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Abstract  
The goal of this research is to study some generalized fixed point results in compact 
metric space.  It mainly focuses on the existence and unique fixed point of a selfmap on 
a compact metric space and its generalizations.  In this study iterative techniques due to 
Edelstein, Bhardwaj et al. and Sastry et al. are used to show existence of a unique fixed 
point for a selfmap satisfying certain generalized contractive conditions involving 
rational expressions. Examples are also provided in support of our results.  Our results 
generalize that of Edelstein and Fisher. 
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INTRODUCTION 

Background of the Study 
Fixed point theory is a fascinating subject 
with an enormous number of applications 
in various fields of mathematics such as 
differential equations and numerical  

 
analysis. Also the existence of Nash 
equilibrium in game theory can be 
formulated as a fixed point problem. It has 
an important role in Mathematical 
economics (Nachbar, 2010). 
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Definition 1.1. Let (�, �) be a metric 
space. A mapping �: � → � is called  
i. Contraction if  �(��, ��) ≤ ��(�, �),

∀ �, � ∈  � with � ∈  [0,1). 
ii. Contractive if  �(��, ��) < �(�, �), 

∀�, � ∈  � with  � ≠ �. 
Fixed point theory in metric spaces perhaps 
originated from the well known contraction 
principle of Banach which is stated as “A 
contraction � on a complete metric space 
(�, �) has a unique fixed point. If � is the 
fixed point of the map � then for any � ∈
�, the sequence {��x} of iterates 
converges to z”.  
While considering Lipschitzian mappings, 
a question arises whether it is possible to 
weaken contraction assumption in Banach 
contraction principle and still obtain the 
existence of a fixed point?  In general, the 
answer to this question is no. In this regard, 
we observe the following interesting 
example. 

Example 1.1 (Kannan and Sharma, 1990 ) 
Let � [0,1] denote the complete metric 
space of real valued continuous functions 
defined on [0,1] with respect to supermum 

metric � and consider the closed subspace 
� of �[0,1] consisting of those functions 
� ∈ � [0,1] satisfying  f (1)  = 1. Since Z 
is closed subspace of � [0,1], � is also 
complete. Now define mapping  �: � → � 

(�(�))(�) = ��(�),  
for each � ∈ (0,1]. 
One can easily verify that 

���(�), �(�)� < �(�, �),    

whenever � ≠ �. 
But T has no fixed point as ��(�) =
�(�) implies � (�)  = 0 for all �� [0,1) and 
�(1) = 1 which contradicts the continuity 
of � and so � can not have a fixed point in 
�.   Here one may note that T is a 
Contractive mapping on �.  
The question arises whether there is a 
theorem on the existence of fixed points of 
contractive mappings or not?  The answer 
is in affirmative, but the class of space to 
which it applies is much more restrictive. 
In this direction, Edelstein (1961) 
established the first ever fixed point 
theorem for contractive mappings defined 
on a compact metric space stated as 
follows. 

 

Theorem 1.1: (Edelstein, 1961) Let (�, �) be a compact metric space with                    
 �: � → � satisfying 

d�T(x), T(y)� < �(x, y),                                                                                (1.1) 

∀x, y ∈ X with x ≠  y, then T has a unique fixed point in X. Moreover, for any x ∈  X, the 
sequence {T�(x)} converges to the unique fixed point of  T. 
Also, Fisher (1978) proved the following theorem. 
 
Theorem 1.2: (Fisher, 1978) If T is a continuous mapping of a compact metric space 
(�, �) into itself satisfying the condition  

�(��, ��) <
�

�
[�(�, ��) + �(�, ��)]                                                           (1.2) 

for all �, � in � with � ≠ �, then T has a unique fixed point in �. 
The following examples show that Theorem 1.1 and Theorem 1.2 are independent.  
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Example 1.2. Consider the maps  

a) T: [0,1]→ [0,1] defined by  �� =
�

���
 . 

b) T: �
�

�
,

�

�
,

�

�
, 2� → �

�

�
,

�

�
,

�

�
, 2� defined by  � �

�

�
� =

�

�
, � �

�

�
� =  �(2) =  � �

�

�
� = 2.  

Here we observe that the contractive map � in Example 1.2 (a) has fixed point  
√�� �

�
 and 

does not satisfy Theorem 1.2, for 

�( � �
�

�
� , �(1)) =

�

�
=

�

�
��( � �

�

�
� , 1) + �(

�

�
 , �(1))�. 

Similarly, the map � in Example 1.2 (b) has fixed point  � = 2 and satisfies the conditions 
of Theorem 1.2, but it does not satisfy Theorem 1.1, since      

�( � �
�

�
� , � �

�

�
�) =

�

�
>

�

�
= �(

�

�
,
�

�
).  

Hence, the above two results are independent. 

The purpose of this research is to study some generalized fixed point results of selfmaps on 
compact metric spaces. 

 

Statement of the Problem 

Fixed point results on compact metric 
spaces were obtained as a generalization of 
Banach contraction mapping principle. For 
instance, in 1961 Edelstein established the 
existence of a unique fixed point of a 
selfmap on a compact metric spaces which 
is a generalization of Banach contraction 
mapping principle. In the past few years a 
number of authors such as Iseki (1977), 
Kannan (1990) and Fisher et al. (2004) 
have established a number of interesting 
results related to fixed points of mappings 
defined on compact metric spaces as 
generalizations of the contraction mapping 
principle using either of the following 
approach: 

i. Weakening the contractive properties 
of the map and possibly by 
simultaneously giving the space under 
consideration a sufficiently rich 
structure, in order to compensate the 
relaxation of the contractiveness 
assumptions; 

ii. Extending the structure of the ambient 
space; or a combination of (i) and (ii). 

In this research paper the researchers 
answer the following leading questions, 

based on the work of Bhardwaj et al. 
(2008) and Sastry et al. (2000). 

1. What are the sufficient conditions for 
the existence of unique fixed point of 
self map of compact metric spaces? 

2. What are the generalized fixed point 
results for discontinuous self maps of 
compact metric spaces? 

3. Among generalized fixed point results 
in compact metric spaces which one 
generalizes the other and which of 
them are independent?   

  
 

Objective of the Study 

General  Objective  
To study some generalized fixed point 
result in compact metric spaces. 

Specific Objectives  
1. To identify sufficient conditions for 

the existence of fixed points of a 
selfmap in compact metric spaces. 

2. To list generalized fixed point results 
in compact metric spaces. 

3. To compare and contrast the 
generalized fixed point results in 
compact metric spaces. 
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4. To prove theorems related to the 

existence of unique fixed point of 
selfmap in compact metric spaces. 

5. To identify types of selfmap of 
compact metric space to which the 
generalized fixed point results are 
valid. 

 

Significance of  the  Study 

This study is going to discuss about some 
generalized fixed point results in compact 
metric spaces and also the study identifies 
types of mapping which has a unique fixed 
point on compact metric spaces.  
 

Delimitation of the Study 

This study is delimited to the existence of 
unique fixed points of contractive type           
selfmappings of compact metric spaces and 
its generalized results. 

  

STUDY DESIGN AND 
METHODOLOGY 

Study Site and Period 
This study was conducted in Jimma 
University under Mathematics Department,            
particularly in the Analysis stream from 
December 2005 - June 2005 E.C. It is 
mainly on the existence of fixed points of 
selfmap of compact metric spaces and its 
generalized results. 

Study Design  
This study was a documentary review study 
on existence of fixed points of selfmap of 

compact metric spaces and its generalized 
results. The secondary data were collected 
from the relevant sources of information to 
achieve each specific objective of the 
study.  

Source of Information  
The available sources of information for 
the study are related books, journals and 
similar studies which are collected from the 
internet, library and experts in the field. 

Data Collection Process  
To conduct this research necessary 
information were collected through the 
following process.  
- Related books /documents were 

collected from the library. 
- Necessary parts of books that helped 

us to conduct this study were copied 
and used.  

- Experts in the related fields were 
consulted to collect different soft 
copies and hardcopies of related books 
and journals.  

 Study  Procedures  
In order to achieve the above mentioned 
objectives the following methods were 
followed. 
(a) Iterative methods due to Edelstein 

(1965). 
(b) Iterative methods by Sastry et al. 

(2000) and Bhardwaj et al. (2008).  

 Ethical Issues  
The research was done through the support 
of official letter from the department. 

  

RESULTS AND DISCUSSION 
Now we shall state and proff the main result of this research. 

Main Result  
Theorem  3.1. Let � be a continuous selfmap of a compact metric space (�, �) satisfying 
the condit ion   
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�(��, ��) < �
�(�, ��)�1 + �(��, �)�

1 + �(��, ��)
+ �

�(��, �)�1 + �(�� , �)�

1 + �(�, �)
  

     +  
�

�
 [(�(�, ��)  +  �(��, �)]  

     +  
�

�
 [�(��, �)  +  �(��, �)]  +  �� (�, �) 

for all  �, � ∈ � with � ≠ � where �, �, �, � and � are nonnegative real numbers such that  
� + � + � + � + � = 1. Then � has a unique fixed point in �.  
Proof: Define �: � →  [0, ∞) by �(�) =  �(�, ��) for every � ∈ �. 
Suppose � ≠ ��. Then 

  �(��) = �(��, ���) 

 < �
�(�,��)����(��, ����)

���(��, ���)
+  �

����,��������(�,��)�

���(�,��)
 

      

+  
�

�
 [(�(�, ��)  +  �(��, �)] +

�

�
[�(�, ���) + �(��, ��)]+��(�, ��) 

 =  �
�(�)����(��)�

���(��)
+  �

�(��)(���(�))

���(�)
+

�

�
[(�(�) + �(��)] 

     +  
�

�
[(�(�) + �(��)] + ��(�).                                                   (3.1) 

Now we assume �(�) ≤ �(��) for � ≠  ��. Then (3.1) reduced to  
�(��) < (� + � + � + � + �)�(��) = �(��) 

which is a contradiction. Hence, we have 
�(�) > �(��) for � ≠ ��.                                                                (3.2) 

Since � is continuous, �is also continuous on the compact metric space �, and hence it 
attains its minimum on � say at ��. Suppose �(��) = � (��, �(��)) > 0, i.e., �� ≠ ���. 
Then by (3.2), we obtain �(�(��))  < �(��) which contradicts the minimality of the value 
of  � at ��. Hence, our assumption �(��) > 0 is false. Hence,  

 �(��) = �(��,�(��)) = 0.  
That is, �� is a fixed point of �. 
Uniqueness of the fixed point of �. 

Suppose if possible � ≠ �� is another fixed point of  � . 

             (��, �) = ���(��), �(�)� 

   < �
�(��,���)����(��,�)�

���(���,��)
+ �

�(��,�)����(��� ,��)�

���(��,�)
   

                         +
�

�
 [(�(��, ���) +  �(��, �)]  +   

�

�
 [�(���, �) + �(��, ��)] + �� (��, �) 

    = �(0) + �(0) +  
�

�
( 0) + ��(��, �) +  ��(��, �) 

   = (� + �)�(��, �). 
 ⟹ �(��, �) < (� + �)�(��, �) ≤ �(��, �), 

which is a contradiction, since  � + � ≤ 1. 

Theorem 3.2: Let � be as in Theorem 3.1. If � = �, then for every � ∈ �, the sequence 
{���} of iterates converges to the unique fixed point of �.  

Proof: By Theorem 3.1, � has a unique fixed point  �� (say) in �. Now for each � =
0,1,2, ⋯, define  ��= �(���, �� ) for every � ∈ � with � ≠ ��.  
We consider the following two cases.  

Case 1. If ��= 0 for some n, then  ��� = �� for each � ≥ � and hence the sequence  
{���} converges to ��. 
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Case 2. If �� ≠ 0 for each �, then  

���� = �(�����, �� ) = �(�����,���� ��) 

         +  �
�(���� ��, �� ��)(���(�����,���))

���(���,�� ��)
 +  �

�(�����,���)(�������� ��,�� ���)

���(���,�� ��)
 

         +  
�

�
[�(���� ��, �� ��) + �(�����, ���)] 

                        +
�

�
[�(���� ��, ���) +  �(�����, �� ��] + � �(�� ��, ���) 

                  ≤ �(0) + �(�� + ����) +  
�

�
(�� + ����) +  

�

�
(�� + ����) +  ���. 

 ⟹ ���� < �� +
�

�
+  

�

�
+ �� �� + �� +

�

�
+  

�

�
� ���� 

 ⟹ �1 − �� +
�

�
+  

�

�
�� ���� < �� +

�

�
+  

�

�
+  �� �� 

 ⟹ �� +  
�

�
+  

�

�
+  �� ���� < �� +

�

�
+  

�

�
+ �� �� 

 ⟹ ���� < ��,                                                                                                        (3.3) 

since � = � and 1-(� +
�

�
+  

�

�
) = � +

�

�
+  

�

�
+ �. 

Hence {��} is strictly decreasing sequence of positive real numbers and hence converges 
to a real � ≥ 0(say), which is the greatest lower bound of the sequence {��}.  

By compactness of �, the sequence {��(�)} has a subsequence {���(�)} which converges 
to � ∈ � (say). Since T is continuous, as � → ∞, 

�����(�) = �(���(�)) →  ��.  
By the continuity of the metric �, letting  � → ∞, 

���
= �(���(�),  ��) → �(�,  ��) = �, 

since the sequence ����
� is a subsequence of {��}.  

Also by the continuity of the metric �, as  � → ∞, 
����� = �(�����(�), ��) → �(��, ��) = �, 

since the sequence ������� is a subsequence of {��}.  So,  

� = �(�, ��) = �(��, ��).                                                                   (3.4) 
Now we claim � = 0. Suppose  � ≠ 0. Then  � ≠ ��. By (3.3), we get  

�(��, ��) = �(��, ���) <  �(�, ��), 
which contradicts (3.4). Hence, � = ��, which means  � = �(�, ��) = 0. This shows 
�� → 0 as � → ∞ and hence the conclusion of the theorem follows. 
 
Remarks: 
i. Putting � = � = � = � = 0, � = 1,  we get Edelstein [3] theorem. 

ii. Putting � = � = � = � = 0, � = 1, we get Fisher [5] theorem. 
  
Theorem 3.3: Let � be a self-map of a compact metric space (�, �) such that for some 
� ≥ 1,  �� is continuous and satisfying the condition    

     �(��(�), ��(�)) < �
�(�,���)(���(���,�))

���(���,���)
+ �

�(���,�)(���(��� ,�))

���(�,�)
 

                           +  
�

�
 [(�(�, ���)  +  �(���, �)]  +  

�

�
 [�(���, �)  +  �(���, �)]                  

                           +  �� (�, �) 
for every �, � ∈ � with � ≠ �, where�, �, �, � and � are nonnegative real numbers such 
that                  � + � + � + � + � = 1 . Then � has a unique fixed point in �.  

Proof: Define. �: � →  [0, ∞) by �(�) =  �(�, ���) for every � ∈ �. 
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Suppose � ≠ ���. Then, 

 �(���) = �����, ��(���)� 

        < �
�(�,���)����(���,��(���)�

�������,��(���)�
+ �

�(��(���),���)(���(�,���)

���(�,���)
 

          +
�

�
[�(�, ���) + �(���, ��(���)]  +  

�

�
����, ��(���)� +

����,��� 

                      + ��(�, ���) 

                   ≤ �
�(�)����(���)�

���(���)
+  �

�(���)����(�)�

���(�)
+

�

�
[(�(�) + �(���)] 

                          +  
�

�
[(�(�) + �(���)] + ��(�).                                                ( 3.5) 

If we assume �(�)  ≤ �(���), then (3.5) reduced to 
�(���) < (� + � + � + � + �)�(���) = �(���) 

which is a contradiction. Hence our assumption �(�) ≤ �(���) for � ≠ (���) is false. 
So,  

�(�) > �(���)   for � ≠ ���                                                           (3.6) 
Since �� is continuous, �is continuous on the compact metric space�, hence it attains its     
minimum on � at  �� (say). 
Suppose � (��) = d (��,�� (��)) > 0. Then by (3.6), we obtain 

�(�� (��) < �(��), 
which contradict minimality of the value of � at ��.  
Hence, our assumption �(��) > 0 is false.  
Therefore,  

� (��) =  �(��,�� (��))  = 0.  
That is, �� is a fixed point of  ��. 

Uniqueness of the fixed point of ��. 
Suppose if possible � ≠ �� is another fixed point of  ��. Then 

 �(��, �) = �(����, ���) 

               < �
�(����,��)(���(���,�))

��� (����,���)
+ �

�(���,�)(���(����,��))

���(��,�)
 

                          +  
�

�
[�(����, ��) + �(���, �)] +

�

�
 [�(����, �) + �(���, ��)] 

                                 +  ��(��, �) 
                       = (� + �)�(��, �). 

      ⟹ �(��, �) < (� + �)�(��, �) ≤ �(��, �), 
which is a contradiction, since  � + � + � ≥ 0 and � + � ≤ 1. 
Now let �� is a fixed point of �� and since �� (T (��)) =�(�� (��)), then 

�� (T (��)) = �(�� (��))= T (��) = ��. 
That is, the uniqueness of the fixed point of T follows from that of  �� and the fact that any 
fixed point of T is a fixed point of  ��. 
 

Remarks: Theorem 3.1 is obtained by putting � = 1 in Theorem 3.3. 
Now consider the following example. 

Example 3.1: Define �: [−1, 1] →  [−1,1] by �(�) = �
0 for −1 ≤ � < 0
1 for 0 ≤ � ≤ 1

�. 

In this example the map T is not continuous and hence Theorems 1.1 and Theorem 1.2 are 
not applicable.  
 

Now since ��� = 1 for each � ∈ [−1, 1];  for all �, � ∈ [−1, 1] with � ≠y ,  we have  
 �(���, ���) = �(1,1) = 0 < �(�, �), 
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which shows Theorem 3.3 is more general than Theorem 3.1 and hence Theorem 1.1 and 
Theorem 1.2 if we choose � = � = � = � = 0  and  � = 1. 
 
 

CONCLUSIONS  

Fixed point theory in metric spaces 
perhaps, originated from the well-known 
contraction mapping principle of Banach. 
The generalized result of this principle is 
opted by weakening the contractive 
properties of the map and possibly by 
simultaneously giving the space a 
sufficiently rich structure, in order to 
compensate the relaxation of the 
contractiveness assumptions and extending 
the structure of the ambient space.  And 
also several fixed point theorems have been 
obtained by combining the two ways or by 
adding supplementary conditions. 

Hence the conclusion of contraction 
mapping principle is valid if we consider 
compact spaces instead of using complete 
spaces and the conclusion of contraction 
mapping principle is not valid if we 
consider contractive mapping instead of 
contraction. In 1961 Edelstein proved fixed 
point theorem of contractive mapping of 
compact metric spaces. In the past few 
years a number of authors such as 
Bhardwaj et al. (2008), Bhatnagar et al. 
(2012) and Sastry et al. (2000) have 
established the generalization of Edelstein 
result. 

 This paper proved some general fixed 
point theorems for self-mapping satisfying 
a new contractive condition in compact 
metric space s which generalized the result 
of Edelstein and Fisher. 
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