NEED FOR SCREENING FOR ALCOHOL AND DRUGS IN EMERGENCY TRAUMA UNITS

V. O. Lasebikan, BSc, MBChB, MPH, PhD, FWACP, Senior Lecturer, Department of Psychiatry, College of Medicine, University of Ibadan and S. Adebayo, MBBS, FWACS, Consultant Surgeon, Department of Surgery, University College Hospital, Ibadan, PMB 5116, Ibadan, Nigeria

Request for reprints to: V. O. Lasebikan, Department of Psychiatry, College of Medicine, University of Ibadan, PMB 5116, Ibadan, Nigeria, Email: victorlash@yahoo.com

ABSTRACT

Objectives: To examine the prevalence of alcohol and drug use and abuse, to identify socio-demographic characteristics that correlated with injury and to identify risk factors for injury in a Nigerian Trauma unit.

Design: Descriptive cross sectional study.

Setting: The study was carried out a general hospital trauma unit in Nigeria.

Subjects: One thousand one hundred and twenty one trauma patients and 303 controls.

Results: Of all injuries, 50.1% were road accidents, mean injury severity score was 41.3 SD (11.2), prevalence of alcohol abuse was 27.9%, cannabis abuse 14.0% and pre-trauma alcohol use 41.2%, pre-trauma cannabis use was 6.9%. Multivariate analysis shows that age < 31 years 95% CI (0.26-0.89), alcohol abuse 95% CI (1.84-4.64), binge drinking in the previous 30 days 95% CI (1.76-6.46), cannabis abuse 95% CI (1.45-2.88) and pretrauma combined alcohol and cannabis use 95% CI (3.34-11.78) were risk factors for severe injury.

Conclusion: Use and abuse of alcohol and drugs is highly prevalent among trauma patients seeking emergency care. Therefore trauma patients require routine toxicological screening to provide basis for preventive programmes or referrals for them.

INTRODUCTION

Research evidence indicates that in most urban trauma centers, alcohol and drugs are often common risk factor for a substantial portion of injuries (1-4). In some instances, a high proportion of trauma patients meet both lifetime and current criteria for alcohol abuse or dependence (5). In others, a substantial proportion report binge drinking prior to injury (5). Illegal drugs, such as cannabis, cocaine, and opiates have also been reported (6-7).

In Nigeria, most of the available data on alcohol and drug have been carried out among sub-populations such as students,(8) hospital patients,(9) and commercial drivers,(10-12) there is no available data that shed light on the association between substance use and injuries taking in trauma units which presumably are the first point of call after sustaining injuries.

Although the research presented herein is drawn from a sample in Nigeria, which is socio-demographically different from most developed countries of the world; the results should generalise the association between alcohol use and injury and strengthen the estimates.

Objectives of the current study were:

(i) to examine the prevalence of alcohol use and abuse and other drug use in an emergency trauma unit center patients in Ibadan, Nigeria;
(ii) to identify sociodemographic characteristics that correlated with injury and
(iii) to identify risk factors for injury severity. This analysis was conducted among a sample of trauma patients treated in emergency trauma unit of Ring Road State Hospital, Ibadan, Nigeria.

MATERIALS AND METHODS

This was a descriptive cross sectional study. We recruited the study sample between February 2004 and August 2009 from the casualty department of Ring Road State Hospital, Ibadan, Oyo state, Nigeria, a 600 bedded general hospital. Ibadan is the capital of Oyo state, Nigeria and it is the third largest city in Nigeria. The city is located in the southwestern part of the country. It has a population of over 3.5 million people and eleven local government areas (13).

The casualty department is 60 bedded and is the
emergency trauma unit of this general hospital. It is
the largest trauma unit of all the hospitals under the
control of Oyo State Hospitals Management Board
and the catchment area include all the 33 Local
Government areas of Oyo State, and some neibouring
states.

Participants were either Yoruba or English
speaking, were over 18 years of age and were
identified through the medical records department.
They were the primary initiators of the injury or were
contributors.

Their injuries met any of the following criteria:
(a) were such that they required a surgical
intervention
(b) must have sustained a bodily injury including
fractures and closed injuries
(c) were due to a penetrating or blunt trauma

The control group was a sample of attendees of the
annexed general out patient department of the same
hospital.

Casualty officers and nurses identified and
recruited 1,722 patients who met the screening criteria
and subsequently notified research staff. They were
thereafter screened in a face-to-face interview to assess
additional eligibility criteria. Ethical approval was
obtained from the ethical review committee of the Oyo
State Ministry of Health in January 2004, and informed
consent was obtained from each participant. In this
multistage study, 21.1% were excluded because they
were unable to converse in either English or Yoruba,
were not able to give consent, or were incapable of
following the proceedings of the interview. Of the
1358 patients identified as eligible, 237 either did
not respond or had missing data and were excluded
from the analysis. Analyses were based on a sample
of 1121 injured subjects and 303 controls.

For each participant, sociodemographic
characteristics and information on any substance
related legal problem and substance use in family
members was obtained from the patient or a family
member or friend if patient was too ill to give such
information. The alcohol and drug section of the
Composite International Diagnostic Interview (CIDI)
was also administered. Each patient was thereafter
physically assessed in order to obtain the Injury
Severity Score (ISS).

Alcohol Abuse or dependence: The alcohol and drug
sections of the Composite International Diagnostic
Interview (CIDI) version 2.1 was used to determine
the diagnosis of alcohol abuse or dependence in
the past 12 months. The CIDI is a cross cultural
valid and reliable instrument for the diagnosis of
mental disorders and alcohol and drug abuse and
or dependence.

The CIDI produces information on pattern of
lifetime and current use of alcohol and drugs and also
provides scores for a positive diagnosis of alcohol
or drug dependence, abuse, and other syndromes.

Diagnoses were generated using the CIDI algorithms.

Assessment of Pre-trauma substance use

Question: In about the 2-hour preceding your injury,
did you take any alcohol or drugs during those 2 hours?

The construct of the question in the control group
was: In about the 2-hour preceding when you got to this
emergency department, did you take any alcohol or drugs
during those 2 hours? It is assumed that information
obtained from patient about alcohol and other drug
use prior to injury may be a reliable assessment,(16)
since toxicological assessments were unavailable in
the study setting because of cost.

Assessment of Binge drinking

Question: During the 30 days before your injury, (for the
control group, before being brought to the hospital),
how many times did you have 5 or more drinks on one
occasion? (“4 or more” drinks for females).

Question: In the last 30 days, was there an occasion
when you sustained any injury after you had taken 5 or
more drinks?

Other drug abuse or dependence: Past 12 months other
drug abuse or dependence was also determined by
using the drug section of the CIDI.

Other Measures: Socio-demographic information
obtained from participants included age, ethnicity,
marital status, years of education and employment
status. History of injury related legal problems and
family history of alcohol or drug problems were
obtained in from the informants, patients and or
family members. Injury types were categorized into
assaults, automobile accidents and falls. Assaultive
injury was defined as sustaining an injury while
trying to assault someone else.

Injury severity score (ISS): The Injury Severity Score
(ISS) is an anatomical scoring system that provides
an overall score for patients with multiple injuries.

According to ISS, each injury is assigned an
abbreviated injury score (AIS) and is allocated to one
of six body regions (Head, Face, Chest, Abdomen,
Extremities (including Pelvis), External). The
Abbreviated Injury Scale (AIS) is ranked on a scale
of 1 to 6, with 1 being minor, 2 moderate, 3 serious,
4 moderate, 5 critical, and 6 a non-survivable injury.

The highest AIS score in each body region is used.
The three most severely injured body regions have
their score squared and added together to produce
the ISS score.

The ISS score takes values from 0 to 75. If an
injury is assigned an AIS of 6 (unsurvivable injury),
the ISS score is automatically assigned to 75. The

abbreviated injury score (AIS) and is allocated to one
of six body regions (Head, Face, Chest, Abdomen,
Extremities (including Pelvis), External). The
Abbreviated Injury Scale (AIS) is ranked on a scale
of 1 to 6, with 1 being minor, 2 moderate, 3 serious,
4 moderate, 5 critical, and 6 a non-survivable injury.

Only the highest AIS score in each body region is used.
The three most severely injured body regions have
their score squared and added together to produce
the ISS score.

The ISS score takes values from 0 to 75. If an
injury is assigned an AIS of 6 (unsurvivable injury),
the ISS score is automatically assigned to 75. The

Abbreviated Injury Scale (AIS) is ranked on a scale
of 1 to 6, with 1 being minor, 2 moderate, 3 serious,
4 moderate, 5 critical, and 6 a non-survivable injury.

Only the highest AIS score in each body region is used.
The three most severely injured body regions have
their score squared and added together to produce
the ISS score.

The ISS score takes values from 0 to 75. If an
injury is assigned an AIS of 6 (unsurvivable injury),
the ISS score is automatically assigned to 75. The

Abbreviated Injury Scale (AIS) is ranked on a scale
of 1 to 6, with 1 being minor, 2 moderate, 3 serious,
4 moderate, 5 critical, and 6 a non-survivable injury.

Only the highest AIS score in each body region is used.
The three most severely injured body regions have
their score squared and added together to produce
the ISS score.

The ISS score takes values from 0 to 75. If an
injury is assigned an AIS of 6 (unsurvivable injury),
the ISS score is automatically assigned to 75. The

Abbreviated Injury Scale (AIS) is ranked on a scale
of 1 to 6, with 1 being minor, 2 moderate, 3 serious,
4 moderate, 5 critical, and 6 a non-survivable injury.

Only the highest AIS score in each body region is used.
The three most severely injured body regions have
their score squared and added together to produce
the ISS score.

The ISS score takes values from 0 to 75. If an
injury is assigned an AIS of 6 (unsurvivable injury),
the ISS score is automatically assigned to 75. The

Abbreviated Injury Scale (AIS) is ranked on a scale
of 1 to 6, with 1 being minor, 2 moderate, 3 serious,
4 moderate, 5 critical, and 6 a non-survivable injury.

Only the highest AIS score in each body region is used.
The three most severely injured body regions have
their score squared and added together to produce
the ISS score.

The ISS score takes values from 0 to 75. If an
injury is assigned an AIS of 6 (unsurvivable injury),
the ISS score is automatically assigned to 75. The
ISS was employed in this study as it is virtually the only anatomical scoring system in use that correlates linearly with mortality, morbidity, hospital stay and other measures of severity (17).

Analysis: A descriptive analysis of socio-demographic and clinical characteristics as well as pattern and prevalence of substance use and substance use disorder was sought followed by a bivariate analysis of all socio-demographic and clinical characteristics and alcohol and cannabis abuse using chi-square statistics.

For multivariate risk analysis, the association between age, gender, ethnicity, marital status, alcohol abuse, pre-trauma alcohol use, binge drinking, cannabis abuse, pre-trauma cannabis use, and pre-trauma multiple alcohol and cannabis use and injury Severity score was determined multinomial regression analysis. All analyses were performed with the SPSS Version 13.0 (18).

RESULTS

Descriptive statistics of the analysed sample (N = 1121, control N=303) are presented in Table I (demographics and injury characteristics), Table II (alcohol and substance use and DSM IV disorder), Table III (risk factors for injuries). Proportion of injured participants significantly reduced with increasing age, was significantly more common in males and among those with family history of drinking problems (Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Socio-demographic characteristics of Trauma Patients and Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demography and Clinical Characteristic</td>
<td>Injured N = 1121</td>
</tr>
<tr>
<td>Age</td>
<td>%</td>
</tr>
<tr>
<td><31</td>
<td>53.3</td>
</tr>
<tr>
<td>31-40</td>
<td>34.2</td>
</tr>
<tr>
<td>41-50</td>
<td>10.1</td>
</tr>
<tr>
<td>>50</td>
<td>2.4</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88.1</td>
</tr>
<tr>
<td>Female</td>
<td>11.9</td>
</tr>
<tr>
<td>Ethnicity*</td>
<td></td>
</tr>
<tr>
<td>Yoruba</td>
<td>35.7</td>
</tr>
<tr>
<td>Hausa</td>
<td>21.4</td>
</tr>
<tr>
<td>Igbo</td>
<td>31.2</td>
</tr>
<tr>
<td>Middle belter</td>
<td>10.1</td>
</tr>
<tr>
<td>Others</td>
<td>1.6</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
</tr>
<tr>
<td>Married</td>
<td>58.6</td>
</tr>
<tr>
<td>Widowed</td>
<td>19.6</td>
</tr>
<tr>
<td>Separated</td>
<td>9.0</td>
</tr>
<tr>
<td>Divorced</td>
<td>3.3</td>
</tr>
<tr>
<td>Never Married</td>
<td>9.5</td>
</tr>
<tr>
<td>Substance related Legal problems</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>66.2</td>
</tr>
<tr>
<td>Yes</td>
<td>33.8</td>
</tr>
<tr>
<td>Employment Status</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>27.9</td>
</tr>
</tbody>
</table>
Unemployed 72.1 787 211 68.6
Year of Education
1-6 37.7 417 106 35.0 0.5 0.9
7-12 51.1 573 159 52.5
13-15 10.1 113 32 10.6
>15 1.1 18 5 1.7
Problem drinking in family
Yes 33.6 374 79 26.1 5.3 0.02
No 66.4 757 223 73.9
Drug problem in family
Yes 31.4 346 89 29.5 0.2 0.6
No 68.6 769 214 70.5
Injury Mechanism
Domestic Injury 4.9
RTA 50.1
Falls (non domestic) 9.6
Assault 33.7
Others 2.0

*Ethnic composition in Nigeria: most populous and politically influential: Hausa and Fulani 29%, Yoruba 21%, Igbo (Ibo) 18%, Ijaw 10%, Kanuri 4%, Ibibio 3.5%, Tiv 2.5%, others 12%. Source: http://www.indexmundi.com/nigeria/ethnic_groups.html

Table 2

Alcohol and Drug using Behaviour and DSM IV Disorders among Trauma Patients and Control Group

<table>
<thead>
<tr>
<th>Variables</th>
<th>Injured N=1121</th>
<th>Non-injured N=303</th>
<th>X²</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol using behavior/DSM disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol use (12 months)</td>
<td>861</td>
<td>76.8</td>
<td>212</td>
<td>70.0</td>
</tr>
<tr>
<td>Alcohol Abuse (12 months)</td>
<td>312</td>
<td>27.9</td>
<td>65</td>
<td>21.4</td>
</tr>
<tr>
<td>Alcohol dependence (12 months)</td>
<td>122</td>
<td>10.9</td>
<td>23</td>
<td>7.6</td>
</tr>
<tr>
<td>Pre-trauma Alcohol use</td>
<td>462</td>
<td>41.2</td>
<td>99</td>
<td>32.7</td>
</tr>
<tr>
<td>Binge Drinking (30 day)</td>
<td>461</td>
<td>41.1</td>
<td>100</td>
<td>33.0</td>
</tr>
<tr>
<td>12 month Drug Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/DSM disorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannabis use (12 months)</td>
<td>499</td>
<td>44.5</td>
<td>110</td>
<td>36.3</td>
</tr>
<tr>
<td>Cannabis abuse (12 months)</td>
<td>157</td>
<td>14.0</td>
<td>32</td>
<td>10.6</td>
</tr>
<tr>
<td>Pre-trauma Cannabis use</td>
<td>77</td>
<td>6.9</td>
<td>17</td>
<td>5.6</td>
</tr>
<tr>
<td>Cocaine Use</td>
<td>20</td>
<td>1.8</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>Sociodemographic / clinical characteristics</td>
<td>Bivariate</td>
<td></td>
<td>Multivariate</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>OR</td>
<td>95% CI</td>
<td>Sig</td>
<td>Exp(B)</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 31</td>
<td>0.42</td>
<td>0.09-0.67</td>
<td>0.02</td>
<td>0.56</td>
</tr>
<tr>
<td>31-40</td>
<td>0.51</td>
<td>0.08-0.78</td>
<td>0.04</td>
<td>0.78</td>
</tr>
<tr>
<td>41-50</td>
<td>0.82</td>
<td>0.43-1.56</td>
<td>0.1</td>
<td>0.89</td>
</tr>
<tr>
<td>>50</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3.73</td>
<td>1.67-6.78</td>
<td>0.02</td>
<td>1.41</td>
</tr>
<tr>
<td>Female</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yoruba</td>
<td>1.62</td>
<td>0.9-2.31</td>
<td>0.06</td>
<td>1.14</td>
</tr>
<tr>
<td>Igbo</td>
<td>1.44</td>
<td>0.56-2.22</td>
<td>0.08</td>
<td>0.92</td>
</tr>
<tr>
<td>Hausa</td>
<td>1.33</td>
<td>0.89-2.14</td>
<td>0.09</td>
<td>1.13</td>
</tr>
<tr>
<td>Minority Tribes</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Currently Married</td>
<td>0.52</td>
<td>0.09-0.78</td>
<td>0.04</td>
<td>0.82</td>
</tr>
<tr>
<td>Not currently married</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Alcohol Using Behaviors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alcohol Abuse</td>
<td>5.19</td>
<td>3.23-10.13</td>
<td>0.01</td>
<td>2.73</td>
</tr>
<tr>
<td>Pretrauma alcohol use</td>
<td>6.21</td>
<td>2.92-10.32</td>
<td>0.001</td>
<td>3.11</td>
</tr>
<tr>
<td>Binge Drinking (30 days)</td>
<td>4.90</td>
<td>2.28-9.41</td>
<td><0.01</td>
<td>2.91</td>
</tr>
<tr>
<td>No alcohol use</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Drug Using behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannabis Abuse</td>
<td>3.94</td>
<td>2.19-7.44</td>
<td>0.03</td>
<td>2.14</td>
</tr>
<tr>
<td>Pretrauma cannabis use</td>
<td>1.92</td>
<td>1.17-2.54</td>
<td>< 0.05</td>
<td>1.24</td>
</tr>
<tr>
<td>Pretrauma alcohol & cannabis use</td>
<td>7.78</td>
<td>4.29-15.63</td>
<td><0.001</td>
<td>5.62</td>
</tr>
<tr>
<td>Benzodiazepine Abuse</td>
<td>1.17</td>
<td>0.56-1.93</td>
<td>0.9</td>
<td>0.83</td>
</tr>
<tr>
<td>No drug use (Ref)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Cl: Confidence Interval

Table 3
Multivariate Associations with Severity of Injury
DISCUSSION

In this study, we examined the prevalence of use and abuse of alcohol and drugs as well as socio-demographic correlates and risk factors for injury among trauma center patients in Ibadan, Nigeria. We found that a significantly high proportion of injured patients met criteria for alcohol abuse, reported pretrauma combined alcohol and drug use, and binge drinking in past 30 days compared with their non-injured counterparts.

One of the strength of this study is that it the first study in Nigeria aimed at identifying individuals with substance use problems in a trauma centre. Our findings corroborate other studies reporting a strong association between alcohol and injuries. (19-21). Our sample appeared to be a high-risk population in terms of alcohol and other drug use. This may support a recent report by the World Health Organization that in Nigeria, within the last decade there has been a rapid increase in alcohol availability (production/importation) and alcohol consumption across all age groups (22).

A significant segment of the injured patients reported a history of family alcohol problems, a finding that has implications for the initiation as and the continued use of alcohol by the patients. As with alcohol use, a significant proportion of the respondents reported a family history of drug problem. As with alcohol use patterns, familial influences has a strong effect on substance use patterns and require to be addressed for an effective intervention directed towards drug using behaviors (23).

We found that almost one in three injured patients in this study sample, met the criteria for alcohol abuse or dependence. This figure is within the range of 32% reported in the in United States,(21) and 39% reported in Australia (24). Compared with 1.7% from adults in primary care,(25) and 0.5% in the general population in Nigeria,(26) rates from the present study are disproportionately high. A potential explanation is that primary care patients are typically older and include more women than a group of trauma patient (27).

Although, we found that about 7% of the injured sample reported pre-trauma cannabis use, about two of every five of them reported combined pre-traumatic cannabis and alcohol. Similar reports have been given (11,28).

Our results indicate that prevalence rates of drugs other than cannabis were seemingly low, however, the finding that opioids and prescription medications mostly benzodiazepines were reported in trauma patient substantiates the importance of incorporating alcohol and substance use screening and brief interventions into trauma care.

Reflective of the local context, the estimates of psychoactive substance abuse in trauma patients obtained from this study can be used to inform policy and strategies that aim to use trauma centers to identify persons with substance use problems with the ultimate goal of reducing the prevalence of injuries.

This study highlights that patients who are receiving their healthcare in emergency care settings have high rates of substance use problems that are rarely addressed or that patients are likely to discontinue with, once the emergent health issue is resolved. Thus, it is critical that studies highlighting ways to integrate trauma patients into treatment services for alcohol and substance use should be carried out. Moreover, several of such patients may be willing to address their substance use issues (29).

The present study is limited by a number of factors including inability to carry out toxicological assessment. The generalisability of our research findings to other trauma centres within Nigeria is another area of caution, in view of diverse cultural and religious bias to substance use. The CIDI being a highly structured instrument could have been a bit lengthy for administration in trauma patients who require emergency attention. Although, this potential limitation was overcome among those who were admitted to the trauma unit, short screening instruments would be more appropriate for trauma patients. The possibility of selection bias in our control group should also be entertained.

The ISS also has some limitations, for example, an error in AIS scoring is transferred to the ISS, different injury patterns may yield the same ISS score and injuries to different body regions are not weighted, full description of patient injuries is not known prior to intervention. Also data from the ISS have issues of analysis as results of the somewhat skewed distribution. Also combination of modestly severe injuries may result in a higher ISS score than a fatal head injury. Furthermore, ISS may require special skill to ensure accuracy and reliability (30). There is also the issue of patient’s risk profile including age and interval between injury and hospital admission. Which are not evaluated by ISS. For example, we found that the mean ISS score was very high in the present study 41.3 SD (11.2). This may be adduced to a number of factors; firstly, the waiting period before emergency intervention was given was quite long because of dearth in number of health personnel is a potential reason. Secondly, majority of Nigerians pay “out of pocket”. Thus services are not offered until payment is made. Thus it is suggested that a fourth obligatory Hospital Trauma Index (31), grading from 0 to 5 be calculated , the maximum ISS then being 100 (32).

In conclusion, this study has shown that trauma patients have high prevalence of alcohol and drug use and substance related disorders. Therefore trauma
patients require routine toxicological screening to provide basis for preventive programs or referrals for them. There is a need for more research in this area taking into consideration our limitations in this area.

ACKNOWLEDGEMENTS

To the Director of Planning, Research and Statistics, Oyo state Ministry of Health, Ibadan for granting ethical approval for this study and co-ordinating staff of the casualty department and psychiatric unit of Ring Road State Hospital, Ibadan.

REFERENCES

