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Abstract 
Improving agricultural productivity and food security while reducing land 

degradation and poverty using sustainable agricultural intensification practices 

(SAIPs) has been a key development policy agenda in Ethiopia. However, investment 

in sustainable agricultural intensification practices remains low. Using a 

multivariate probit (MVP) and an ordered probit model (OPM), this paper 

investigates the factors influencing farmers’ choice decisions and the extent of 

investments in eight SAIPs including improved crop varieties, inorganic fertilizers, 

pesticides, organic fertilizers, cereal-legume rotation, vegetation, drainages and soil 

conservation structures based on 385 household and 1465 plot surveys in the 

Ethiopian central highlands. Results reveal that some practices in major crop 

production are complementary while others are substitutable, and the factors had 

heterogeneous impacts on the choice decisions of farmers to invest in multiple 

SAIPs. Overall, results reveal variables such as crop income, livestock holding, 

access to extension and credit services, income diversification, membership to 

agricultural cooperatives, and agricultural commercialization clusters are 

important in determining choice decisions and the extent of investments in multiple 

SAIPs. Complementarity between practices and factors that positively determine 

investments in sustainable practices should be taken into consideration in 

agricultural policies. Specifically, strengthening local institutions (extension, 

microfinance, and cooperatives) and training on SAIPs and income diversification 

need to be in place to enhance sustainable production.   
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Introduction 
 

Agriculture is the most important economic sector in Ethiopia. It constitutes about 

33% share of Gross Domestic Product (GDP), contributes 25% to average real 

GDP growth, generates 82% of export earnings, and absorbs more than 66% of the 

labor force (EEA, 2021). It also provides an incentive to reduce poverty and 

improve food security and livelihoods, yet yields are low (2.9 t/ha for cereals 

compared to a global average of 4 t/ha) and food insecurity affects more than 

16.7% of the population (CSA, 2021; FAO et al., 2021; Mare et al., 2022). Land 

degradation, soil nutrient depletion, climate change and low investments in 

sustainable agricultural intensification practices (SAIPs) have limited agricultural 

production and productivity, leading to food insecurity and poverty (Etongo et al., 
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2018; Horner and Wollni, 2021; Nigussie et al., 2018; Smith et al., 2017; 

Teklewold et al., 2013). Land degradation is particularly severe in the Ethiopian 

highlands where 23% of the cultivated land is adversely affected (Gashaw et al., 

2014; Nyanga et al., 2016). This underlines the need to enhance investment in 

SAIPs for improving productivity, food security, and conserving resources.    

 

Investments in SAIPs are the main concern in SSA highlands, where rain-fed 

farming on the hillside often causes soil erosion leading to low yields and food 

insecurity (Abera et al., 2020; Nyanga et al., 2016). Subsequently, for several 

decades, a range of SAIPs have been promoted in SSA including Ethiopia (Kassie 

et al., 2015; Teklewold et al., 2013). These practices include land management 

and agronomic practices such as crop rotation, compost, crop residues, soil 

conservation structures, drainage (farm water management), and vegetation to 

improve soil fertility and maintain soil organic matter, and modern purchased 

inputs such as improved seeds, inorganic fertilizers, and pesticides (herbicides, 

fungicides, and insecticides) to sustainably enhance productivity (Abera et al., 

2020; Kassie et al., 2015; The Montpellier Panel, 2013). Farmers have started to 

invest in SAIPS. Investments referred to all exertions in the form of labor and 

fiscal and financial capital for some benefits.  

 

Several studies in developing countries testified that SAIPs increased productivity, 

reduced poverty, built resilience to shocks, and maintained the quality of resources 

(Hundie et al., 2017; Liao and Brown, 2018; Pretty et al., 2011; Reddy et al., 

2020; Vanlauwe et al., 2019). While recognizing that sustainability is a disputed 

term, we identify farm practices that are commonly viewed as sustainable as they 

maintain yields and minimize adverse impacts on the environment. These include 

soil conservation structures, drainages, manure/compost, vegetation, rotation, 

improved seeds, inorganic fertilizers, and prudent use of pesticides. SAIPs is a 

broad term used to describe genetic materials, inputs, equipment, structures and 

farming techniques, and evolving processes that can vary in time and space 

(Godfray, 2015; Pretty and Bharucha, 2014; Ruzzante et al., 2021). Despite 

extensive past efforts from research and development actors to promote SAIPs and 

benefits, SAIPs investments remain low in Ethiopia (Kassie et al., 2015; Teshome 

et al., 2016; Teklewold et al., 2013; Zeweld et al., 2019). Evidence suggests that 

SAIP investments by smallholder farmers are constrained by several, often 

interrelated factors. These factors include household demographics, resource 

endowments, institutional factors, weather conditions, farm characteristics, and 

risk and uncertainties (Asfaw et al., 2016; Kassie et al., 2013; Feder et al., 1985; 

Manda et al., 2016).  

 

Several studies in developing countries have reported that SAIP investment 

decisions at the household level vary according to households’ human capital 
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including age, education, and family size, and resource endowments such as 

livestock holding, farm size and income (Ahmed, 2015; Hundie et al., 2017; 

Jabbar et al., 2020; Kassie et al., 2013; Ndiritu et al., 2014; Sileshi et al., 2019; 

Teklewold et al., 2013; Wainaina et al., 2016) and sex of the household head 

(Bekele et al., 2017; Ndiritu et al., 2014), plot characteristics including size, slope, 

fertility and distance (Ahmed, 2015; Asfaw et al., 2016;  Hundie et al., 2017; 

Kassie et al., 2015; Ndiritu et al., 2014; Wainaina et al., 2016), institutional 

factors including extension service, cooperative/group membership, market access 

and access to credit (Asfaw et al., 2016; Kassie et al., 2015; Kassie et al., 2013; 

Ndiritu et al., 2014; Wainaina et al., 2016), and weather conditions such as 

rainfall, and temperature (Asfaw et al., 2016; Jabbar et al., 2020; Kassie et al., 

2015; Kassie et al., 2013; Wainaina et al., 2016).  

 

Nonetheless, most of the above prior studies focused on the single commodity of 

project interest particularly maize despite the fact that farmers grow several crops 

which often compute for land, capital, and labor. With the exception of the studies 

by Yirga et al. (2015) who included improved varieties of barley, potato, wheat, 

and faba bean crops, and Horner and Wollni (2021) who considered improved 

varieties of maize, wheat, and tef crops, and inorganic and organic fertilizers in 

their technology adoption analysis, with little attempt in sustainable agronomic 

and land management practices. In addition, investment in soil and water 

conservation practices (long-term) is not crop-specific but rather in a blend of 

crops. Further, smallholder farmers often face choice decisions between multiple 

SAIPs that have to be made simultaneously to solve multiple constraints faced by 

farming. Hitherto, most previous studies have also focused on a single 

technology/practice (Amsalu and de Graaff, 2007; Asrat and Simane, 2017; 

Mekuriaw and Horni, 2015; Mihretu and Yimer, 2017; Tefera et al., 2020), which 

ignores the interdependent and endogeneity of practices and choice decisions 

(Yirga et al., 2015; Kassie et al., 2015).  Failure to recognize the 

interdependencies of SAIPs’ choice in examining resource allocation constraints 

results in biased and inefficient estimates.  

 

Overall, land degradation and low agricultural productivity persist as a challenge, 

partly due to problems with investments and sustained use of SAIPs, particularly 

in the Ethiopian central highlands (Abera et al., 2020). To this end, these areas 

require SAIPs policies, programs, strategies, and development measures. There is 

a strong need to generate information on the determinants of choice decisions and 

the extent of investments in SAIPs. Previous studies on the investments of SAIPs 

are largely limited to a few practices; they ignored the use of pesticides as farm 

inputs which is important to sustain production and productivity in the face of 

climate change, and failed to address the influence of income diversification and 

agricultural commercialization cluster in their analysis. This paper looks into these 

identified gaps in the literature by investigating factors influencing choice 
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decisions and the extent of investments in SAIPs at the plot level in the Ethiopian 

central highlands.  

 

Materials and Methods 
The study areas 
The study was conducted in the west Shewa zone of Oromia and North Shewa 

zone of Amhara regional states. Four districts namely Ejere and Toke Kutaye from 

west Shewa, Basona Werana and Mojana Wedera from North Shewa zone were 

selected. Further, twelve kebeles
1
three from each woreda were included in the 

study (Figure 1). Ejere has 26 rural and 3 urban kebeles. Toke Kutaye has 23 rural 

and 4 urban kebeles. Basona Werana has 30 rural and 3 urban kebeles, and Mojana 

Wadera has 13 rural and 2 urban kebeles.  

 

These areas were chosen for this study because they are an area where knowledge 

about severe land degradation and SAIPs measures is widely available (Gashaw et 

al., 2014). The Ethiopian central highlands are characterized by a densely 

populated which resulted in frequent splits and shrinking of farmlands and 

expansion to hillsides farming, and 50% of arable land for agricultural production 

is affected by soil degradation in terms of erosion and nutrient depletion, which in 

turn results in low crop productivity, persistent poverty and food insecurity (EEA, 

2021; Tesfa and Mekuriaw, 2014). Smallholder agriculture accounts for more than 

90% of economic activity. Most farmers undertake mixed crop-livestock 

production mainly under rainfed conditions. The areas are dominated by the 

cultivation of cereals including tef, wheat, barley, and maize, legumes mainly faba 

bean, field peas, and chickpeas, and other crops such as potatoes and oilseeds 

(CSA, 2021.) The dominant livestock types include dairy cattle (both zebu and 

cross-bred), sheep, goats, equines, and chickens.  

 

                                                           
1
 The smallest administrative unit in Ethiopia 



Wudineh et al.,                                                                                   [5] 

 

 

 

 
Figure 1. Map of study areas 
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Data collection and sample selection techniques  
The required dataset was collected using combinations of standard data collection 

methods. These methods included desk review and qualitative and quantitative 

surveys. The desk review was made from print (both published and unpublished 

material sources) and electronic source. Information obtained from desk review 

has helped to design survey instruments of structured and semi-structured 

questionnaires. Supplementary information was collected through focus group 

discussions (FGDs) employing a qualitative approach. Qualitative information 

was collected from selected farm households (five to ten members per FGD per 

kebele), and experts representing different disciplines both at the district and 

kebele level Office of Agriculture. This has helped to understand and details of 

SAIPs and socioeconomic variables and describe and narrate quantitative results. 

Finally, the quantitative data were collected through a quantitative survey method.  

 

Three-stage sampling techniques were used to select the regions, zones, districts, 

kebeles, and farm households. Based on the widely available knowledge on SAIP 

measures, first, two zones from two regions were purposively selected. Second, 

two districts and three kebeles were randomly selected from a list of districts and 

kebeles recorded by zonal and district levels of the Office of Agriculture based on 

SAIPs implementation. Finally, 23-39 sample households in each kebeles were 

selected based on a proportionate systematic random sampling technique.  

 

The population of interest for this study was farming households as the objective 

of this study was to investigate the determinants of investments in SAIPs because 

investment in sustainable agricultural practices is not mainly crop-specific as 

opposed to previous studies. To obtain a representative sample size for this study, 

the sample size determination formula by Cochran (1977) was employed:  

Ns =
Z2∗pq

e2
  = 385                                                                                         (1)                                             

Where 𝑁𝑠 is the required sample size, Z is the inverse of the standard cumulative 

distribution that corresponds to the level of confidence, p is the estimated 

proportion of an attribute present in the population, q= 1-p, and e is the desired 

level of precision. The value of Z is found from the statistical table which contains 

the area under the normal curve of 95% confidence level, 5% precision level, and 

assumed the occurrence rate of p = 50% (the ratio of farm households who at least 

invested in one of the SAIPs on their plots), and hence q = 50%, and finally the 

Cochran formula gives a total of 385 samples to sufficiently represent the target 

population in the study areas.  

 

Primary data were collected using a structured and pre-tested questionnaire 

designed with CSPro 7.5 software and a computer-assisted personal interview 

(CAPI). The data collected included information about households’ demographics, 

asset ownerships, plot characteristics, land management practices, inputs used, 
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access to institutional services, and their perceptions of land degradation. The 

survey questionnaire was administered by trained and experienced enumerators 

who have knowledge of local farming systems and languages. The survey was 

conducted between January and March of 2021, referring to the 2019/20 cropping 

season. In addition, we collected secondary data about kebele level rainfall and 

temperature (point data) from a national meteorological agency (NMA) through an 

official letter. Collected data were processed and analyzed using a complete and 

integrated statistical software Stata 15 package. 

 
Modeling framework 

Farm households’ choice decisions to invest in available individuals or several 

technologies at a time was theoretically framed on random utility theory 

(McFadden, 1974) with a bounded rationality framework (Simon, 2000). The 

standard classical random utility theory assumes that smallholder farmers as 

rational economic agents with perfect information make choice decisions to invest 

in available technologies and maximize utility. However, this is highly criticized 

for human beings who have limited cognitive ability to make choice decisions to 

maximize utility because of limited information and knowledge (Simon, 2000). 

Henceforth, there is a shift from standard rationality to real bounded rational 

theory for economic agents to make optimal decisions which is sufficient to 

compare alternative utilities (Simon, 2000). While the utility is not directly 

observed the actions of farm households are often observed through the choice 

decision they make. Thus, the observed outcome of farmers’ choice decisions to 

invest in multiple practices can be modeled following random utility formulation. 

Consider the hth households (h = 1, ..., H) which is challenging a decision on 

whether or not to invest in the available sustainable agricultural practices on the 

same or another plot p (p = 1, …, P) over a specified time horizon.  

 

Suppose, Ui represent the perceived expected benefits to the farmer from the 

conventional production system, and Um  represent the benefits of investing in the 

mth SAIPs, and  Xi and  Xm are vectors of explanatory variables that influence the 

perceived benefits from technology choices i and m. Following Greene (2012), the 

utility of a farm household is specified as:  

Um = βm
′ Xm + εm  and Ui = βi

′Xi + εi                                                              (2) 

Where 𝛽𝑚 and  𝛽𝑖 are parameters to be estimated, and  𝜀𝑚 and 𝜀𝑖 are the stochastic 

noise terms, presumed to be independently and identically distributed. It follows 

that the perceived benefit or utility for the hth household from choice m is greater 

than the utility derived from option i is presented as: 

Uhm(βm
′ Xm + εm)  > Uhi(βi

′Xi + εi), m ≠ i                                       (3) 

Assume that Y is the choice decision to invest in m so that Y takes the value of 1 

if m is chosen and 0 otherwise, the probability that a farm household invests in 

SAIPs conditional on X can be specified as: 
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𝑃(𝑌) = 1|𝑋 = 𝑃(𝑈ℎ𝑚 > 𝑈ℎ𝑖)                                                                        (4)                                                                                                                  

                    = P(βm
′ Xh + εm − βi

′Xh − εi > 0|X)  

                   = P(βm
′ Xh − βi

′Xh + εm − εi > 0|X)  

                   = P(β∗Xh + ε
∗ > 0|X) = F(β∗Xh) 

Where P is a probability function,  ε∗ = εm − εi is a random error term, 𝛽∗ =
βm
′ − βi

′ is a vector of unknown parameters to be estimated and can be interpreted 

as the net influence of the vector of explanatory variables influencing choice 

decisions of SAIPs and  F(β∗Xi) is the cumulative distribution function of 𝜀∗ 

evaluated at  𝛽∗𝑋𝑖. The distribution of F depends on the distribution of  𝜀∗, and 

utilities and explanatory variables are defined above.  

 
Empirical estimation strategies 

Both descriptive and econometric models were used for the analysis. The 

descriptive analysis involves summarization of dependent and independent 

variables used in the econometric models. A MVP model was used for estimating 

the determinants of farmers’ choice of interrelated SAIPs, whereas an ordered 

probit model was used for estimating the determinants of the extent of investments 

in SAIPs. 

 
A multivariate probit model   

Farm households choose a mix of farm practices and inputs to deal with multiple 

farming constraints, implying that the choice decisions to invest in these 

technologies is integrally multivariate. Attempting single equation modeling such 

as probit, logit, Tobit, or multinomial model would exclude useful economic 

information contained in interdependent and simultaneous choice decisions to 

invest in technologies (Dorfman, 1996). We employ MVP model, which 

simultaneously models the influence of the set of explanatory variables on each of 

the different technologies while allowing for potential correlation between 

unobserved disturbances, as well as the relationship between the decision to invest 

in different SAIPs (Asfaw et al., 2016; Kassie et al. 2015; Teklewold et al., 2013). 

The possible sources of correlation in MVP model may be 

complementarity/synergy (positive correlation) or substitutability/trade-off 

(negative correlation between different practices (Kassie et al., 2015). Correlations 

(positive or negative) may also occur if there are unobservable household-specific 

features that influence several choice decisions but cannot be easily captured by 

measurable proxies (Ahmed, 2015). Attempting univariate probit or logit models 

while such correlation exists would result in biased and inefficient estimates 

(Greene, 2012; Kassie et al., 2015).   

    

The MVP model consists of eight binary choice equations which include 

investments in improved crop varieties (V), crop rotation (R), inorganic fertilizers 
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(F), organic fertilizer (O), chemicals (C), drainage (D), vegetation (P) and soil 

conservation structures (S) which can be simultaneously analyzed. Following the 

above utility equations (2-4), the net benefit (Yhpm
∗ ) that the farmer derives from 

investing in the mthSAIPs is a latent variable determined by observed explanatory 

variables and error terms. The equations for both latent and observed binary 

variables are: 

Yhpm
∗ = Xhpmβmp + �̅�𝑖𝛾𝑘 + εhp, (m= V, R, F, O, C, D, P, S)                         (5) 

Yhpm = {
1 if Yhpm

∗ > 0

0  otherwise  
                                                                                    (6) 

Where Yhpm
∗  is a latent variable that holds the degree to which a farm household 

views SAIPs m as useful and its estimation is based on observable Yhpm which 

indicates whether or not a farm household invested in a particular SAIPs on 

his/her on pth plot in the reference year, Xhp represents a vector of observed 

household and plot-level characteristics, and other factors, βmp is a vector of 

parameters to be estimated, X̅ is a vector of the mean value of Mundlak fixed 

effects (plot-varying variables including slope and fertility conditions of plots) 

added additionally to control for unobserved heterogeneity (Mundlak, 1978; 

Wooldridge, 2002) and  εhp (for m=1, 2, …8) represent the unobserved random 

error terms, which are jointly follow a multivariate normal distribution with zero 

conditional mean and variance-covariance matrix (𝜔), is normalized to unity on 

the leading diagonal, and correlation ρmj = ρjm as off-diagonal elements, and (ℇV, 

ℇR, ℇF, ℇO, ℇC, ℇD, ℇP, ℇS,)
’
 ~MVN (0, ω), is shown in (eqn.7).  

 𝜔 =

(

 
 
 
 
 

1 𝜌𝑉𝑅 𝜌𝑉𝐹 𝜌𝑉𝑂 𝜌𝑉𝐶 𝜌𝑉𝐷 𝜌𝑉𝑃 𝜌𝑉𝑆
𝜌𝑅𝑉 1 𝜌𝑅𝐹 𝜌𝑅𝑂 𝜌𝑅𝐶 𝜌𝑅𝐷 𝜌𝑅𝑃 𝜌𝑅𝑆
𝜌𝐹𝑉 𝜌𝐹𝑅 1 𝜌𝐹𝑂 𝜌𝐹𝐶 𝜌𝐹𝐷 𝜌𝐹𝑃 𝜌𝐹𝑆
𝜌𝑂𝑉 𝜌𝑂𝑅 𝜌𝑂𝐹 1 𝜌𝑂𝐶 𝜌𝑂𝐷 𝜌𝑂𝑃 𝜌𝑂𝑆
𝜌𝐶𝑉 𝜌𝐶𝑅 𝜌𝐶𝐹 𝜌𝐶𝑂 1 𝜌𝐶𝐷 𝜌𝐶𝑃 𝜌𝐶𝑆
𝜌𝐷𝑉 𝜌𝐷𝑅 𝜌𝐷𝐹 𝜌𝐷𝑂 𝜌𝐷𝐶 1 𝜌𝐷𝑃 𝜌𝐷𝑆
𝜌𝑃𝑉 𝜌𝑃𝑅 𝜌𝑃𝐹 𝜌𝑃𝑂 𝜌𝑃𝐶 𝜌𝑃𝐷 1 𝜌𝑃𝑆
𝜌𝑆𝑉 𝜌𝑆𝑅 𝜌𝑆𝐹 𝜌𝑆𝑂 𝜌𝑆𝐶 𝜌𝑆𝐷 𝜌𝑆𝑃 1 )

 
 
 
 
 

+ (−)        (7) 

Where ρ (rho) stands for the pairwise correlation coefficient of the error terms 

corresponding to any two investments in SAIPs. The fundamental of this 

assumption is that equation (5) produces an MVP model that jointly represents 

decisions to invest in particular SAIPs. The off-diagonal elements in the 

covariance matrix represent unobserved correlation between the error terms of 

several latent SAIPs equations, which can affect the choice of technologies. If 

each of the off-diagonal elements becomes non-zero, then equation 7 carries 

important information on correlation.  
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Ordered probit model 

An ordered probit model (OPM) was used for examining the extent of investments 

in SAIPs. Several options exist for measuring the extent of adoption including 

Tobit (Dadi et al, 2001; Mwaura et al., 2021), Cragg’s double hurdle (Danso-

Abbeam et al., 2019), Heckman two-stage (Legesse et al, 2001), ordered probit 

(Aryal et al., 2017; Kiconco et al., 2022; Mengsitu and Assefa, 2019; 

Teklewold et al., 2013), and count data models (Kolady et al., 2021). These 

approaches have their own limitations, for example, in using Tobit, Heckman two 

-stages, and double hurdle models, the proportion of land under given 

technologies is used as the dependent variable implying less attention is paid to 

the number of package technologies adopted. In using count data models like 

Poisson, the assumption that all technologies have the same probability of 

adoption has a serious problem while they have a different probability of being 

adopted (Teklewold et al., 2013).  

 

Several studies have used an OPM model for estimating the extent/intensity of 

adoption of several technologies as the MVP models only consider probability 

choices (Aryal et al., 2017; Kiconco et al., 2022; Mengsitu and Assefa, 2019; 

Teklewold et al., 2013). The study conducted by Gonzaga et al. (2019) also used 

an ordered logit to estimate the intensity of the adoption of multiple technologies. 

These studies, however, are with limitations in considering the number of 

technologies (count data) as ordinal data and could have been estimated with a 

Poisson regression model. More specifically, ordered probit/logit models are often 

used to account for the ordinality nature of outcome variables. We, therefore, use 

an OPM to investigate the determinants of the extent of investment in a bundle of 

SAIPs by scaling down the number of eight SAIPs (unrestricted) to five (restrict) 

extent levels (ordinal). Following Wooldridge (2002), the OP model, which allows 

the response variable to have more than two ordinal categorical is specified as: 

  𝑌ℎ𝑝
′ =

{
 
 

 
 
1  none of SAIPs                     
2  low lovel (1 − 3 SAIPs)    
3  moderate level (4 SAIPs)

4  high leve (5 − 7 SAIPs)   

 very high (8SAIPs)              

=   Xhp
′ β + 𝑢𝑖                                 (8) 

Where Yhp
′  is a latent variable representing the extent of investments in SAIPs at a 

plot level, and 𝑢𝑖 is the error term which is assumed to be normally distributed 

with a standard normal cumulative function. For m = 1-4 categories, following a 

standard ordered probability model, the probability of observing outcome i 

corresponds to: 

Pr(outcomej = i) = Pr(mi−1 < Xi
′β + ui < αi)                                 (9) 

Where β is a vector of coefficients to be jointly estimated with the cut points α1, 

α2, …, αm−1 and m is the number of possible outcomes. For investment levels in 

SAIPs, both the likelihood ratio test (Greene and Hensher, 2010) and Akaike and 
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Bayesian information criterion (AIC and BIC) are used for comparison of 

unrestricted (L) and restricted (𝐿∗) OP models. That is, λ=L∗/L; 0≤λ≤1, and 

LR=2(ln L - ln 𝐿∗) ~ 𝜒𝑚
2  (m restriction), higher pseudo 𝑅2 widely dispersed cut-

points, and a smaller of AIC and/ or BIC indicates better goodness of fit.  

 
Description and measurement of variables 

The dependent variables in the MVP model include eight dummy variables 

corresponding to investments in improved crop varieties, inorganic fertilizers, 

pesticides, cereal-legume rotation, organic fertilizers, drainages, vegetation, and 

soil conservation structures. Brief description, measurement and summary 

statistics are given in Table 1.  

 
Table 1. Description and summary statistics of dependent variables (N=1465) 

Variables  Description  measures Rates (%) 

Improved variety  

Used improved varieties of wheat, tef, barley, faba bean 
and others, but recycled at most four seasons for self-
pollinated and ones for cross-pollinated (maize) crops  

1=yes, 0=no 47 

Cereal-legume rotation Used legumes (mainly faba bean, field peas and chickpea) 
as a precursor crop for rotation 

1=yes, 0=no 32 

Inorganic fertilizer  Used at least one blended fertilizer (NPS/NPSB) or urea 1=yes, 0=no 84 

Organic fertilizer  Used manure or compost 1=yes, 0=no 19 

Pesticides  Used at least one pesticide (herbicide, fungicide, 
insecticide)  

1=yes, 0=no 69 

Drainage  Used either ditches or waterways 1=yes, 0=no 56 

Vegetation  Used at least one of the forage trees, broadleaved trees or 
grasses 

1=yes, 0=no 11 

Soil conservation 
structures  

Used at least one practice (terrace, soil bund, stone bund, 
soil-stone bund or fanya juu) 

1=yes, 0=no 45 

Source: Own survey, 2021 

 

Based on economic theories, empirical evidence, and field observation, relevant 

explanatory variables were included in the econometric models (Aryal et al., 

2017; Dorfman, 1996; D’Souza et al., 1993; Kassie et al., 2013; Kassie et al., 

2015; Kolady et al., 2021; Teklewold et al., 2013). The explanatory variables 

included in this study can be reported as: (1) household characteristics, (2) asset 

endowments, (3) plot characteristics, (4) institutional factors, and (5) weather 

conditions. Brief descriptions, measures, summary statistics and expected sign of 

the variables are presented in Table 2.  
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Table 2. Description and summary statistics of explanatory variables 

Variables                   Description Mean Std. Dev. Expected 
sign  

Continuous      

Age Age of the household head in years 46 11.4 +/- 

Education Years of schooling of the household members  5 2 + 

Family size  Family size in number of working-age groups 4 2 + 

Livestock Livestock holding in tropical livestock unit (TLU) 6.3 3.8 + 

Plot size  Size of the plot under consideration in ha 0.48 0.37 +- 

Temperature  Point (kebele level) historical (1981-2018) maximum 
temperature in coefficient of variation (456 observation) 

8.7 0.8 +- 

Rainfall Point (kebele level) historical (1981-2018) rainfall in 
coefficient of variation (456 observation) 

122.6 19.3 +- 

Plot distance  Distance of the plot from a residence in waking minutes  23 22 - 

Diversification Intensity of income diversification (index) (%) 30 25 - 

Income Cash income earned from crops sale (1000 ETB) 23.51 21.7 + 

Salary  Monthly salary of the head of development agents (1000 
ETB) 

8.386 1.87 + 

Peer farms  Number of adjacent peer farmers reported 2 2 + 

Dummy  

Sex  Sex of the household head (male=1, female=0) 0.92 0.28 +/- 

Certificate  If a household had a land certificate for his/her plot 
(Yes=1, No=0) 

0.86 0.34 + 

Credit  If a household received credit to buy inputs (Yes=1, 
No=0) 

0.23 0.42 + 

ACC If a household had at least one plot in agricultural 
commercialization cluster (Yes=1) 

0.18 0.38 + 

Membership Household’s membership to agricultural cooperative 
(Yes=1, No=0) 

0.31 0.46 +/- 

Soil fertility status Good (Yes=1, No=0) 0.26 0.44 +- 

Poor (Yes=1, No=0) 0.09 0.29 +/- 

Slope of the plot Gentle (Yes=1, No=0) 0.35 0.48 +/- 

Steep (Yes=1, No=0) 0.17 0.38 +/- 

Location  The study area (West Shewa zone=1, North Shewa=0)  0.50 0.5 +/- 

Perception  A household perceived that a plot was degraded (Yes=1) 0.29 0.45 +/- 

Training  If a household received training on crop production 
(Yes=1, No=0) 

0.54 0.5 + 

Source: Own survey, 2021 

 

Results and Discussion 
Descriptive results  

In the study area, smallholder farmers were found to produce a blend of crops (Figure 2). 

From a total of 1465 plots, most (36%) of the plots were covered by wheat followed by tef 

(24%), faba bean (13%), barley (12%) and other crops including maize, sorghum and 

potato (15% in sum). On average, 65%, 49%, 18%, 42%, and 30% of wheat, tef, faba 

bean, barley, and other crop plots were sown with improved crop varieties, respectively 

(Table 3). Legume-cereal-crop rotation was used on 47%, 26%, 56%, and 9% of wheat, 

tef, barley, and other crops plots, respectively. Inorganic fertilizers were applied on 92%, 

88%, 69%, 77%, and 77% of wheat, tef, faba bean, barley, and other crop plots, 

respectively. Organic fertilizer was used on 19%, 9%, 25%, 32%, and 16% of wheat, tef, 
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faba bean, barley, and other crop plots, respectively. About 76%, 75%, 59%, 58%, and 

60% of wheat, tef, faba bean, barley, and other crop plots were treated with pesticides, 

respectively. Drainage practices were used in 58%, 62%, 53%, 51%, and 50% of wheat, 

tef, faba bean, barley, and other crop plots, respectively. Live plants (vegetation) were 

used as a component of SAIPs on 11%, 10%, 13%, 15%, and 12% of wheat, tef, faba 

bean, barley, and other crop plots, respectively. On average, 44%, 39%, 56%, 57%, and 

38% of the plots covered by wheat, tef, faba bean, barley, and other crop had soil 

conservation practices, respectively. 

 

 
Figure 2. Distribution of plots by crops 

 
Table 3. Summary statistics of SAIPs by plots of major crops  
 

SAIPS Major crops (% of plots with SAIPs) 

Wheat 
(N=529) 

Tef 
(N=358) 

Faba bean 
(N=186) 

Barley 
(N=171) 

Other crops 
(N=221) 

Improved variety  65 49 18 42 30 

Cereal-legume rotation  47 26 X 56 9 

Inorganic fertilizer) 92 88 69 77 77 

Organic fertilizer  19 9 25 32 16 

Pesticides  76 75 59 58 60 

Drainage  58 62 53 51 50 

Vegetation (agroforestry)  11 10 13 15 12 

Soil conservation practices 44 39 56 57 38 

Source: Own survey data, 2021. Note: X= cereals  
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The distribution of plots by the number of SAIPs farmers invested in combinations 

is presented in Table 4. The majority (79%) of the plots were treated with more 

than two SAIPs, about 25% of the plots were treated with more than half (4) of the 

SAIPs. The likelihood of investing from two to three SAIPs increased by 30% and 

from three to four SAIPs increased by 12%, implying that the likelihood of 

investing in a combination of SAIPs is higher than single/no SAIPs. Compared to 

a possible combination of practices, the descriptive results showed full (100%) 

combinations for two and all (eight) SAIPs, and 88%, 68%, 66%, 50%, and 43% 

of combinations for seven, six, three, five, and four SAIPs, respectively. These 

results imply that farmers only invest in a subset of practices; though applying the 

whole practice would be more profitable for different reasons (Mponenla et al., 

2016). Moreover, descriptive results showed that most (77%) of plots were treated 

with both at least one external/purchased inputs such as improved seeds, inorganic 

fertilizers and pesticides, and sustainable practices such as land management 

practices (soil conservation structures, vegetation, and drainages,) and agronomic 

practices (cereal-legume rotation and organic fertilizers). The rest of the plots 

(14%) were treated with only external inputs while 8% of plots were treated only 

with sustainable practices, implying that the sole use of external inputs is much 

higher than the sole use of sustainable practices.   

 
Table 4. Distribution of plots by SAIPs combinations  
 

Number of SAIPs Freq. Percent  Cum. Combinations 

Possible (A) Observed 
(B) 

Proportion 
(B/A) *100 

 Zero (local) 16 1 1 1 1 100 

 One  62 4 5 8 1 13 

 Two 236 16 21 28 28 100 

 Three 421 29 50 58 38 66 

 Four 384 26 76 70 30 43 

 Five 200 14 90 56 28 50 

 Six 98 7 97 28 19 68 

 Seven 38 3 99 8 7 88 

 All (8) SAIPs 10 1 100 1 1 100 

Only external inputs 207 14     

Only LWMPs 122 8     

Both practices 1121 76.5     

     Total (N) 1465 100     

Source: Own survey, 2021 

 

Regarding the extent of investments in a combination of SAIPs, descriptive results 

showed that plots were treated with different number of SAIPs (Figure 3). The 

majority (49%) of the plots received low level of SAIPs (1-3) followed by 

moderate (26%) and high (23%).  
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Figure 3. Extent of SAIPs 

 
Econometric results  

Factors influencing the choice decisions of investments in SAIPs  

The MVP model is estimated with the maximum likelihood approach on plot level 

observation with Mundlak’s average plot varying variables. The goodness of the 

MVP model is evaluated using the Wald test [Wald chi2 (208) =1937.6, p=0.000], 

implying that the null hypothesis that all regression coefficients of explanatory 

variables in each equation are jointly equal to zero is rejected. More specifically, 

the explanatory variables in each equation contribute significantly to explain the 

decision to invest in SAIPs. The correlation between the covariance of the error 

terms is evaluated using the likelihood ratio test [Wald chi2 (28) =270.29, 

p=0.000] result implies the null hypothesis of no correlation between covariance 

of the error terms between the decision to invest in SAIP across eight equations is 

also rejected. More specifically, the correlation coefficient among the eight 

equations is significantly different from zero at a 1% level, implying that the MVP 

model best fits the dataset, which accounts for the unobserved correlations across 

decisions to invest in multiple SAIPs.  

 

Table 5 presents the simultaneous estimates of explanatory variables across eight 

equations and the correlations between error terms from MVP model results. It 

provides the direction and coefficient of the driving forces behind farmers’ choice 

decisions to invest in SAIPs. Results showed that the choice decision to invest in 

SAIPs is different and the factors driving the decision of each of them are also 

different but interrelated implying the heterogeneity in the decision to invest in 

SAIPs. Apart from the main variables of interest, the estimates of the MVP model 

revealed that a number of hypothesized household and plot characteristics, asset 
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endowments, institutional and environmental factors had a significant and 

differential impact on the choice decision to invest in SAIPs.  

 

Male headed households are more likely to invest in improved seeds and inorganic 

fertilizers than their counterparts. This is consistent with the findings by Therioult 

et al. (2016). Nigussie et al. (2018) also reported that gender of the household 

increases inorganic fertilizers adoption. However, it is in contrast with the findings 

by Ndiritu et al. (2014), who found gender had no effect on the adoption of 

improved seed and chemical fertilizers, and Yirga et al. (2015), who found that 

household type in terms of gender negatively affects adoption of improved barley 

seeds. The results indicate that female-headed managed plots have less chance of 

receiving improved crop varieties and inorganic fertilizers implying that 

technology adoption is not gender-neutral. The possible explanation for this is that 

female-headed households own fewer resources, information, and credit on these 

inputs which may limit them to use. We also found that the gender of the 

household declines the decision to invest in drainages, implying that male-headed 

households are less likely to use drainages on their plots. In other words, plots 

managed by female-headed households are more treated with drainage. The 

possible explanation for this is that female-headed households mainly operate their 

own plots, in which drainage activities can be easily implemented with oxen 

plows. 

 

Age of the household head was found to positively influence farmers’ decisions to 

invest in both cereal-legume rotation and soil conservation practices. This 

indicates that plots managed by older farmers were more treated with legumes as a 

precursor crop and soil conservation practices. This is consistent with the findings 

by Theriault et al. (2016) and Nigussie et al. (2018) who found that age of the 

household head impacts the adoption of soil conservation practices. The possible 

explanation for this is that older farmers have more experience with these 

practices than their counterparts. The results showed that the average years of 

schooling of the household members positively impacted farmers’ decisions to 

invest in improved seeds and declined farmers’ decisions to invest in soil 

conservation and vegetation (agroforestry) practices. This is in line with findings 

by Asfaw et al. (2016) who found that education of the household positively 

impacted the adoption of modern inputs including improved seeds and Nigussie et 

al. (2018) who found that education declines the adoption of soil and water 

conservation practices. The possible explanation for this is that farmers are at a 

level of education (5 years of schooling on average). The results highlight the 

important role of a household's education for the choice to invest in improved 

seeds because it helps to acquire more information about improved seeds and 

interpret the advantages.  
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The results revealed that family size in the working-age group negatively 

influenced farmers’ decisions to invest in most of SAIPs including improved 

seeds, drainages, and soil conservation practices, unexpectedly. This indicates that 

plots managed by a greater number of household members are less likely to 

receive improved seeds, drainages, and soil conservation practices.  This is in line 

with the findings by Jabbar et al. (2020) who found that family size negatively 

affected adoption of agricultural technologies. However, Ndiritu et al. (2014) and 

Kassie et al. (2015) found family size positively correlated with the adoption of 

soil and water conservation practices. The possible explanation for this is persons 

in the working-age group may engage in various non-farm activities (observed) 

which may limit them to invest their time in labor-intensive practices and have 

liquidity constraints to buy improved seeds.  

 

Livestock ownership positively and significantly influenced farmers’ decisions to 

invest in organic fertilizers (manure/ compost), but declined the use of inorganic 

fertilizers. This implies that farm households with greater numbers of livestock are 

more likely to invest in organic fertilizers but less likely to invest in inorganic 

fertilizers. This is in line with the findings by (Teklewold et al., 2013; Ndiritu et 

al., 2014; Kassie et al., 2015) who found that livestock holding positively affected 

adoption of manure. This might be for the obvious reason that the availability of 

manure depends on the size of livestock a household owns. The negative effect on 

the choice of inorganic fertilizers indicates that the use of manure/compost 

substitutes inorganic fertilizers use.  

 

The results revealed that plot size positively and significantly influenced the 

choice decisions of investments in drainage, but reduced choice decisions to invest 

in improved seeds, legume-cereal rotation, inorganic fertilizers, manure/compost, 

pesticides, vegetation, and soil conservation practices. This is similar to the 

findings by Kassie et al. (2015), Asfaw et al. (2016) and Nigussie et al. (2018) 

who found that increased farm size positively affected water conservation 

practices. It is contrary to the findings by Kassie et al. (2013) who found that plot 

size positively influenced the decision to invest in improved seeds, and Theriault 

et al. (2016) who found that plot size positively influenced the adoption of yield-

enhancing inputs (improved seeds and mineral fertilizers) and yield-protecting 

inputs (herbicides, fungicides, and insecticides). This implies that large-sized plots 

are more likely to be treated with drainage practices compared to other SAIPs.  

 

Temperature and rainfall are the most important weather variables which 

condition the use of modern inputs and soil-restoring practices. The results 

revealed that greater variability in maximum temperature positively and 

significantly influenced farmers’ choice decisions to invest in drainage and soil 

conservation practices. Jabbar et al. (2020) also reported that high variability in 

temperature positively impacts the adoption of improved seeds, rotation, and 
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organic fertilizers. We also found that greater variability in rainfall positively and 

significantly influenced farmers’ choice decision to invest in improved seeds, 

inorganic fertilizers, drainage, and declined farmers’ choice decision to invest in 

soil conservation practices. This is in line with findings by Theriault et al. (2016) 

who reported that an increase in the coefficient of variation of rainfall positively 

impacts the adoption of yield-enhancing practices. This indicates that rainfall with 

less variability means high rainfall which may cause waterlogging (common in 

highland areas) which suppresses crop growth and production. However, it is 

contrary to findings by Asfaw et al. (2016) who found that greater variability in 

rainfall is inversely related to the adoption of modern inputs (improved seeds and 

mineral fertilizers) which is common in water stress areas. Findings suggest that 

smallholder farmers are responding to climate variables diversely depending on 

the availability of SAIPs and the weather conditions taken into account. 

 

Secure land tenure is believed to encourage farmers to invest in sustainable 

practices on their farms. The results revealed that land security in terms of having 

a land certificate positively and significantly influenced farmers’ choice decisions 

to invest in drainage practices on their plots, holding other things constant. 

However, getting a land certificate was found to decline the likelihood of 

investments in inorganic fertilizers. The results indicate that plots with a land 

certificate are more likely to be drained, and plots without a land certificate are 

mainly rented/shared in-plots, which may limit the adoption of other sustainable 

practices. This is contrary to the findings by Theriault et al. (2016) who found that 

tenure security positively affects the adoption of yield-enhancing inputs including 

inorganic fertilizers.  

 

Plot distance from a residence is an important variable to limit investment in 

agricultural practices, mainly soil-restoring activities. The results revealed that 

plots away from a residence are more likely to receive improved seeds but less 

likely to be treated with vegetation and soil conservation practices. This is similar 

to the findings by Teklewold et al. (2013), Ndiritu et al. (2014) and Asfaw et al. 

(2016) who found that plot distance positively affected adoption of improved 

seeds but negatively affected soil conservation practices. This implies that plots 

far away plot managers’ residences are less likely to receive most sustainable 

practices implying distance bears more transaction costs via transportation, mainly 

for investments in labor-intensive practices.   

 

Rural income diversification could be an important variable that limits 

investments in agricultural technologies through resources (labor, land, and 

finance) allocations. The results revealed that a relatively high level of income 

diversification positively and significantly influenced farmers’ choice decisions to 

invest in cereal-legume rotation, organic fertilizers, pesticides, and vegetation. The 
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results indicate that plots managed by households with more income-

diversification are more likely to receive more than half of the SAIPs, implying a 

linkage exists between income diversification and investments in SAIPs. The 

possible explanation is earnings from diversification leverage to invest in the 

components of SAIPs. This is contrary to the findings by Nigussie et al. (2018) 

who reported income diversification (off-farm) negatively affects the adoption of 

soil and water conservation practices and inorganic fertilizers.  

 

Farm income is an important element for rural livelihoods which may limit 

investments in agricultural technologies (Benitez-Altuna et al., 2021). As 

expected, we found that cash income from the sale of staple crops positively and 

significantly influenced farmers’ decisions to invest in almost all SAIPs including 

improved seeds, legume-cereal rotation, inorganic fertilizers, manure/compost, 

pesticides, vegetation, and soil conservation practices. The results indicate that 

plots managed by households with higher cash crop income are more likely to 

receive almost all sustainable intensification practices. This implies that there 

exists a positive relationship between income and investments in agricultural 

technologies. This finding is in line with findings by Teklewold et al. (2017) who 

found that net farm income positively impacted drainage (farm water 

management), improved seeds, and inorganic fertilizers.  

 

The agricultural commercialization cluster (ACC) is believed to enable 

smallholder farmers to engage in higher productivity and market-oriented 

production through information and input provision (FAO, 2010). The results 

revealed that ACC positively and significantly influenced farmers’ decisions to 

invest in improved crop varieties and farm water management (drainages). This is 

in line with the findings by Ochieng et al. (2016) who found that ACC enhanced 

adoption of improved seeds and fertilizers. The results indicate that plots 

consolidated in ACC are more likely to receive improved seeds and drainages. 

This is because ACC mostly targets yield-enhancing improved crop varieties and 

farm water management often done in consensus with neighboring farm owners in 

the cluster.  

 

The results revealed that access to credit positively and significantly influenced 

farmers’ decisions to invest in vegetation and soil conservation practices. The 

results indicate that plots managed by households who received credit are more 

likely to receive vegetation and soil conservation practices. This is contrary to the 

findings by Ndiritu et al. (2014) who reported that access to credit less likely 

impacted the decision to invest in improved seeds, soil and water conservation 

practices, and minimum tillage. Other findings by Nigussie et al. (2018) reported 

that credit positively impacted manure application and Teklewold et al. (2013) 

also reported that credit influences the adoption of improved seeds and inorganic 

fertilizers.       
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Membership in any type of agricultural cooperative is believed to influence the 

adoption of agricultural technologies (Wossen et al., 2013). The results revealed 

that membership to agricultural cooperatives positively and significantly 

influenced farmers’ decisions to invest in improved crop varieties, inorganic 

fertilizers and vegetation. This is in line with the findings by Kolade and Harpham 

(2014), and Hasen (2015) and Manda et al. (2020 who found that cooperative 

membership influenced adoption of improved seeds and fertilizers. The results 

indicate that plots managed by members of a cooperative are more likely to 

receive improved seeds, inorganic fertilizers, and vegetation. The results suggest 

the need for policies that promote agricultural cooperative and improve their 

effectiveness for scaling-out/ up of improved technologies.  

 

Regarding plot characteristics, the results showed that plots with moderate to poor 

soil fertility conditions are more likely to receive farm water management and soil 

conservation practices, but they are less likely to receive cereal-legume rotation. 

Farmers’ choice decision to invest in soil conservation practices is more likely on 

plots with steep topography. Plots with gentle to medium topography are less 

likely to receive soil conservation practices, and plots with steep topography are 

less likely to receive water management practices. The results suggest that 

investments in sustainable practices are heterogeneous based on plot-specific 

attributes. This is consistent with the findings by Teklewold et al. (2013), Kassie 

et al. (2015), Asfaw et al. (2016), and Theriault et al. (2016) who found that plots 

with steep slope received soil and conservation practices.  

 

The results revealed that, on average, the amount of salary paid to extension 

(development) agents at the kebele level positively and significantly influenced 

farmers’ decision to invest in improved seeds, inorganic fertilizers, and drainages, 

and declined the use of soil conservation practices. This is similar to the findings 

by Ndiritu et al. (2014), Asfaw et al. (2016), Theriault et al. (2016) and Jabbar et 

al. (2020) who found that extension contact enhanced adoption of external inputs. 

The results indicate extension agents with a better salary stay in their mandate 

kebeles to make frequent contact with farmers and share information, and hence 

plots in this area are more likely to receive these practices. Nigussie et al. (2018) 

also found that extension service negatively affects soil conservation, vegetation, 

and farm water management practices. The results revealed that training positively 

and significantly affects farmers’ choice to invest in improved seeds and inorganic 

fertilizers. The results suggest the need for policies that strengthen extension 

systems to include soil-restoring practices in their daily routines.  

 

Farmers usually learn new farming practices from their neighboring farms either 

through copying the same practices or teaching each other. Peer farmers and farms 

are alternative information sources on technology uptake (Adegbola and 
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Gardebreok, 2007). The results revealed that having a greater number of peer 

farms near the plots positively and significantly influenced the decision to invest 

in water management practices, but reduced the uptake of manure/compost. In 

other words, plots surrounded by a greater number of peer farms are more likely to 

receive drainages but less likely to receive manure/compost. The results also 

showed that plots perceived degraded are more likely to receive water 

management and vegetation practices.  

 

With respect to study location which reflects unobservable spatial differences, the 

results revealed the differential effect of location on the decision to invest in 

SAIPs. Ceteris paribus, farmers’ decision to invest in improved seeds, inorganic 

fertilizers, and manuring practices in the west Shewa zone are higher. Differently, 

investment in legume rotation, farm water management, and soil conservation by 

farmers were lower in the West Shewa zone. The results suggest that efforts to 

increase short term investments in improved crop varieties and inorganic 

fertilizers (yield-enhancing inputs) would likely be effective if directed towards 

north Shewa in the Amhara region, and long-term investments in soil-restoring 

practices of legume rotation, farm water management, and soil conservation would 

be effective if directed towards in west Shewa zone in Oromia region. This is 

consistent with the findings of Yirga et al. (2015) who found study sites affected 

adoption of agricultural technologies.      

 

Study results also revealed that some of the sustainable agricultural intensification 

practices show complementarity/synergy while some others show 

substitutability/trade-offs. More specifically, improved variety and inorganic 

fertilizer, pesticides and inorganic fertilizer, vegetation, and organic fertilizer, and 

soil conservation practices and vegetation are positively correlated at a 1% 

significant level implying high complementarity between them. A negative 

correlation is observed between inorganic and organic fertilizers, pesticides and 

organic fertilizers, vegetation and cereal-legume rotation, soil conservation 

practices and variety, rotation and fertilizer use, implying investment in soil 

conservation practices can significantly reduce investments in other external 

inputs. 
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Table 5. Estimates of the multivariate probit model with Mundlak’s approach  

 

Variables  Variety  Rotation  Fertilizer Manure/com. Pesticides Drainage  Vegetation Soil cons 

Coefficient 
(SE) 

Coefficient (SE) Coefficient (SE) Coefficient (SE) Coefficien
t (SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient (SE) 

Sex 0.363** 
(0.142) 

-0.086 
(0.149) 

0.356** 
(0.168) 

-0.090 
(0.175) 

0.136 
(0.136) 

-0.313** 
(0.136) 

-0.246 
(0.206) 

0.048 
(0.157) 

Age -0.002 
(0.004) 

0.008* 
(0.004) 

-0.004 
(0.004) 

-0.001 
(0.004) 

-0.005 
(0.004) 

-0.005 
(0.003) 

0.004 
(0.005) 

0.008** 
(0.004) 

Education 0.057*** 
(0.020) 

-0.027 
(0.022) 

-0.002 
(0.027) 

-0.009 
(0.026) 

-0.012 
(0.020) 

0.002 
(0.020) 

-0.089*** 
(0.034) 

-0.042* 
(0.024) 

Family size -0.072** 
(0.029) 

-0.011 
(0.031) 

0.053 
(0.038) 

-0.013 
(0.036) 

-0.028 
(0.029) 

-0.102*** 
(0.028) 

0.080* 
(0.045) 

0.002 
(0.034) 

Livestock -0.039 
(0.080) 

-0.136 
(0.086) 

-0.330*** 
(0.115) 

0.395*** 
(0.104) 

-0.015 
(0.078) 

0.032 
(0.079) 

0.010 
(0.122) 

-0.002 
(0.093) 

Plot size -1.451*** 
(0.156) 

-1.062*** 
(0.156) 

-1.135*** 
(0.198) 

-1.192** 
(0.170) 

-0.285* 
(0.155) 

0.271* 
(0.139) 

-1.007*** 
(0.211) 

-1.341*** 
(0.162) 

Temperature -0.575 
(0.385) 

-0.695 
(0.433) 

-0.390 
(0.573) 

0.575 
(0.518) 

-0.649 
(0.401) 

0.983** 
(0.374) 

0.471 
(0.666) 

0.886* 
(0.455) 

Rainfall 1.016** 
(0.398) 

0.783* 
(0.457) 

3.587*** 
(0.956) 

0.519 
(0.576) 

-0.628 
(0.394) 

2.439*** 
(0.411) 

0.292 
(0.777) 

-1.509*** 
(0.540) 

Land certificate 0.055 
(0.121) 

0.125 
(0.133) 

-0.374* 
(0.186) 

0.072 
(0.159) 

-0.039 
(0.121) 

0.446*** 
(0.119) 

0.019 
(0.208) 

0.160 
(0.140) 

Plot distance  0.121*** 
(0.033) 

-0.007 
(0.035) 

-0.219*** 
(0.042) 

-0.015 
(0.038) 

-0.067** 
(0.032) 

-0.017 
(0.032) 

-0.106** 
(0.046) 

-0.062* 
(0.037) 

Extent of income diversification -0.074 
(0.167) 

0.384** 
(0.181) 

0.112 
(0.213) 

0.491** 
(0.201) 

0.303* 
(0.165) 

0.067 
(0.162) 

0.650*** 
(0.250) 

0.126 
(0.188) 

Crop income 1.757*** 
(0.151) 

1.284*** 
(0.149) 

1.411*** 
(0.188) 

1.206*** 
(0.162) 

0.482*** 
(0.145) 

-0.104 
(0.131) 

0.988*** 
(0.199) 

1.470*** 
(0.153) 

Plot clustering (ACC) 0.231** 
(0.103) 

0.106 
(0.106) 

0.161 
(0.126) 

-0.072 
(0.114) 

0.145 
(0.100) 

0.238*** 
(0.102) 

-0.134 
(0.136) 

-0.385 
(0.120) 

Credit  0.039 
(0.091) 

-0.172* 
(0.097) 

0.149 
(0.123) 

-0.015 
(0.109) 

-0.088 
(0.089) 

0.035 
(0.090) 

0.466*** 
(0.120) 

0.400*** 
(0.105) 

Membership to coop 0.215*** 
(0.080) 

0.047 
(0.085) 

0.431*** 
(0.112) 

0.105 
(0.094) 

-0.010 
(0.080) 

0.060 
(0.079) 

0.314*** 
(0.116) 

0.010 
(0.093) 
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Table 5. (continued)  
 

 
 
 
 
 

Variables  
 

Variety  Rotation  Fertilizer Manure Pesticides Drainage  Vegetation Soil cons 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Coefficient 
(SE) 

Soil fertility (moderate) 0.105 
(0.121) 

-0.065 
(0.131) 

0.203 
(0.159) 

0.111 
(0.149) 

0.049 
(0.122) 

0.211* 
(0.117) 

-0.031 
(0.194) 

0.359** 
(0.139) 

Soil fertility (poor) -0.154 
(0.210) 

-0.493** 
(0.225) 

-0.068 
(0.250) 

0.082 
(0.244) 

-0.038 
(0.202) 

0.462** 
(0.202) 

-0.209 
(0.306) 

0.433* 
(0.231) 

Slope (gentle to medium) 0.058 
(0.128) 

-0.008 
(0.134) 

-0.019 
(0.161) 

0.101 
(0.154) 

-0.099 
(0.127) 

-0.055 
(0.124) 

0.087 
(0.202) 

-0.497*** 
(0.147) 

Slope (steep) -0.111 
(0.119) 

-0.121 
(0.126) 

-0.230 
(0.148) 

0.072 
(0.142) 

-0.106 
(0.118) 

-0.360*** 
(0.116) 

-0.117 
(0.185) 

0.250* 
(0.135) 

Salary of DAs 2.237*** 
(0.340) 

0.341 
(0.404) 

1.936*** 
(0.548) 

-0.752 
(0.506) 

-0.027 
(0.355) 

0.744** 
(0.325) 

0.561 
(0.670) 

-1.865*** 
(0.402) 

Training on crop production 0.224*** 
(0.079) 

-0.088 
(0.084) 

0.372*** 
(0.100) 

-0.080 
(0.095) 

0.080 
(0.078) 

-0.027 
(0.077) 

0.152 
(0.124) 

-0.043 
(0.092) 

Peer farms -0.007 
(0.015) 

-0.013 
(0.016) 

-0.019 
(0.018) 

-0.067*** 
(0.018) 

-0.024 
(0.015) 

0.037** 
(0.015) 

0.001 
(0.021) 

-0.013 
(0.017) 

Perception to plot degradation 0.061 
(0.090) 

0.129 
(0.094) 

-0.104 
(0.113) 

0.277 
(0.102) 

-0.039 
(0.088) 

0.425*** 
(0.089) 

0.633*** 
(0.118) 

0.907 
(0.102) 

Location  1.663*** 
(0.208) 

-0.737*** 
(0.235) 

3.035*** 
(0.452) 

1.096*** 
(0.294) 

-0.428 
(0.206) 

-1.515*** 
(0.208) 

0.490 
(0.390) 

-2.567*** 
(0.265) 

Constant  -40.691*** 
   (3.928) 

-20.249*** 
(4.423) 

-42.273*** 
(6.948) 

-13.202*** 
(5.211) 

-1.448 
(3.854) 

17.072*** 
(3.691) 

-21.700*** 
(7.320) 

2.509 
(4.492) 

Number of observations (plots) 1465        

Number of observations (HHs) 385        

Wald chi2 test (208) 1937.6        

Prob >chi2 0.000        

Log likelihood -5249.49        
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Table 5. (continued)  
 

SAIPs Variety Rotation  Fertilizer Manure  Pesticides Drainage Vegetation Soil 
conservation  

Rotation 0.258*** 
(0.045) 

       

Fertilizers  0.259*** 
(0.054) 

0.134** 
(0.055) 

      

Manure/com  -0.015 
(0.051) 

-0.040 
(0.052) 

-0.408*** 
(0.050) 

     

Pesticides      0.012 
(0.044) 

-0.023 
(0.046) 

0.482*** 
(0.044) 

-0.312*** 
(0.047) 

    

Drainage  -0.076* 
(0.043) 

-0.025 
(0.045) 

-0.012 
(0.050) 

-0.024 
(0.048) 

0.054 
(0.042) 

   

Vegetation  -0.087 
(0.062) 

-0.150** 
(0.064) 

-0.089 
(0.068) 

0.174** 
(0.068) 

-0.183*** 
(0.064) 

-0.018 
(0.064) 

  

Soil conservation -0.148*** 
(0.049) 

-0.106** 
(0.052) 

-0.180*** 
(0.058) 

-0.011 
(0.053) 

-0.016 
(0.049) 

0.028 
(0.049) 

0.138** 
(0.063) 

 

Notes: LR test of rho21 = rho31 = rho41 = rho51 = rho61 = rho71 = rho81 = rho32 = rho42 = rho52 = rho62 = rho72 = rho82 = rho43 = rho53 = rho63 = rho73 = rho83 = rho54 = rho64 = 
rho74 = rho84 = rho65 = rho75 = rho85 = rho76 = rho86 = rho87 = 0: chi2(28) = 270.291   Prob > chi2 = 0.000; Significance level: *=10%; **=5% and ***=1% 
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The ordered probit model results  

In the previous section, we investigated factors that influence farmers’ choice 

decisions to simultaneously invest in particular SAIPs, taking into account the fact 

that the decision may be potentially correlated. Therefore, an ordered probit model 

examines factors that influence the extent of investments in various combinations 

of SAIPs (scaling the total number of SAIPs applied). Moreover, the variables that 

influence farmers’ choice decisions to invest may differently influence the extent 

of investments in SAIPs.  

 

The estimates of the restricted and unrestricted ordered probit model and results of 

marginal effects of explanatory variables are presented in Table 6. Although the 

magnitude of coefficients is different, the same variables were significant in both 

restricted and unrestricted models. We rejected the null hypothesis that the 

restricted and unrestricted ordered probit models are the same (ꭓ
2

3 =12.838: Prob 

>chi2 = 0.000) with three degrees of freedom. Higher values of Pseudo R
2
 (0.198), 

widely dispersed cut-points and a decrease in AIC and BIC magnitude implies a 

better improvement in the model’s goodness-of-fits. Most of the explanatory 

variables such as coefficient of variation in maximum temperature and rainfall, 

income diversification, crop income, agricultural commercialization cluster, 

access to credit, membership to cooperative, perceived soil fertility and plot’s 

slope condition, and extension services measured in monthly salary of extension 

agents had a strong positive relationship with the extent of investments in SAIPs. 

However, family size, plot size, steep topography, study sites, and a number of 

peer farms showed a strong negative relationship with the extent of investments in 

a combination of SAIPs.  

 

Regarding the marginal effects, the results revealed that family size reduced the 

extent of investments in moderate to a high level of SAIPs by 1% and 1.6%, 

respectively. Plots operated by farm households with more livestock holding 

received a high level of investment in more than four SAIPs. Plot size was found 

to reduce the extent of investments in a bundle of SAIPs. More specifically, it 

drastically reduces moderate, high, and very high levels of investments by 27%, 

45.6%, and 0.3%, respectively. Rainfall in coefficient of variation was found to 

increase the extent of investments in a greater number of SAIPs, this may be the 

same possible reason mentioned in above. Land tenure security in terms of having 

a land certificate was found to increase the extent of investments in moderate to a 

high level of SAIPs by 3.1% and 4.4%, respectively. Plots operated by farm 

households with greater income diversification received moderate to a high level 

of SAIPs and increased by 3.8% and 6.4%, respectively. 

 

Cash income from staple crops sales was found to substantially increase the extent 

of investments in moderate to a high level of SAIPs at the plot level by 32.4%, 

54.8%, and 0.4%, respectively. Agricultural commercialization clustering was 
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found to increase the extent of investment in moderate to high levels of SAIPs by 

2.7% and 5.5%, respectively. Access to credit to buy agricultural inputs was found 

to increase the extent of investments in moderate to high levels of SAIPs by 2% 

and 3.7%, respectively. Membership to agricultural cooperatives was found to 

increase the extent of investments in moderate to very high levels of SAIPs by 

3.7%, 7.2% and 0.1%, respectively. Plot characteristics such as fertility and 

topography were found to influence the extent of investments in various 

combinations of SAIPs. Extension services were also found to substantially 

increase the extent of investments in moderate to very high levels of SAIPs by 

12.2%, 20.6% and 0.2%, respectively. Plots perceived degraded were found to 

receive an increased number of SAIPs; more specifically, it increases the extent of 

investments in moderate to a very high level of SAIPs by 6.3%, 15.5%, and 

0.2%s, respectively. The results also showed that study sites reduce the extent of 

investments in a multiple of SAIPs (from moderate to high level).  
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Table 6. Coefficient estimates of the ordered probit model  

Variables  Restricted (fixed-effect) OP model  Unrestricted (random) OP 
model 

 Coefficient  RoSE Marginal effects on each outcome Coefficient  RoSE 

None (1) Low (2) Moderate (3)  High (4) Very high (5) 

Sex 0.131 0.135 0.001 -0.052 0.021 0.031 0.000 0.118 0.111 

Age 0.002 0.003 -0.000 -0.001 0.000 0.001 0.000 0.000 0.003 

Education -0.010 0.019 0.000 0.004 -0.001 -0.002 -0.000 -0.007 0.016 

Family size -0.065** 0.029 0.000 0.025** -0.010** -0.016** -0.000 -0.058** 0.024 

Livestock 0.005 0.068 -0.000 -0.002 0.001 0.001* 0.000 0.007 0.058 

Plot size -1.826*** 0.203 0.008*** 0.721*** -0.270*** -0.456*** -0.003** -1.566*** 0.177 

Temperature 0.092 0.348 -0.000 -0.036 0.014 0.023 0.000 0.279 0.287 

Rainfall 1.511*** 0.319 -0.006** -0.597*** 0.223*** 0.377*** 0.003* 1.284*** 0.271 

Land certificate 0.189* 0.105 -0.001 -0.074* 0.031* 0.044* 0.000 0.175** 0.086 

Plot distance  -0.046 0.030 0.000 0.018 -0.007 -0.012 -0.000 -0.081*** 0.026 

Income diversification 0.257* 0.143 -0.001 -0.101* 0.038* 0.064* 0.000 0.277** 0.127 

Crop income 2.196*** 0.201 -0.009*** -0.867*** 0.324*** 0.548*** 0.004** 1.900*** 0.173 

ACC 0.209** 0.092 -0.001** -0.082** 0.027** 0.055** 0.000 0.214** 0.084 

Credit  0.143* 0.079 -0.001 -0.056* 0.020* 0.037* 0.000 0.187*** 0.072 

Membership to coop 0.276*** 0.068 -0.001 -0.109*** 0.037*** 0.072*** 0.001* 0.227*** 0.061 

Soil fertility (mod.) -0.049 0.187 0.000 0.019 -0.007 0.012 -0.000 -0.047 0.160 

Soil fertility (poor) 0.227* 0.134 -0.001 -0.089* 0.035 0.055* 0.000 0.222* 0.115 

Slope (gentle) -0.055 0.113 0.000 0.022 -0.008 -0.014 -0.000 -0.090 0.098 

Slope (steep) -0.178* 0.101 0.001 0.070* -0.029 -0.042* -0.000 -0.186** 0.087 

Salary of DAs 0.826*** 0.296 -0.003* -0.326*** 0.122*** 0.206*** 0.002* 0.787*** 0.23 

Training  0.044 0.068 -0.000 -0.018 0.007 0.011 0.000 0.101* 0.059 

Peer farms -0.023* 0.013 0.000 0.009* -0.003* -0.006* -0.000 -0.019* 0.011 

Perception to degradation 0.562*** 0.078 0.002** -0.218*** 0.063*** 0.155*** 0.002*** 0.532*** 0.071 

Location  -0.414** 0.171 0.002* 0.163** -0.061** -0.103** -0.001 -0.468*** 0.146 

Notes: *** p<0.01, ** p<0.05, * p<0.1
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Table 6. (Continued)  
 

Variables  Coefficient  RoSE Coefficient  RoSE 

μ1 34.916*** 3.766 30.656*** 3.115 

μ2 37.934*** 3.800 31.485*** 3.115 

μ3 38.902*** 3.807 32.457*** 3.123 

μ4 41.224*** 3.830 33.442*** 3.13 

μ5   34.384*** 3.139 

μ6   35.139*** 3.144 

μ7   35.88*** 3.149 

Chi-square   522.789  533.663  

Prob > chi2 0.000  0.000  

Pseudo r-squared 0.198  0.128  

Log-likelihood -1318.176  -2258.  

LR  1880.492, ꭓ2
3 =12.838 (Prob >chi2 = 0.000) 

AIC 2696.353  4584.845 (1888.5) 

BIC 2855.041  4764.692 (1909.6) 

Observation (plots) 1465 

Observation (households) 385 

Notes: *** p<0.01, ** p<0.05, * p<0.1 

 

Conclusions and Implications 
 

Investment in SAIPs is vital for increasing crops productivity, reducing poverty 

and hunger, and ensuring food security in Ethiopia. This study attempts to 

examine the determinants of decisions and extent of investments in multiple 

SAIPs by farm households using 1465 plot level observations. We employed a 

MVP model to examine determinants of farmers’ decisions to invest in multiple 

SAIPs, and an OPM to investigate factors influencing extent of investments in 

SAIPs. The SAIPs considered include improved seeds, inorganic fertilizers, 

pesticides, organic fertilizers, cereal-legume rotation, vegetation, drainages, and 

soil conservation structures. Results from the MVP model show that while there is 

heterogeneity with regard to the determinants of investments in any of the eight 

SAIPs, variables such as gender and age of the household head, average education 

level of family members, livestock holding, crop income, membership to 

cooperatives, access to extension and credit services, training, agricultural 

commercialization cluster, income diversification, rainfall and maximum 

temperature, and perceived poor soil fertility and steep slope conditions were 

found to influence the choice decisions of farmers to invest in multiple SAIPs. The 

results demonstrate that the same factors display different influences and 

relationships (positive or negative) on decisions to invest in SAIPs. For instance, 

gender has a positive influence on improved seeds and inorganic fertilizers use, 

but a negative influence on drainage.  

 

Results also reveal that there are strong complementarities between improved 

seeds and inorganic fertilizers, improved seeds and rotation, inorganic fertilizers 
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and rotation, soil conservation and vegetation, and substitutability between 

inorganic fertilizers and manure/compost, inorganic fertilizers and soil 

conservation, and pesticides and vegetation, and other SAIPs, implying the 

interdependence of investments in SAIPs. Studies that consider investments in 

SAIPs in isolation ignore important correlation effects and potentially generate 

biased model estimates, and overlook heterogeneity effects of the same variables. 

These significant economic relationships are good characteristics of MVP model 

outcomes that cannot be captured by univariate models. Results from an ordered 

probit model also show that the extent of investments in a number of SAIPs is 

influenced by most of the same variables suggesting that decisions to invest and 

the extent of investment in SAIPs are governed by the same factors.  

 

Our results offer important policy implications in Ethiopia and other developing 

countries. First, it can be concluded that SAIPs are interdependent. This suggests 

that the interdependency nature of farming practices should be considered in 

designing effective plans for development and diffusion of SAIPs by development 

practitioners. The knowledge on cross-SAIPs correlation offer policy changes for 

the convenience of promoting SAIPs jointly to take benefits of their 

complementarities/synergies, and help to target resource saving production from 

substitutability of practices. Last, given that several factors influence investments 

in different blend of SAIPs, policymakers should take into consideration the 

heterogeneity effects of policy variables including gender, extension, credit, 

income and plot specific features. This will require provision of gender-based 

extension and credit services and instant information on weather conditions to 

make farmers to benefit from SAIPs. This study contributes to the existing SAIPs 

uptake literature by highlighting the important variables which influence decisions 

to invest and extent of investments in multiple SAIPs in Ethiopia. Further research 

that explores the output, peril and wellbeing and environmental implications will 

be helpful.  
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