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Abstract 
 

This thesis introduces a new stochastic frontier model called a normal-weighted exponential 

stochastic frontier model. We have derived a closed form log-likelihood function and JLMS 

inefficiency estimator of a normal-weighted exponential stochastic frontier model. In addition, we 

have derived the gradient and hessian matrix of a normal-weighted exponential stochastic frontier 

model. A Monte Carlo (MC) simulation is carried out to verify the correctness of the derivations, 

of a normal-weighted exponential stochastic frontier model, and to study the finite sample 

properties of maximum likelihood estimator. Our simulation result shows that a normal-weighted 

exponential stochastic frontier model performs well compared to a normal-exponential stochastic 

frontier model. In our simulation result, it shows that as sample size increases, the bias and 

standard errors decrease. Furthermore, a real-world data application is carried out, with the goal 

of estimating the carbon efficiency of African manufacturing firms. We have estimated an input-

requirement production function, using fuel consumption as a dependent variable and output and 

other inputs as independent variables. Our estimated result shows that the estimates of coefficients 

are the same across models. However, there are differences in the carbon efficiency estimates of 

manufacturing firms. We have used the carbon efficiency estimates to rank African countries, and 

Egypt is the most carbon efficient country in Africa. We have also run multiple linear regressions 

on carbon inefficiency estimates to see the determinants. In all three stochastic frontier models, 

top manager work experience, obstacles to accessing finance, firm size, export status, and foreign 

ownership are the key determinants. 
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Introduction 
 

 

The Stochastic Frontier Analysis (SFA) is a widely used methodology for the measurement of 

productivity and efficiency of decision making (DM) units, either firms or countries. Using 

stochastic frontier models, it is possible to estimate the production efficiency, cost efficiency, or 

profit efficiency of a firm. Kumbhakar and Lovell (2000) have a book-length discussion about the 

applicability of a stochastic frontier analysis to efficiency measurement of a firm, using the 

production function, cost function, and profit function. A firm is fully efficient if it can produce 

the maximum possible output for a given technology and cost, or if it can attain the minimum 

possible cost for a given level of output and technology. Data Envelopment Analysis (DEA) and 

Stochastic Frontier Analysis (SFA) are widely used approaches for the efficiency analysis of firms.  

These approaches, with many extensions, are widely discussed in Coelli, et al. (2005). The general 

framework of stochastic frontier models for estimating the efficiency of firms was introduced by 

Aigner, et al (1977) and Meeusen and Broeck (1977).     

 

An exponential distribution and a half-normal distribution are commonly used assumptions for the 

inefficiency part in stochastic frontier analysis. The advantage of using a half-normal distribution 

and an exponential distribution is that they provide a closed form likelihood function for a 

stochastic frontier model. However, there are also limitations of using the exponential distribution 

and the half-normal distribution; see e.g., Greene (2003) and Stevenson (1980). The first limitation 

is that both the half-normal distribution and exponential distribution have a mode value of zero.  

Which means the model assumes a highest probability value for zero value of inefficiency score.  

Alternative statement is that firms are assumed to be fully efficient a priori. Another limitation is 

that both probability distributions are governed by a single parameter, a scale parameter.  

Moreover, both distributions are asymmetrically positively skewed and assumes very low 

probability of being inefficient Carree (2002).  Due to these limitations various probability 

distributions are assumed for the inefficiency score.   

 

Hajargasht (2015) introduce a Rayleigh distribution into a stochastic frontier model. A Rayleigh 

distribution is a one-parameter distribution, and it has a non-zero mode. Papadopoulos (2021) 

present a single parameter generalized exponential distribution and the mode of the distribution is 

away from zero.  These non-zero mode distributions can represent cases where the highest 

probability is non-zero in efficiency scores.  However, since they are governed by a single 
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parameter, they are less flexible. In fact, any probability density function defined on positive value 

can be a candidate model for the inefficiency score.   
 

In order make the inefficiency score more flexible various two parameter distribution are 

introduced. The gamma distribution is proposed in (Stevenson (1980), Beckers and Hammond 

(1987) and Greene (2003)). The Weibull distribution and the beta distribution is introduced in 

Tsionas (2007) and Tsionas (2012), respectively. However, assuming these flexible distributions 

for the inefficiency part creates a problem of deriving a closed form likelihood function.    

 

In this thesis a new probability distribution, a weighted exponential distribution, is introduced for 

the inefficiency part of a stochastic frontier model. The weighted exponential distribution is a 

flexible distribution with two parameters, shape parameter and scale parameter. The weighted 

exponential distribution is flexible as the gamma distribution. However, the advantage of the 

weighted exponential distribution is that it enables to get a closed-form likelihood function and 

inefficiency estimator.  The weighted exponential distribution contains the one parameter 

generalized exponential distribution as its special case. Another argument for introducing a new 

probability distribution is based on the aphorism in statistics saying that all models are wrong, but 

some are useful.  Therefore, it is recommended for the practitioners to have the weighted 

exponential distribution in their tool kit and verify its usefulness based on the data (Gupta & 

Kundu, 2009).    
 

Stochastic Frontier Analysis   
 

The stochastic frontier model is a popular methodology for measuring inefficiency of a firm. A 

firm is efficient if it produces the maximum possible output for a given cost or achieves the 

minimum possible cost for a given level output. The stochastic frontier model is the measurement 

of production function or cost function with symmetric statistical error and inefficiency score. Both 

Aigner et al. (1977) and Meeusen and van den Broeck (1977) assumed the statistical error to follow 

the normal distribution with zero mean and constant variance. For the inefficiency score different 

probability distribution have been proposed.   

 

Thus, the specification of a stochastic frontier model with production function and two 

multiplicative error terms of the efficiency level 𝑈 and the statistical error 𝑉 is  

  

𝑌i = 𝑓 (𝒙𝒊; 𝜃) 𝑈𝑉 
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where 𝑈 ∈ [0, 1], 𝑈 ∈ [0, ∞], 𝑓 (𝒙𝒊; 𝜃) is the production function. Any deviation from the 

production function is assumed to be the result of two disturbances, the statistical error 𝑉 and 

efficiency level 𝑈. The efficiency level 𝑈 is the ratio of actual output to potential output, that is   

 

 𝑈 = yi 

Thus, by logarithmic transformation, the stochastic frontier model in additive form is 

   

𝑙𝑛 𝑌𝑖 =  𝑙𝑛(𝑓(𝒙𝒊;  𝜃)) +  𝑣 −  𝑢   

where 𝑣 = 𝑙𝑛 (𝑉) and 𝑢 = − 𝑙𝑛(𝑈).    

 

Once the functional form of the production function is stated, the next step is to propose 

distributional assumptions for the inefficiency score 𝑢 and the statistical error term 𝑣. The 

combined error term 𝜀, in case of production frontier, is defined as   

 

𝜀= 𝑣− 𝑢,   

 

where 𝑢 is the inefficiency score and 𝑣 is the statistical error. Having a tractable probability density 

function of 𝜀 depends on the choices of probability distribution made for 𝑢 and 𝑣, and on the 

assumption whether 𝑢 and 𝑣 are independent or not.  Assuming independence between the 

statistical error 𝑣 and inefficiency score 𝑢, the joint distribution of 𝑣 and 𝑢 is given by   

 

𝑓(𝑢, 𝑣) =  𝑓(𝑢)𝑓(𝑣),   

 

where 𝑓(𝑢) and 𝑓(𝑣) are the probability density function of 𝑢 and 𝑣, respectively. The next step is 

to substitute one of the random variables from the combined error 𝜀= 𝑣− 𝑢, and integrate the 

remaining variable. We have    

 

  

 

  

For some choices of parametric distributions 𝑢 and 𝑣, the integral above can be computed and we 

have a closed-form distribution function of 𝜀, Both the pioneering articles of Aigner, et al. (1977) 

and Meeusen and Broeck (1977) and most subsequent applied researchers have assumed the 

random error 𝑣 to follow a normal (Gaussian) distribution with zero mean 𝜇= 0 and constant 

variance 𝜎2. For 𝑢, different probability distributions have been proposed. Only a few of the results 

in a closed-form probability density function of 𝜀.    
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Once the probability density function of 𝜀 is derived, then the likelihood function of the stochastic 

frontier model for 𝑁 observation is   
 

 

 

 

 

 

 

where 𝜀= 𝑣− 𝑢= log(𝑦) − log [𝑓 (𝑥; 𝑏)].     

  
 

The vector of parameters 𝜃 contains the coeffects of the production function 𝑏 and parameters 

from the probability distribution of inefficiency score 𝑢 and the statistical error 𝑣. The production 

function 𝑓 (𝑥; 𝑏) can be either a Cobb-Douglass production function or another production function 

that is linear after logarithmic transformation. Maximizing the likelihood function requires the 

likelihood function to be in a closed form, and this has been a challenge when a flexible distribution 

is assumed for the inefficiency score 𝑢.   

 

JLMS Inefficiency Estimator    
 

The primary goal of the stochastic frontier analysis is to have estimates for inefficiency score 𝑢.  

Aigner, et al. (1977) used the mean of 𝑢 and the maximum likelihood estimators to get the 

inefficiency estimates of each firm. It is possible to estimate the average inefficiency score 𝐸(û) 

based on the estimates of the average of composite error 𝐸[𝜀 ̂], since 𝐸[𝑢] = 𝐸[𝜀]. However, it is 

also desirable to have inefficiency estimates for each firm and a complete probability distribution 

for û. As a solution Jondrow, et al. (1982) proposed a method of deriving the conditional 

distribution of 𝑢 from the probability density function of 𝜀. The conditional probability density of 

function of 𝑢, 𝑓 (𝑢∣ 𝜀), is derived from the ratio of the joint probability density of 𝑢 and 𝜀, 𝑓 (𝜀, 𝑢), 

to the marginal probability density of 𝜀, 𝑓(𝜀).   

  

                                                      𝑓(𝑢 ∣ 𝜀) = 𝑓(𝜀, 𝑢)  

                                                                      𝑓(𝜀) 
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Applications of the Stochastic Frontier Models to Carbon Efficiency Analysis   

 

Energy efficiency of a firm or a country is estimated using various methodologies. Carbon 

efficiency can be analyzed using either the Data Envelopment Analysis (DEA) method or the 

Stochastic Frontier (SFA). The Data Envelopment Analysis (DEA) can be used to evaluate firm’s 

carbon efficiency from production perspective. Furthermore, they have estimated the effect of 

financial performance on carbon efficiency. The four major evaluation methodologies of energy 

efficiency are, the stochastic frontier analysis, data envelopment analysis, exergy analysis and 

benchmarking comparison (Li & Tao, 2017). Li and Tao (2017) have revied all 4 methods and 

summarized that the SFA approach as solid fundamental work in modeling application. There are 

three widely used stochastic frontier methodologies for estimating energy efficiency. These are the 

input demand frontier functions (Llorca, Banos, Somoza, & Arbue´s, 2017), Shephard input 

distance function (Hu & Honma, 2014) and input requirement functions. The Stochastic Frontier 

Analysis (SFA) can be either input oriented SFA or output oriented SFA. The input oriented SFA 

measures how much extra input is employed to produce a given level of output. While the output 

oriented SFA measures how much the output falls below the frontier (Jin & Kim, 2019)   

 

Hu and Honma (2019) used the stochastic frontier analysis to estimate the energy efficiency of 

industries in 14 developed countries. They have used a panel data for the period of 1995-2005 and 

10 industries are included. The countries included in the study are United States, United Kingdom, 

Sweden, Finland, Germany, Italy, the Netherlands, Portugal, Australia, Austria, Denmark, the 

Czech Republic, Japan, and South Korea. The industrial sectors included in the study are, the 

construction industry, the food and tobacco industry, the chemical and petrochemical industry, the 

iron and steel industry, the machinery industry, the paper industry, the non-metallic minerals 

industry, the textile and leather industry, the wood industry, the pulp and printing industry, and the 

transport equipment industry.  They used 4 variable inputs (labor, capital, energy, intermediate 

input) and the variable output is measured using the value added. They used the stochastic frontier 

distance function in which the production function part is specified as Cobb-Douglass production 

function. Their regression result shows a decreasing efficiency for the industries, construction, 

paper, and textile. On the contrary, the industry sector shows an increase in efficiency.  

 

The efficiency estimate of more than half industries shows insignificant change. The most efficient 

performance of industries can be classified into countries.  The food industry, the textile industry, 
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and the machinery industry are more efficient in Portugal. The construction industry and the wood 

industry are better in United Kingdom. While the chemical industries and the paper industries are 

efficient in Denmark. The rest of industries are distributed as the non-metallic mining in Czech 

Republic, the transport industry in Italy, and the iron and metal industry in South Korea. Moreover, 

their result also shows the food industry is the most efficiency with efficiency level of 82.5 percent 

and the lowest efficiency level is for the wood industry which is 12.7 percent.    

 

A Normal-Weighted Exponential Stochastic Frontier Model   

  

We assume that 𝑣 follows a normal distribution and 𝑢 follows a weighted exponential distribution, 

therefore, we will call this the “normal-weighted exponential stochastic frontier model”. The 

probability density function (pdf) of 𝑢 is given by 

     

 

 

 

where 𝛼> 0 is the shape parameter, and 𝜆> 0 is the scale parameter.   

 

 

The statistical error, 𝑣, is assumed to be normal with mean 0 and constant variance 𝜎2, which is   

 

 

 

 

where 𝜎2> 0.   

 

Assuming independence between the two random variables and setting 𝑣= 𝜀− 𝑢, the joint density  

function is given by 

 

 

 

Integrating the above joint density function with respect to inefficiency score 𝑢 gives us the 

marginal density function of composite error 𝜀. Which is    
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By rearranging the marginal density function of composite error 𝜀, is given by 

 

 

 

 

 

 

The log-likelihood function for 𝑁 observation is   

 
JLMS Inefficiency Estimator    

 

The primary goal of the stochastic frontier analysis is to have estimates of inefficiency for each 

firm. Jondrow, et al. (1982) proposed the conditional distribution of 𝑢 and the maximum simulated 

likelihood estimator.  The conditional distribution of is derived by dividing the joint distribution 

of the inefficiency score and the composite error, (𝜀, 𝑢), and dividing by the marginal distribution 

of the composite error 𝜀.    

 

The conditional probability distribution of 𝑢 is given by 

 

 

 

 

 

We can see that the distribution of the inefficiency score is a weighted sum of a truncated normal 

distribution. That is    
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We can use the mean of the above inefficacy distribution with maximum likelihood estimator of 

the parameters, 𝐸 [ 𝑢 ∣ 𝜀 ̂], as an estimator to each firm, which is commonly called the JLMS 

inefficacy estimator (Jondrow, Lovell, Materov, & Schmidt, 1982). And the mean of the sum of a 

random variable is the sum of the mean of each random variable.    

 

 

 

 

 

 

 

 

Gradients and Hessian Matrix  

   

The maximum likelihood estimators are derived by differentiating the loglikelihood function with 

respect to parameters. Most programing languages including MATLAB have built-in optimization 

functions. However, it is also desirable to have a gradients and hessian matrix of likelihood 

function and use it for numerical optimizations. The log-likelihood function of a normal-weighted 

exponential stochastic frontier model is given by    

 

 

 

 

 

 

 

 

 

 

To get the gradients, we need to differentiate the loglikelihood function with respect to each 

parameter. Therefore, we have    
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The hessian matrix is the second order derivative of the log-likelihood function, and it is given 

by 
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Monte Carlo (MC) Simulation Study  

 

In this section we use Monte Carlo (MC) study to examine the finite sample properties of the 

maximum likelihood estimator obtained from a normal-weighted exponential stochastic frontier 

model. A comparison is made between the maximum likelihood estimator of a normal-exponential 

stochastic frontier model and the maximum likelihood estimator of a normal-weighted exponential 

stochastic frontier model.  To simulate artificial data, we have the following data generating 

process (DGP) of stochastic  

frontier model,  

 

𝑦 = 𝑋𝑏 + 𝑣 − 𝑢,  

 

where 𝑋 is 𝑁 𝑏𝑦 3 matrix of inputs, 𝑣 is the statistical error and follows the normal distribution.  

And the inefficiency score, 𝑢, follows a weighted exponential distribution.   Artificial data on 

explanatory variables, 𝑥′𝑠, are derived from a standard uniform distribution, using built in 

functions in 𝑀𝐴𝑇𝐿𝐴𝐵. The parameter values, of the coefficients of the production function, needed 

for generating random output vector 𝑦 are 

 

 

 
 

The pseudo-random numbers for 𝑣 are from a normal distribution with mean 𝜇= 0 and standard 

deviation 𝜎= 0.25. i.e., 𝑣~𝑁 (0,0.25). The inefficiency score, 𝑢 is generated from a weighted 

exponential distribution. Depending on shape parameter of the weighted exponential distribution, 

we use two data generating process (DGP).    

 

In the first part we have generated pseudo random numbers from the weighted exponential 

distribution with shape parameter 𝛼= 1 and scale parameter 𝜆= 0.5.  i.e., 𝑢~𝑊𝐸𝐷 (1,0.5). In the 

second part of simulation study, we used a weighted exponential distribution with the shape 

parameter of 𝛼= 0.5 and scale parameter 𝜆= 0.5, i.e., 𝑢~𝑊𝐸𝐷 (0.5,0.5). There is no built-in 

function in 𝑀𝐴𝑇𝐿𝐴𝐵 for generating pseudo random numbers from the weighted exponential 

distribution. However, we can generate two independent random samples from the exponential 

distributions 𝑢1~𝐸𝑥𝑝(𝜆) and 𝑢2~𝐸𝑥𝑝 (𝜆 (𝛼+ 1)), and we add these samples to make them samples 

from the weighted exponential distribution, that is 𝑢= 𝑢1 + 𝑢2~𝑊𝐸𝐷 (𝛼, 𝜆) (Farahani & Khorram, 

1994).    
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In the simulation study, we have used to sample sizes of 𝑁= 500 and 𝑁= 1000. And each simulation 

is iterated two hundred times, (simu=200). Table 4.1. and Table 4.2. shows a Monte Carlo (MC) 

simulation study of the maximum likelihood estimator for a normal-weighted exponential 

stochastic frontier model and a normal-exponential stochastic frontier model.  In the first column, 

the parameters of composite error term and parameter of production function are listed, and the 

corresponding true parameter values are in the second column. As the simulation result shows, the 

maximum likelihood estimates of the normal-weighted exponential stochastic frontier model are 

not far from the true parameter values.    

 

When the sample size is 500, the average estimate for the shape parameter is 1.1047 and the bias 

is (1 − 1.1047 = −0.1047). But if we increase the sample size to 1000 the average estimate for the 

shape parameter becomes 0.9812 and the bias decreases to 0.0188. Similarly, when the sample 

size increases, the standard error of estimates for the shape parameter decreases from   0.9421 to 

0.6235. Because there is no shape parameter in a normal-exponential stochastic frontier model, 

there is no estimate for the shape parameter of 𝛼= 1. For the rest of the parameters the average 

estimate and the standard errors, under the two stochastic frontier models, are reported in the Table 

1 below.    

 

The simulation study shows the superior performance of a normal-weighted exponential stochastic 

frontier model over a normal-exponential stochastic frontier model. A very significant difference 

is in estimating the intercept of the production function. In our simulation study, the true value of 

an intercept in the data generating process (DGP) is 3 and the corresponding estimate under a 

normal-weighted exponential stochastic frontier model is 2.9806, which means the bias is 0.0194.  

However, under a normal-exponential stochastic frontier model the intercept estimate is 2.3144, 

and the bias is 0.6856. If we increase the sample size, when 𝑁= 1000, the bias of estimating the 

intercept, in a normal-weighted exponential stochastic frontier model, is 0.0049, but for a normal- 

exponential the bias is 0.6907.   
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Table 1 
 

Simulation of A Normal-Weighted Exponential Stochastic Frontier Model (When Alpha Is One) 

 

 
 

Source: Own estimation 
 

In the second part of our simulation study, we have generated artificial data for the inefficiency 

error distribution of a weighted exponential distribution with a shape parameter 𝛼 = 0.5. As shown 

in Table 2., the simulated maximum likelihood estimates of the normal-weighted exponential 

stochastic frontier are satisfactory. For the sample size of 500, the biased of estimating the shape 

parameter 𝛼 is 0.197.  When the sample size increases to 1000 the biased of estimating the shape 

parameter decreases to 0.0146. Similarly, other parameters are estimated with a small bias. When 

the sample size increased from 500 to 1000 the bias also decreased substantially.   

 

The second simulation study shows the better performance of the normal-weighted exponential 

stochastic frontier model over the normal-exponential stochastic frontier model. For example, 

under a normal-weighted exponential stochastic frontier model, the bias in estimating the intercept 

of the production function is 0.0351. However, under a normal-exponential stochastic frontier 

model, the bias of estimating the intercept is 0.8263. 
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Table 2 
 

Simulation of a Normal-Weighted Exponential Stochastic Frontier Model (When Alpha Is 0.5) 

Source

 
Source: Own estimation 

 

Estimating Carbon Efficiency of Manufacturing Firms in Africa    

 

Data on African manufacturing firms is provided by the World Bank Enterprise Survey (WBES) 

data, and it is accessible online, using the link https://www.enterprisesurveys.org/. In estimating 

the carbon efficiency of manufacturing firms in Africa, the dependent variable is fuel consumption 

of firms. And the World Bank’s Enterprise Survey (WBES) data set contains information about 

firms’ fuel consumption. Moreover, the WBES data contains information about the level of sales, 

which is used as proxy for output. Also note that, the sale variable as proxy of output has also been 

used by World Bank (2011) study on productivity, using same enterprise survey data. Moreover, 

the enterprise survey data also includes information about labor, and it is measured by total 

compensation of workers including wages, salaries, and bonus. Capital is measured by replacement 
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value of Machinery, vehicles, and equipment. Another independent variable is the intermediate 

good and it is measured by the cost of raw materials and intermediate materials.    

 

In estimating carbon efficiency of manufacturing firms, we have estimated the input requirement 

function. Fuel consumption is the dependent variable, and the independent variables are firm’s 

output, labor, capital, and intermediate inputs. We have estimated stochastic frontier models and 

three different probability distributions are assumed for the inefficiency part. As it shown in the 

Table 3. below all the input variables and output are statistically significant in explaining variations 

in fuel consumptions. In all three stochastic frontiers model specifications the estimated 

coefficients are almost the same and all are statistically significant at 1% level of significance.  

However, in a normal-half normal stochastic frontier model the intercept and the parameter of the 

inefficiency distribution are not statistically significant. In the normal-exponential and normal- 

weighted exponential stochastic frontier models all the estimates are statistically significant. Fuel 

consumption is positive related with output and other factors of production.    

 

Table 3 

Simulation of Fuel Consumption Under Different SFES 
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Descriptive Statistics of Carbon Inefficiency Estimates   
 

 

The primary interest in fitting a Stochastic Frontier Model is to obtain the estimates of carbon 

inefficiency score for each manufacturing firms. Carbon inefficiency is the ratio of actual fuel 

consumption to the frontier (minimum) fuel consumption. Since the actual fuel consumption is 

always greater than the optimal fuel consumption the inefficiency estimates are always greater 

than one. Therefore, if a firm’s fuel consumption is equal to the minimum possible frontier fuel 

consumption level, then the firm is fully efficient. However, if a firm consume higher than the 

minimum required, by the frontier function, then we have inefficiency. Alternatively, we can use 

another representation of carbon efficiency. Carbon efficiency level is the exponent of negative of 

value of the inefficiency score. And the inefficiency scores estimates are the values that we get 

from a composite error term.    

 

Table 4 shows an average, minimum, and maximum values of carbon inefficiency estimate across 

different stochastic frontier models. The estimates in the parenthesis are the corresponding carbon 

efficiency level. All manufacturing firms have an estimate of efficiency level which is close to 

one, which is a super efficiency estimate. If we estimate using a normal-half normal stochastic 

frontier model, we get carbon efficiency between 99.897% and 99.898%. Which indicates that all 

manufacturing firms in Africa are supper efficient in their full consumption.  Similarly, if we use 

a normal-exponential stochastic frontier model, the estimates of carbon efficiency are between 

96.312% and 97.509%. For a normal-weighted exponential stochastic frontier model the minimum 

carbon efficiency estimate is 91.16% and the maximum carbon efficiency estimate is 95.09%.   

 

Table 4 

Descriptive Statistics of Carbon Inefficiency Estimates 

 
Source: Own Estimation 
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Rank of African Countries Based on Carbon Efficiency    
 

 

In our study of the carbon efficiency of manufacturing firms in Africa, we have ranked African 

countries based on their carbon efficiency. We have efficiency estimates under three distribution 

assumptions for the inefficiency error in the stochastic frontier model. Table 5. shows that in all 

different model specifications, Egypt is the most carbon efficient country. Egypt has carbon 

efficiency of 99.89% under the normal-half normal stochastic frontier model, 96.99% under a 

normal-exponential stochastic frontier model, and 94.21% under a normal-weighted exponential 

stochastic frontier model. The rank of three most efficiency countries remain the same regardless 

of different specification of the inefficiency error.    

 

Table 5 

Rank of African Countries Based on Carbon Efficiency 
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Determinants of Carbon Efficiency of Manufacturing Firms in Africa   
 

 

After estimating the carbon efficiency level of each manufacturing firm, it is also possible to 

estimate the determinants of carbon efficiency of manufacturing firms in Africa. To estimate the 

determinants of a carbon efficiency of manufacturing firms we have used the Ordinary Least 

Square (OLS) method. The efficiency estimate derived from the stochastic frontier model is the 

dependent variable and the independent variables are managerial experience, financial obstacle, 

firm size, import or export status, and foreign ownership. We have run the regression model on 

the efficiency estimates derived from three stochastic frontier models. These stochastic frontier 

models are normal-half normal, normal-exponential, and normal-weighted exponential.   

  

Here we are estimating the determinants of carbon efficiency of manufacturing firms in Africa for 

two reasons. One is to compare the performance of the normal-weighted stochastic frontier model 

with other stochastic frontier models. The second reason is to examine the derivers of carbon 

efficiency of manufacturing firms in Africa. Table 4.7. shows that most of the variables included 

the regression equation are statistically significant. Comparing the three stochastic frontier models, 

most variables are statistically significant and 𝑅2 is higher under the normal-weighted exponential 

stochastic frontier model. Therefore, of the three stochastic frontier models the normal-weighted 

exponential stochastic frontier model explains most of the variations in the efficiency level of 

manufacturing firms in Africa.   There exists a copious of studies in estimating the determinant of 

efficiency level of manufacturing firms (Smriti & Khan, 2018). Smriti and Khan (2018) found that 

the firm size, manager’s experience, and annual losses due to power outage are important variable 

in explaining why some firms are more efficient than others. In addition, foreign ownership and 

exporting status are important variable in explaining the productivity difference in manufacturing 

sector (Islam & Hyland, 2018).    

 

Even though most of the variables are statistically significant, their marginal effect is small, and 

all independent variables poorly explain the overall variations in the efficiency level. Managerial 

experience is a continues variable and it measures the number of years that the CEO or top manager 

has served the company. As it is shown in the Table 4.7, in all three stochastic frontier models, 

managerial experience negatively affects carbon efficiency of the manufacturing firms. However, 

the marginal effects are very small, for the normal-half normal stochastic frontier model a one- 

year increase in managerial experience increases the carbon efficiency by2.95e − 08. And the 
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marginal effect of managerial experience in normal-exponential and normal-weighted exponential 

models are 0.0000510 and 0.000218, respectively.   

 

Table 6 

Determinants of Carbon Inefficiency  

 
Source: Own Computation 
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Conclusion and Recommendation 
 
 

In this study a weighted exponential distribution is used as the distribution of the inefficiency score 

in a stochastic frontier model. A weighted exponential distribution is a flexible two parameter 

distribution, and it is possible to derive a closed form likelihood function and JLMS inefficiency 

estimator for a normal-weighted exponential stochastic frontier model. Moreover, we have derived 

the gradient and hessian matrix of the likelihood function of a normal-weighted exponential 

stochastic frontier model.   

 

A Monte Carlo (MC) simulation study is implemented to examine the finite sample properties of 

the maximum likelihood estimator of a normal-weighted exponential stochastic frontier model.  

Pseudo random numbers are generated using built-in functions for generating random numbers in 

𝑀𝐴𝑇𝐿𝐴𝐵. A comparison is made with maximum likelihood estimator of a normal-exponential 

stochastic frontier model.  The simulation result shows that, a normal-weighted exponential 

stochastic frontier model performs well compared to a normal-exponential stochastic frontier 

model, given the data generating process is a normal-weighted exponential stochastic frontier 

model. As the sample size increases the bias and the standard errors of the maximum likelihood 

estimator of a normal-weighted exponential distribution decrease.   

 

To demonstrate the usefulness of the new stochastic frontier model, a normal-weighted exponential 

stochastic frontier model, we have used a real data application. The real data application is on 

carbon efficiency of manufacturing firm in Africa. Three stochastic frontier models are estimated 

to get the carbon efficiency estimates of each manufacturing firms in Africa. All the three 

stochastic frontier models give almost similar estimates for the parameters of a production 

function.  A summary of descriptive statistics of carbon efficiency estimates are discussed.  

Moreover, African countries will be ranked based on their carbon efficiency level in their 

manufacturing sector. Our estimation result shows that of the 18 African countries covered in the 

study, Egypt it top one carbon efficiency country. Moreover, we have also estimated a multiple 

linear regression model to see the determinants of carbon efficiency of manufacturing firms in 

Africa.  Top managers experience in the firm, the degree of obstacle for financial access, firm size, 

export, and foreign ownership are important variables explaining variations in carbon efficiency 

of manufacturing firms in Africa.    
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Based our studies we recommend the following, both for researchers and policy makers. The 

likelihood function of a normal-weighted exponential stochastic frontier model is flexible model, 

and it provides a closed form solution. Therefore, applied researchers are recommended to use it 

for their productivity and efficiency analysis.  Our derivation of the likelihood function is for cross 

sectional data. Therefore, a researcher is recommended to extend the model for times series and 

panel data models.     

 

Researchers interested on Monte Carlo (MC) simulation study can extend the study into times 

series and panel data cases. Moreover, it is also possible to compare other stochastic frontier 

models with a normal-weighted exponential stochastic frontier model.   
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