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Abstract 
Spatial variation is common in varietal selection field trials and is a central problem 

confronting a plant breeder when comparing the varieties' genetic potential. If 

spatial variability is not taken into account, it can strongly bias variety estimates and 

result in large standard errors. There have been many methods developed for 

accounting for spatial variation. Of these, the spatial mixed model approach 

proposed by Gilmour et al. (1997) has received particular attention as it 

simultaneously considers three types of spatial variation to be modeled: local, 

global, and extraneous variations. Despite the recommendations by several authors, 

spatial mixed model techniques are not widely used in the crop variety evaluation 

program as a routine data analysis platform. We present a spatial mixed model 

analysis using field trials from Ethiopia. Results of spatial analysis are compared to 

that of randomized complete block (RCB) analysis. The investigated spatial mixed 

models show better data fitting, resulting in a smaller error variance than that of 

RCB model analysis and a substantial improvement in heritability. Thus, spatial 

mixed models must be routinely employed in analyzing field trials to accurately and 

efficiently select superior varieties that contribute to agricultural productivity. 
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Introduction 

Agricultural varietal selection field 

trials are popular in plant preceding 

and evaluation programs, but their 

design and analysis continue to 

provide challenges for researchers. 

Spatial variation is common in these 

field trials and is a central problem 

confronting a plant breeder when 

comparing differences between 

varieties. Spatial variability, if not 

taken into consideration, can severely 

bias variety estimates and create huge 

standard errors (Girma and Niuho, 

2007 and 2008; Hawinkel et al., 

2022). The problem of spatial 

variability can be addressed by sound 

experimental design, careful trial 

management, and appropriate 

statistical analysis (Stringer et al. 

2012). An important aim of the 

analysis of varietal selection field 

trials is to obtain good predictions for 

variety performance by correcting for 

spatial effects (Rodriguez-Alvarez et 

al., 2016).  

Spatial variability can be attributed to 

different sources, such as inherent 
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variability in the experimental units 

and variation induced in the units 

through experimental processes (Cobb, 

2014). The spatial variation would be 

more inflated when the size of the 

field experiment increased at the 

expense of plot homogeneity in the 

field trials, and this would definitely 

produce bias and inefficiency in the 

parameter estimation and statistical 

tests. Experimental designs could 

account for systematic variation in the 

plots through the process known as 

blocking, and it could generally 

increase the precision and accuracy of 

experiments. However, the 

disadvantage of blocking is that it 

decreases the number of degrees of 

freedom associated with the residual 

error component, so it can reduce the 

power of an experiment if the number 

of experimental units is small. 

Blocking also has the potential to 

increase the variance if it is 

implemented in a non-orthogonal way 

(Bailey, 2008). Many elements, 

however, remain as spatial variation 

that can’t be handled by blocking, 

strongly influencing yield and other 

traits. It is necessary to correct for 

them when analyzing field trials. 

There have been many methods 

developed for accounting for spatial 

variation, including early methods that 

included adjacent plot yields as 

covariates. Papadakis (1937) proposed 

a covariate adjustment procedure for 

neighboring plots, which was later 

examined by Bartlett (1938) and 

Williams (1952). Wilkinson et al. 

(1983) proposed a smooth trend plus 

independent error model with the trend 

being removed through differentiating 

the data. Removing trends by 

differencing neighboring plots was 

also used by Green et al. (1985) and 

Besag & Kempton (1986). There have 

been many other approaches to spatial 

analysis, including the one 

dimensional models of Gleeson & 

Cullis (1987), where trends were 

modelled using time series models, 

and their extension to two dimensions 

by Cullis & Gleeson (1991), using a 

separable correlation structure. 

 

Gilmour et al. (1997) developed 

spatial models by proposing three key 

types of spatial variation to be 

modeled: local, global, and extraneous 

variation. Data from plots close 

together is more similar to those 

further apart, resulting in a local 

smooth trend that may represent 

changes in soil fertility, moisture, or 

depth. Extraneous variation is 

frequently caused by poor trial 

management or experimental 

procedures, for example, poor serpent 

planting, harvesting, or fertilizer 

application. To model global trend and 

extraneous variation, Gilmour et al. 

(1997) proposed applying polynomial 

or spline functions to row or column 

co-ordinates. The authors used a 

correlation structure for the residuals 

modeled with a separable process 

involving a first order autoregressive 

model for both rows and columns to 

represent local trends. 

 

Taye and Njuho (2008) proposed a 

non-parametric technique for fertility 
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trend using P-spline smoothing. They 

also advocated modeling fertility 

trends and local variation 

simultaneously. To model local 

variation, they employed Papadakis 

and kriged covariates. 

The aim of this paper is to present 

spatial analysis of individual field 

trials using the spatial mixed model 

approaches proposed by Gilmour et al. 

(1997), with a focus on three scales: 

global, local, and extraneous variation. 

The paper will also help bridge the gap 

between the development and 

application of method of spatial 

analysis in the analysis of individual 

field trials. More importantly, the 

paper provides the first step of 

analysis, called separate analysis, for 

individual trials enhanced with spatial 

analysis, which will then be combined 

and subjected to GxE analysis. 

 

Material and Methods 
 
Motivating field trials’ dataset  
The spatial analysis is illustrated using 

grain yield data from the 2019 and 

2020 common bean variety trials 

conducted across four locations 

(Arsinegele, Asasa, Hawassa, and 

Melkassa) by the Ethiopian lowland 

pulses research program. Table 1 

presents a summary of five trials 

(location by year combination). The 

minimum and maximum number of 

varieties sown across these trials was 

75 and 110, respectively. The trials 

were designed as a randomized 

complete block (RCB) experiment 

with three replications and set out in a 

rectangle (row x column) array of 

plots, with each block being a 

complete duplicate. The number of 

common entries across trials (trial 

connectedness) is large (Table 2), and 

GxE analysis is doable, but this is not 

our objective in this paper.

 
Table 1. Summary of trials: trial dimension, number of entries, trial mean yield (t/ha), and number of missing values 
 

 
Trial dimension Number of 

entries Mean yield (t/ha) 
Number of Missing 

values Trial name Column Row 

AN19CBN1 22 22 110 2.54 0 

AN20CBN1 15 15 75 2.55 0 

AS19CBN1 15 9 45 6.57 6 

HW20CBN1 15 6 30 1.66 0 

MK20CBN1 15 15 75 2.7 0 

 
Table 2. Common entries between trials  

 
AN19CBN1 AN20CBN1 AS19CBN1 HW20CBN1 MK20CBN1 

AN19CBN1 110 
    AN20CBN1 69 75 

   AS19CBN1 45 28 45 
  HW20CBN1 28 30 28 30 

 MK20CBN1 69 75 28 30 75 
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Spatial mixed model 
Consider a grain yield dataset 

collected from a varietal selection field 

trial in which m varieties are grown. 

The trial consists of n plots arranged in a 

rectangular array with c columns by r 

rows ( n = c x r).  Let y be the (n  x 1) 

data vector for a trial, ordered as rows 

within columns 

 The linear mixed model for y can be 

then written as  

 

   εZuXαy         (1)  

 

where α  is vector of fixed effects 

(including terms for the grand mean, 

global spatial trend, and other  fixed 

effects) with an associated design 

matrix X ( assumed to be full column 

rank), u  is the a vector of random 

effects ( including terms for variety, 

replication, extraneous spatial 

variation, and other random effects) 

with associated design matrix Z , and 

ε  is the (n x 1) vector of residual 

errors ordered as for the data vector. 

 

The random effects from the linear 

mixed model (equation 1) are assumed 

to follow a Normal distribution with 

mean zero vector and variance-

covariance matrix, that is 










R0

0G2 , 

 

Where G  is variance matrix for 

random effects and R  is the variance-

covariance matrix of the residual error  

 

 

Individual trial residual effects can be 

analyzed employing spatial methods of 

analysis that account for local or plot-

to-plot variation. R  in this case will 

have its own spatial covariance 

structure. Spatial mixed model 

provides for a much more realistic 

correlation structure between plots. In 

the linear mixed model, we partition 

the (n x 1) vector of residual errors ε   

into a vector ψ  ( n × 1) of spatially 

correlated effects, and a vector ζ  of 

independent technical or measurement 

errors. Thus, for variety field trials that 

have row by column arrangement and 

ordered as rows within columns, the 

spatially correlated effects can be 

modelled using a two dimensional 

separable correlation structure 

(Gilmour et al., 1997). Thus, the 

covariance matrix for ψ is given by 

)()(2σ)var(
rrcc ρΣρΣΣψ        2 

Where cΣ  and rΣ  represent spatial 

correlation structures with parameters 

in cρ and rρ  for the column and row 

directions, respectively. In both the 

row and column directions, we 

typically use an autoregressive spatial 

structure of order one, with in cρ  and 

rρ  each containing a single 

autocorrelation parameter. 

For spatial auto-correlation in the row 

direction only, the model simplifies to 

)(2σ
rrnc

ρΣIΣ   where cn is the 

number of columns for the trial. 

Similarly, 
rncc IρΣΣ  )(2σ would 
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be the reduced form for spatial auto-

correlation in the column direction 

only where rn is the number of rows 

for the trial. We can have also no 

spatial covariance in either direction. 

Thus, the model simplified to an IID 

variance structure of the form

nnn rc
IIIΣ

2  2 .  

 

Heritability formula 
Following the approach of Cullis et al. 

(2006), the heritability ( 2H ) value for 

the trial can be calculated from a 

generalized formula that takes 

unbalanced data into account, as 

2

2

2
1

g

A
H


      (3) 

Where A  is the average pairwise 

prediction error variance of genetic 

effects is 2
g  is the genetic variance. 

 

Estimation, testing and 
software 
Estimation in the linear mixed model 

involves estimating the fixed and 

random effects, α  and u  and the 

variance-covariance parameters in G  

and R . This involves two linked 

processes, in which the variance 

parameters of the model are estimated 

using residual maximum likelihood 

(REML, Patterson & Thompson 

1971),  and the fixed and random 

effects are estimated using best linear 

unbiased estimation (BLUE) and best 

linear unbiased prediction (BLUP) 

respectively. The Residual Maximum 

Likelihood Ratio Test (REMLRT) can 

be used to test the significance of 

random effects in the linear mixed 

model. The REMLRT can only be 

used to compare the fit of two models 

that are nested and have the same fixed 

effects. 

 

The Wald test may be used to 

determine the significance of fixed 

effects in a linear mixed model. The 

classic Wald statistic has an 

asymptotically chi-squared 

distribution. This test is often seen as 

anti-conservative (Butler et al., 2009). 

Kenward and Roger (1997) introduced 

an adjusted Wald statistic along with a 

F approximation that worked well in a 

range of scenarios. ASReml in the R 

environment was used  to estimate the 

variance parameters from the linear 

mixed model using REML (Butler et 

al., 2009). The Average Information 

(AI) algorithm is implemented by 

ASReml (Gilmour et al., 1995).  

 

Results and Discussion 
 

The first model fitted was a 

randomized complete block (RCB) 

model with random block/replication 

and variety effects, and the residual 

correlation structure is denoted by 

id(Column).id(Row), where id refers 

to the identity matrix. This model 

reflects the RCB analysis based on 

mixed model approach. And, the next 

step was to model the spatial variation.  

Thus, a spatial model to the residuals 

using a separable autoregressive 

process in the column and row 

dimensions was first fitted over the 

RCB model for the local variation. 

The spatial model for extraneous 

variation was then fitted along the 
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column and row by retaining 

significance terms for local variation. 

The significance of each fitted spatial 

model for both local and extraneous 

variation was tested using the REMLR 

test. And finally, the spatial models for 

global variation were fitted and tested 

with the Wald test. 

The presence of global and extraneous 

variation associated with the row and 

column direction can be checked with 

the help of model diagnosis tool, in 

particular the sample variogram 

(Gilmour et al. 1997). A sample vario-

gram as a typical model diagnostic 

plot for trial AN20CBN1 using the 

Metplot package, which is a part of 

ASReml-R, is depicted in Figure 1. In 

the row direction, the plot has a saw-

toothed up-down pattern. This trend, 

as demonstrated by Stefanova et al. 

(2009), is most likely the presence of 

extraneous variation within the trial, 

implying random row effects. By 

including a random column effect in 

the mixed model, this effect can be 

accommodated in the model. There is 

also evidence of a global trend in the 

row direction, with the variogram 

steadily increasing. This global trend 

may be accounted for in the model by 

employing linear or polynomial 

regression over a centered row 

number, denoted lrow. 

Table 3 presents the Wald test for 

global variation and the REMLR test 

for local and extraneous spatial 

variation.  The spatial variation were 

appropriately modeled for 

AN19CBN1 along the row and 

column (p-value <0.001), for 

HW20CBN1 along the row (p-

value=0.017), and for MK20CBN1 

along the column(p-value=0.01).   The 

global and extraneous spatial variation 

were found to be significant along the 

row direction  at AN20CBN1 (p-value 

=0.019 and <0.001, respectively).  

This demonstrates how spatial 

variation is a crucial component of 

plant breeding trials that must be 

considered. The estimates of the local 

spatial correlation parameters were 

positive (ρ1=(0.33, 0.57),  ρ2 =0.38,   

ρ3=0.18 , see Table 3), suggesting 

what was noted in De Faveri (2013) 

that plots near together are more likely 

to be comparable than plots further 

apart. Negative spatial correlation 

values would imply inter-plot 

competition, as shown in Stringer and 

Cullis (2002), but there was no 

indication of it here. 

Control non-genetic variability by 

blocking, which is based on 

observable factors like soil type and 

topography, is commonly used in 

designing experiments, but several 

possible inputs are unknown or 

unmeasured, which stresses the 

importance of incorporating spatial 

information into the analysis of each 

trial to improve the precision of 

variety evaluation. As noted in Girma 

(2005), spatial analysis is critical for 

field trials in Ethiopia, where the 

variability of soil and environment is 

very high, even within a very small 

area. If this spatial variation is 

unaccounted for, it leads to biased and 

inefficient results for variety valuation. 
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Figure 1.  Sample variogram plot of the residuals from a base model for yield at trial MK18N. 

 
Table 3. Summary of spatial analysis: spatial variation, fitted model term, Wald and REML test statistic and P-value 
  

Trial name Spatial variation Model terms 
Walda /REMLRb test 
statistics P-value 

AN19CBN1 Local  
ar1(Column):id(Row) 47.59 <0.001 
ar1(Column):ar1(Row) 65.27 <0.001 

AN20CBN1 
Global  lrow 7.18 0.019 
Extraneous  Row 16.74 <0.001 

AS19CBN1 Extraneous  Column 4.17 0.041 

HW20CBN1 Local  id(Column):ar1(Row) 5.68 0.017 

MK20CBN1 Local  ar1(Column):id(Row) 6.58 0.01 

 

 
ρ1=(0.33, 0.57),  ρ2 =0.38,   ρ3=0.18 

   
aTest for global trend after significant terms for extraneous variation and local  trend are fitted 
bTest for  extraneous variation and local trend after significant terms for global trend are fitted  
ρ1, ρ2 and ρ3 are estimates for autoregressive order 1(AR1) spatial correlations parameters at, AN19CBN1, HW20CBN1 
and MK20CBN1, respectively 

The genetic variance, error variance and heritability estimates for each trial from 

both methods of analysis (RCB and spatial analysis) are presented in Table 4. All 

results are REML estimates, and are unbiased for the corresponding variance 

component parameters. In the RCB analysis the estimates ranged from 0.044 to 

0.297 for genetic variance, from 0.076 to 5.686 for error variance, from 29.49 to 

63.33 for heritability.  Similarly, in the spatial analysis the estimates ranged from 

0.044 to 1.215 for genetic variance, from 0.08 to 4.246 for error variance, and 

from 42.82 to 76.92 for heritability. At AS19CBN1, both analyses revealed very 

high genetic and error variance, as well as low heritability. This might be because 

the spatial variation captured in the spatial analysis was considerable, and the 

remaining variability of the experimental units (plots) was also extremely large. 

The RCB analysis gives low genetic variance for most of the trials. This is not 
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surprising since the RCB analysis is quite inferior to the spatial analysis to 

efficiently explaining the genetic variance and spatial variations in the data. 

 

As compared to RCB analysis, the spatial analysis gave relatively small error 

variance for all trails. It substantially also increased heritability in all trials as it 

clearly depicted in Figure 2. This in general reveals that the spatial analysis will 

improve the precision and accuracy of varieties evolution by capturing non-

genetic variation associated with agricultural field plot variability (Smith and 

Cullis, 2018; Cullis et al. 2010). 

 
Table 4. Trial genetic variance, error variance and heritability from RCB and spatial analysis 
 

Trial name 

RCB analysis Spatial analysis 

Genetic 
variance Error variance Heritability 

Genetic 
variance Error variance Heritability 

AN19CBN1 0.297 0.564 61.21 0.297 0.555 76.92 

AN20CBN1 0.103 0.339 47.71 0.125 0.175 66.94 

AS19CBN1 0.835 5.686 29.49 1.215 4.246 42.82 

HW20CBN1 0.044 0.076 63.33 0.044 0.08 67.55 

MK20CBN1 0.059 0.188 48.6 0.057 0.08 48.68 

 

 
 Figure 2.  Heritability of yield at each trial using RCB and spatial analysis.  

 

Conclusion 
 

Agricultural field trial data (such as 

variety trials) may not be balanced or 

may be big trials at the expense of plot 

homogeneity, and ANOVA-based 

approaches may not be appropriate for 

their analysis. Spatial variation is 
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clearly evident in varietal trials. If this 

spatial variation is not taken into 

account, variety selection will worsen. 

As a result, more efficient spatial 

analysis approaches must be used. The 

linear mixed model provides a strong 

framework for dealing with 

unbalanced as well as relaxing the 

distributional assumptions surrounding 

the residual error by employing spatial 

analysis. The investigated spatial 

models show better data fitting, 

resulting in a smaller error variance 

than that of RCB model analysis and a 

substantial improvement in 

heritability. For each individual 

variety trial, spatial variation on three 

scales: global, extraneous, and local 

trend must be considered to obtain 

accurate and efficient results for 

variety evaluation. 
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