squared distances of data points to the parameter 
estimate. An alternative to OLS is provided by the 
Restricted Maximum Likelihood (REML) and 
maximum likelihood (ML) estimation methods (Littell, 
2002). REML is used in linear mixed models (LMM), 
while ML can be used in both LMM and generalized 
linear models (GLMs) (Collett, 2002). The LMM is an 

extension of ANOVA, and it still assumes normality 
(Littell, 2002). However, it extends the ANOVA model 
by allowing for both correlation and heterogeneous 
variances. Wolfinger (1993) and Piepho et al. (2003) 
provide detailed information on LMMs. Better still are 
GLMs, which are more appropriate for analyzing 
discrete and binary data (McCullagh and Nelder, 1989; 
Collett, 2002; Madden, 2002; Hughes and Madden, 
1995; Garrett et al., 2004; Turechek and Madden, 2002). 
In GLMs, the response is assumed to possess a 
probability distribution of the exponential form such as 
the Poisson, NBD and binomial. In GLM coefficients 
are computed using ML, which maximize the odds that a 
dependent variable equals a given value. Here, a function 
of the expected value of Y is modelled as a linear 
function of the variables of interest (Collett, 2002). This 
function can be written as g(ì), where ì is the 
expectation of Y[ì=E(Y), and is known as the link 
function. This is quite different from the regular normal 
distribution-based approach of transforming Y to 
produce g(Y) and then fitting a model to g(Y). The 
reader is referred to McCullagh and Nelder (1989) for 
detailed information on GLMs, and to Hartley and Rao 
(1967) and Harville (1977) for information on REML 
and ML. 
   Despite the recent developments on LMM and GLM 
methodology (Garrett et al., 2004; Madden, 2002; 
Madden et al., 2002) and wider availability of computer 
software, they have been little used by entomologists, 
pathologists and weed scientists. Researchers still use 
arbitrarily chosen data transformations and apply OLS 
ANOV. Very few actually are aware of the power of 
these tests (Thomas and Krebs, 1997). The statistical 
power of a significance test is the long-term probability 
(given the population effect size, alpha, and sample 
size) of rejecting a false null hypothesis. While power 
analysis is a vital tool for study planning, it has been 
largely ignored in entomology, pathology and weed 
research. The objectives of this paper are to 
demonstrate (1) implications of using arbitrarily chosen 
transformations and ANOVA to the validity of 
statistical inference on pest abundance and incidence 
and (2) the application of LMMs and GLMs for 
efficient analysis of such data. 

 
2. Materials and Methods 
2.1. Source of Data 
The data reanalysed in this study included abundance of 
witch weeds (Striga asiatica), grass and broad leafed 
weeds in maize, and two insect species, namely the 
leucaena psyllid (Heteropsylla cubana) and Exosoma 
sp. The data on witch weed (Striga asiatica) comes 
from Sileshi et al. (2006b) but is restricted to only one 
of the experiments described in that paper. The 
experiment was established in December 1991 and 
consisted of maize grown in a mixed intercropped 
system with the tree legumes Caliandra callothyrsus, 
Flemingia macrophylla, Gliricidia sepium, Leucaena 
leucocephala, Senna siamea, Sesbania sesban. Details 
of the treatments, plot layout, randomization and 
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management of this experiment have been described in 
Sileshi et al. (2005; 2006b). The abundance of witch 
weed was monitored in 1995, 1996 and 1997 cropping 
season, and the effect of treatment and year of sampling 
was analyzed. The abundance of arable weeds was 
assessed in a legume fallow experiment established in the 
year 2000 at Msekera sites. The treatments in this 
experiment consisted of maize planted in pure-species 
fallows of Gliricidia sepium, Acacia anguistissima, 
Leucaena collinsi, Calliandra calothyrsus, Senna 
siamea and maize monoculture with and without 
fertilizer. Assessment was made by counting the number 
of grass weeds (all weeds of the family Graminae) and 
broad leafed weeds (all non-grass weeds) in an area 
measuring 1 m by 1 m, and the effect of treatments on 
abundance of grass and broad leaved weeds was 
analysed.  
   Populations of the leucaena psyllid, Heteropsylla 
cubana (Homoptera: Psyllidae), a pest of the tropical 
agroforestry tree Leucaena leucocephalla were 
monitored in April-May 2005 in four experiments 
established in 1991, 1992, 1997 and 1999 at Msekera. 
These experiments have been described in detail in 
Sileshi et al. (2005). In all the trials, trees were cut to a 
height of 30 cm above ground after three years of 
growth and allowed to re-sprout in the subsequent years 
where the shoots were cut back to fertilize maize crops. 
A cluster of 10 adjacent stumps were selected in every 
replicate of each experiment, and the numbers of 
psyllids on a randomly selected shoot per stump were 
recorded. The effect of site of establishment on the 
abundance of psyllids was analyzed using the different 
statistical models. 
   The datasets on abundance of Exosoma came from 
studies reported elsewhere by the author (Sileshi and 
Mafongoya, 2002; and 2006b). Abundance data were 
collected from various agroforestry treatments 
involving Sesbania sesban at Msekera, eastern Zambia 
in 2002. In each treatment the numbers of Exosoma on 
10 randomly selected plants were recorded and effect of 
treatment on abundance analysed.  
   The incidence data used in this study included foliar 
diseases (a complex of fungal diseases) of the 
indigenous fruit Uapaca (Uapaca kirkiana), and termite 
damage in maize reported by the author elsewhere 
(Sileshi et al., 2005). The study on Uapaca foliar 
diseases involved a randomized and replicated 
experiment consisting of a factorial combination of 
three potting mixtures (unsterilized forest soil, sterilized 
forest soil and forest soil + saw dust), soil applied 
fertilizer (with and without compound D), and a foliar 
applied fertilizer (with and without). Data on foliar 
disease incidence were collected in July and October 
2002. The incidence of the insects and diseases was 
determined by observing the disease status of single 
whole plants used as the sampling unit. Incidence 
constituted the proportion of plants in a row showing 
foliar disease symptoms.  
   Termite damage was assessed in 2002 and 2003 in 
two experiments established in 1991 and 1992 at 

Msekera. The treatments consisted of maize grown after 
of Caliandra callothyrsus, Flemingia macrophylla, 
Gliricidia sepium, Leucaena leucocephala, Senna 
siamea and monoculture maize grown with and without 
the recommended rate of fertilizer. Details of the 
treatments, plot layout, randomization and management 
of this experiment have been described in Sileshi et al. 
(2005). In both experiments, damage was assessed by 
recording the number of lodged plants per plot in 2002 
and 2003, and the effect of fallow length, year of 
sampling and treatment on termite incidence was 
analyzed. 

2.2. Statistical Analyses of the Data 

For analysis of abundance data, the normal, Poisson and 
negative binomial distribution models were used. The 
normal distribution model applies ordinary least square 
(OLS) ANOVA on transformed insect counts. The 
probabilistic model using OLS assumes that the 
underlying errors of the transformed data are all 
uncorrelated with homogeneous variance, and hence 
follow an approximate log-normal distribution 
(McArdle and Anderson, 2004; Warton, 2005). In this 
study, count data were transformed using natural 
logarithms and square root functions because of the 
popularity of these transformations. However, various 
other types of transformation are available for count 
data (Taylor, 1961; McArdle and Anderson, 2004). 
Incidence data were transformed using the angular 
(arcsine), square root functions and the working logit 
(Cox, 1970) given by 













½
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where Z is the working logit, R is the number 
responding (e.g., infested plants) and n is the number 
observed. The working logit was tested because this 
transformation has the advantage of being able to take 0 
and 100% response data into account. 
   Then tests for normality and homogeneity of variance 
were conducted. Shapiro-Wilk statistic and the 
Kolmogorov-Smirnov D statistic were used for testing 
normality. The assumption of equality of variance in 
the transformed data was tested using Bartlett�s and 
Levene�s tests of homogeneity of variance via the GLM 
procedure of the SAS system (SAS/STAT, 2003). 
ANOVA was conducted on the transformed data using 
the GLM procedure of the SAS. The statistical power of 
the ANOVA was calculated using the GLMPOWER 
procedure of SAS system. 
   LMM was fitted to the transformed abundance and 
incidence data using MIXED procedure of the SAS 
system. All interaction effects were considered to be 
random effects in the LMM. The MIXED procedure 
was used because in most cases the experimental units  
on which the data were recorded were grouped into 
clusters (e.g. replications, rows etc.), and it was 
assumed that data from a common cluster were 
correlated. The Poisson and negative binomial 
distributions were used to analyse the abundance data. 
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A GLM to relate the mean abundance () to the 
explanatory variables (Xi), the following linear 
probability model was used: 

XbXbXbaLog nn ...)( 2 211  

  (Equation 1) 
   where a is the random intercept, X1, X2 � Xn are 
covariates and b1, b2 � bn are parameters to be 
estimated for the nth covariate. The log is the canonical 
link for the Poisson and negative binomial distributions. 
   Incidence data were analyzed using the GLMs by 
assuming binomial distribution of diseased individuals. 
A GLM to relate the binomial parameter (p) of 
incidence to the explanatory variables (X i) a linear 
probability model of the following form was used:  

XbXbXbapLogit nni  ...)( 2 211  

  (Equation 2) 
where the logit function is the canonical link for the 
binomial distribution. For the incidence of the foliar 
diseases of Uapaca, X1 , X2, X3 and X4 stand for potting 
mixture, foliar fertilizer, soil-applied fertilizer and 
month of sampling, respectively. When over-dispersion 
was noted, a dispersion parameter was introduced using 
the ratio of the deviance to its associated degrees of 
freedom (McCullagh and Nelder, 1989). Parameters of 
equations 1 and 2 were estimated by the ML method 
using the GENMOD procedure of SAS systems. For 
GLMs, the residual deviance is of central importance 
for determining goodness-of-fit of a model. Therefore, 
the residual deviance divided by its degrees of freedom 
(RD/DF) was used to detect goodness-of-fit to the 
models. Values of RD/DF greater than 1 indicated over-
dispersion while values less than 1 indicated under-
dispersion. Evidence of over-dispersion or under-

dispersion was used as an indication of inadequate fit of 
the statistical model to the data. Akaike information 
criterion (AIC) was used for comparing the statistical 
models (Burnham and Anderson, 2002) and 
transformations. The second-order Akaike information 
criterion (AICc) correcting for small sample size 
(Hurvich and Tsai, 1989) was computed from the log 
likelihood (LL) estimates as: 

 
1
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  (Equation 3) 
where K is the number of parameters in the model and n 
is the sample size. The �smaller AICc is better� 
approach was used for comparisons among models. 
Among the models under consideration, the one with 
the smallest AICc has the smallest expected loss of 
information, and was interpreted as the best. 

3. Results 
The transformations did not normalize the abundance 
data except for grass and broad leafed weeds. 
Transformations also failed to normalize the incidence 
data. Levene�s and Bartlett�s tests indicated heterogeneity 
of variance across years in both raw and the transformed 
witch weed abundance data. When treatment was 
considered, Levene�s test indicated homogeneous 
variance in the raw data, while Bartlett�s test indicated 
heterogeneity. Both Levene�s and Bartlett�s test indicated 
variance heterogeneity across treatments in the raw as 
well as the transformed data on grass weed, broad leafed 
weed and Exosoma abundance (Table 1). 

 
Table 1. Probability levels for Levene�s and Bartlett�s tests of homogeneity of variance in abundance before and after 
transformation of the data using logarithmic and square root (SQRT) functions 
 
Pest Fixed  Levene�s test      Bartlett�s test      
group  effect Before Logarithmic SQRT      Before    Logarithmic     SQRT 
Witch weeds Year 0.006 <0.001 <0.001     <0.001     <0.001           <0.001 
 Treatment 0.299   0.020   0.107     <0.001       0.044            <0.001 
Grass weeds Treatment 0.004   0.003   0.003       0.006       0.004              0.113 
Broad leafed weeds Treatment   <0.001   0.038 <0.001    <0.001       0.065            <0.001 
Leucaena psyllid Site 0.053   0.681   0.118        0.014       0.672               0.214 
Exosoma sp. Treatment    <0.001 <0.001 <0.001     <0.001     <0.001           <0.001 
 
    On the other hand, variances of leucaena psyllid 
abundance were homogeneous across sites after 
transformation compared with the raw data. Levene�s 
and Bartlett�s test indicate heterogeneity of variance in 
incidence of Uapaca leaf disease across months, potting 
mixtures and soil applied fertilizers before and after 
angular and square root transformation. However, foliar 
fertilizer treatment had homogeneous variance before 
and after transformation (Table 2). Incidence of termite 
damage in maize had heterogeneous variance across 

fallow length and year of sampling while treatment had 
homogeneous variance before and after angular and 
square root transformation according to the Levene�s 
test. Bartlett�s test indicated variance heterogeneity 
across treatment in the raw data and angular 
transformed termite incidence, but homogeneity in the 
square root transformed data. Transformation using 
working logits homogenized variance across fallow 
length and years in termite incidence according to both 
Levene�s and Bartlett�s tests (Table 2). 
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Table 2. Probability levels for Levene�s and Bartlett�s tests of homogeneity of variance in incidence data before and after 
transformation using angular (Arcsine), square root (SQRT) and working logits (Logit) 
 
Pest Fixed  Levene�s test   Bartlett�s test   
group  effect Before Arcsine SQRT Logit Before Arcsine SQRT Logit 
UFD Month             <0.001        <0.001       <0.001       <0.001 <0.001 <0.001 <0.001 <0.001 
 Potting mix     <0.001        <0.001       <0.001 0.008 <0.001 <0.001 <0.001 0.024 
 Soil applied 0.033 0.038 0.041 0.034   0.017   0.090 <0.001 0.045 
 Foliar fert 0.901 0.687 0.354 0.836   0.889   0.735   0.064 0.843 
Termites Fallow 0.002 0.002 0.003 0.419 <0.001 <0.001 <0.001 0.312 
 Year 0.005 0.087 0.037 0.412 <0.001 <0.001   0.012 0.291 
 Treatment 0.559 0.478 0.685 0.151 <0.002   0.717   0.499 0.008 
    
   Under the normal distribution assumption the fixed effects were not significant before transformation of witch weed, 
grass weed and Exosoma abundance (Table 3). 
 
Table 3. Significance (P values) of effects on abundance of pest groups using different data transformation and 
distribution assumptions 
 
Pest Fixed LMM (Normal distribution)         GLM  
group effect Before Logarithm  SQRT  Poisson NBD 
Witch weed Year 0.144ns 0.021 0.164 <0.001 <0.001 
Witch weed Treatment 0.364ns 0.124ns 0.195 <0.001 <0.001 
Grass weeds Treatment 0.161ns 0.018 0.056 <0.001 <0.001 
Broad leafed weeds Treatment       <0.001        <0.001             <0.001 <0.001 <0.001 
Leaucaen psyllid Site 0.025 0.049 0.025 <0.001   0.070ns 
Exosoma sp. Treatment 0.384 0.320 0.342 <0.001 <0.001 
ns= variances not significantly different within fixed effect 
 
   Significant effects were indicated after logarithmic 
transformation of witch weed and grass weed abundance 
at the 5% level. On the other hand, the Poisson and 
negative binomial models indicated highly significant 
(P<0.001) effects for all pest groups except the leucaena 
psyllid (Table 3). The statistical power of ANOVA for 
the various fixed effects was sufficiently high (>0.90) 
for most abundance data except for the raw data on 
witch weed abundance (Table 5). 
   If one were to analyze the raw data, one would 
require twice the number of observations to achieve the 

desired statistical power of 0.90. However, when data 
were transformed using the logarithmic function, the 
desired statistical power was achieved using the same 
sample size. Under both the normal and binomial 
distribution assumptions, the incidence of Uapaca foliar 
disease significantly differed with month, potting mixture 
and foliar application of fertilizer. The statistical power 
of test for the effect of month, potting mixture and foliar 
application of fertilizer were sufficiently high (>0.90) 
(Table 4). 

 
 
 

Table 4. Significance (P values) of effects on and incidence of pest groups using different data transformation and 
distribution assumptions 
 
Pest Fixed                             LMM (Normal distribution)                          GLM (Binomial distribution) 
group effect Before Arcsine SQRT  Logit  
UFD Month <0.001 <0.001 <0.001 <0.001 <0.001 
 Potting mix <0.001 <0.001 <0.001 <0.001 <0.001 
 Soil applied <0.001 <0.001 <0.001 <0.001   0.007 
 Foliar fertilizer   0.083   0.068   0.231    0.162   0.258 
Termites Fallow length   0.003   0.007 <0.001 <0.001 <0.001 
 Year   0.002   0.004 <0.001 <0.001 <0.001 
 Treatment   0.799   0.892   0.467    0.504   0.582 
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Table 5. Statistical power of test for ANOVA before and after logarithmic and square root (SQRT) transformation of 
abundance of pest groups and additional samples required to achieve the desired statistical power 
 
Pest Fixed Sample            Transformation   
group effect size  Before         Logarithmic   SQRT 
Witch weed Year 96 plots    0.77 (192) >0.90 (0) 0.66 (96) 
 Treatment 96 plots    0.66 (192) >0.90 (0) 0.89 (96) 
Grass weeds Treatment 63 plots  >0.90 (0)  >0.90 (0)             >0.90 (0) 
Broad leafed weeds Treatment 63 plots  >0.90 (0)  >0.90 (0)             >0.90 (0) 
Leaucaen psyllid Site 360 shoots >0.90 (0)  >0.90 (0) 0.72 (720) 
Exosoma sp. Treatment 270 plants >0.90 (0)  >0.90 (0)             >0.90 (0) 
Figures in parenthesis indicate additional sampling units required to achieve the desired statistical power of 0.90 

 
   However, incidence did not differ with soil application 
of fertilizer. Statistical power analysis showed that the 
lack of significance was due to the inadequacy of the 
sample size used. If a meaningful conclusion is to be 

drawn about the effect of soil application of fertilizer, at 
least 5-11 times more observations (or 2260-4972 Uapaca 
plants) would be required (Table 6). 

 
 
Table 6. Statistical power of test for ANOVA before and after transformation of incidence data using the angular 
(arcsine), square root (SQRT) functions and working logits and additional samples required to achieve the desired 
statistical power 
 
Pest Fixed Sample   Transformations    
group effect size Before  Arcsine SQRT  Logit 
UFD Month 452 plants >0.90 (0) >0.90 (0) >0.90 (0)  >0.90 (0) 
 Potting mix 452 plants >0.90 (0) >0.90 (0) >0.90 (0)  >0.90 (0) 
 Soil applied 452 plants   0.80 (452)          0.80 (904)   0.81 (452)   0.84 (906) 
 Foliar fertilizer 452 plants   0.31 (1808)        0.33 (2260)   0.18 (4520)   0.22 (3624) 
Termites Fallow length 128 plots >0.90 (0)    0.66 (246) >0.90 (0)  >0.90 (0) 
 Year 128 plots >0.90 (0)              0.51 (369) >0.90 (0)  >0.90 (0) 
 Treatment 128 plots   0.21 (640)          0.07 (4059)   0.25 (512)   0.24 (612) 
Figures in parenthesis indicate additional sampling units required to achieve the desired statistical power of 0.90 

 
   Similarly, ANOVA showed lack of treatment effects on 
the incidence of termite damage in maize. Power analysis 
indicated that this was due to inadequate sample size. To 
make a valid conclusion about the effect of treatments 6-8 
times more observations than the current sample (or 768-
984 plots) would be needed. 

The DEV/DF values were greater than unity indicating 
that the Poisson assumption of random distribution did 
not hold for all the abundance data. The AIC scores 
(Table 7) 

 

 
Table 7. Second-order Akaike Information Criteria (AICc smaller is better) for selection of transformation functions and 
statistical models appropriate for analysis of abundance and incidence of different pests 
 
Pest  Linear Mixed Model              Generalized Linear Models   
group Before SQRT Log Arcsine Logit Poisson NBD     Binomial 
A. Abundance 
Witch weed 1227.4 593.5 212.6 NAPP NAPP -59170.6 -70089.5          NAPP 
Grass weeds   622.2 270.3     6.8 NAPP NAPP -58671.9 -60142.8          NAPP 
Broad leafed weeds   537.7 233.5   20.4 NAPP NAPP -11042.7 -11455.2          NAPP 
Leucaena psyllid 2848.1     1389.2        1046.4 NAPP NAPP -19828.0 -22376.6          NAPP 
Exosoma sp.   623.0   88.3          -253.2 NAPP NAPP       304.2       264.2         NAPP 
B. Incidence 
UFD 3922.9     1511.2 NAPP 3819.7 1176.6      NAPP    NAPP           1547.8 
Termites 1132.9 519.4 NAPP   913.8   388.1      NAPP    NAPP             846.7 
Bold entries indicate the best transformation or model 
NAPP = not applicable 
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 showed that the negative binomial model is better for 
description of the abundance data than the Poisson or 
normal distribution models. The only exception was 
abundance of Exosoma sp (Table 7). In the case of Exosoma 
sp, LMM (based on log transformation) was adequate for 
analysis of the data. Among the data transformation 
functions, logarithms gave the best description of the data 
(smallest AICc). According to AIC analysis of Uapaca 
foliar disease and termite incidence without transformation 
gives poorer description of the data than transformation. For 
Uapaca foliar disease and termite incidence, the best 
transformation was working logits. LMM based on working 
logits also gave a better description of the data than logistic 
regression (Table 7).  

4. Discussion 
The results presented indicate that transformation of 
either abundance or incidence data do not necessarily 
ensure normality. This is in agreement with the growing 
body of literature on the subject matter in ecology 
(Fletcher et al., 2005; McArdle and Anderson, 2004; 
Martin et al., 2005; Warton, 2005). Even if approximate 
normality is indicated by goodness-of-fit tests on the 
transformed data, if the data come from some other 
distribution than the normal then the significance tests 
may be misleading. For instance, the Chi-square test of 
normality is a non-specific test, in that the test criterion is 
directed against no particular type of departure from 
normality (Snedecor and Cochran, 1989). Examples occur 
in which the data are noticeably skew, although the 
goodness-of-fit test does not reject the null hypothesis. 
For small sample sizes, power of test is also low for 
detecting larger departures from normality that may be 
important. It is only with larger sample sizes that 
increasingly smaller departures from normality can be 
detected (Snedecor and Cochran, 1989). 
   The study has also demonstrated that transformation of 
either abundance or incidence data do not necessarily 
ensure homogeneity of variances, and that transformation 
functions differed in their ability to ensure homogeneity. 
Close scrutiny of the tests of homogeneity of variance 
revealed that the two tests differed in their sensitivity in 
detecting variance heterogeneity in abundance and 
incidence. It is well known that ANOVA is less robust to 
violations of homogeneity of variance than normality. 
Homogeneity of variance is essential for the valid 
application of parametric ANOVA. A transformation used 
to normalize the data may lead to heterogeneity of 
variance. This is because one transformation might be best 
for ensuring homogeneity of variance, while another might 
be best for ensuring normality. In practice, only one of these 
two transformations can be used, so all the statistical 
requirements cannot be met with linear models (Garrett et 
al., 2004). Transforming the data to rectify the problem 
can result in apparently grossly inflated type I errors, 
altering the model under test and affect the spatial scale of 
the hypothesis (McArdle and Anderson, 2004). Adding 1 
to the zero counts during logarithmic transformations can 
also result in strange distributions, which has led some 

workers to model the zeros separately for count data 
(McArdle and Anderson, 2004; Martin et al., 2005). 
Among the data transformation functions used in this study, 
logarithmic transformation gave better description of 
abundance data compared with square root. Working logits 
were better than angular or square root transformation of 
incidence data. The study has demonstrated that the choice 
of transformation can influence the statistical significance 
and power of test. However, during statistical analyses, 
researchers all too often ignore the assumptions, 
transform the data and then fail to evaluate whether the 
transformation corrected the problem (McArdle and 
Anderson, 2004). To test for homogeneity variances, the 
Bartlett's and Levene�s tests are often used. However, as 
indicated by the results in Table 2 the sensitivity of these 
tests differ. While Bartlett�s test has accurate Type I error 
rates and optimal power when the underlying distribution 
of the data is normal, it can be very inaccurate if the 
distribution is even slightly nonnormal (Box, 1953).  
   Researchers some times use nonparametric methods as 
alternatives to parametric tests for analyses of abundance 
and incidence when the data violate the assumptions of 
ANOVA (Sileshi and Mafongoya, 2002; 2003). Until 
recently (Brunner and Puri, 2001; Turecheck, 2004) the 
use of nonparametric approach had been limited because 
these tests are less powerful than parametric methods. 
Secondly, they could only be used in one-way analysis as 
there had been no satisfactory theoretic foundation for 
analysing data in factorial designs and repeated measures 
(Shah and Madden, 2004). Unlike parametric ANOVA 
and nonparameteric tests, GLMs enable appropriate 
analyses of skewed frequency or binary data. In addition, 
with GLMs, the properties of data from discrete 
distributions such as the Poisson and negative binomial 
distribution (counts) and binomial distribution (proportions) 
can be accounted for (Hughes and Madden, 1995; Collett, 
2002). For example, the GLMs used in this study tested 
whether the abundance distribution was random (Poisson) 
or spatially aggregated (negative binomial). The GLM 
also demonstrated that the negative binomial model is 
considerably more robust for analysis of the abundance 
data compared with the LMM or the Poisson (Table 7). 
Using the GLMs it was possible to simultaneously 
consider the effect of treatments and variance 
heterogeneity.  
   While common parametric approaches, such as 
ANOVA are well known and convenient, their 
assumptions may not always be met in contexts studied 
by plant pathologists, entomologists and weed biologists. 
For example, if ANOVA shows lack of statistical 
significance, it may be because there is no effect or 
because the study design makes it unlikely that a 
biologically real effect would be detected. When the 
sample size is small and variance is high as is common in 
abundance and incidence data, biologically interesting 
phenomena may be missed because ANOVA is unlikely 
to yield significant results (e.g. Tables 5 and 6). Under 
such situations computation of statistical power is as 
important as significance testing. Power analysis can 
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distinguish between these alternatives, and is therefore a 
critical component of designing experiments and testing 
results (Thomas and Krebs, 1997). For abundance and 
incidence data, LMMs and GLMs offer tremendous 
opportunities for improvement of statistical inference. 
Just as standard ANOVA has been expanded to LMMs, 
recent research has expanded GLMs to generalized linear 
mixed models (GLMMs) (Garrett et al., 2004). While 
biologists have traditionally stressed hypothesis testing as 
a statistical approach, emphasis has shifted in recent years 
towards information theoretic approaches (Burnham and 
Anderson, 2002). Information criteria such as AIC 
provide a more objective way of determining which 
model among a set of models is most appropriate for 
analyses of the data at hand. Often one has no a priori 
reason for selecting a specific data transformation to 
normality. The AIC may be used as a potentially valuable 
tool for selecting functions for data transformation. The 
major limitation in using the methods described is that 
they are computationally intensive. However, software 
that handle such computations with relative ease are 
appearing.  
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