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Dynamic Systems
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Abstract:
In this article, methods of modeling dynamic systems namely, Nonholonomic 
mechanics, Vakonomic mechanics and Chetaev methods for constrained dynamic 
system are investigated. The fact that Vakonomic mechanics gives a different motion 
equation to the other methods is verified using a particular example. It is shown that the 
three methods give the same motion equation for holonomic system. For nonholonomic 
system, the Vakonomic dynamics gives a different motion equation to the others. 
Moreover, Chetaev equation is proved without using Chetaev condition. A particular 
example is provided in verifying that Chetaev condition is not always valid. Finally, the 
reason why the Vakonomic mechanics gives a different motion equation in the case of 
nonholonomic system is scrutinized based on the definition of Vakonomic mechanics 
whose motion equation is obtained through a purely variational principle. An example is 
given to strengthen the arguments. 

Key Terms: Nonholonomic mechanics, Vakonomic mechanics, Chetaev formula, 
                    holonomic constraint, semi-holonomic constraints, nonholonomic constraints, 
                   Variational principles, Infinitesimal variations

Introduction:
The term, Borisov A.V. et al(2002), 
Manuel de León.(2012) “nonholonomic 
system” was coined by Hertz (1894).

 Nonholonomic systems are,  mechanical 
systems with constraints on their velocities 
that are not derivable from position 
constraints. 
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Nonholonomic systems arise in mechanical 
systems that have rolling contact (rolling of 
wheels without slipping)  or certain kinds 
of sliding contact such as the sliding of 
skates. One of the first, Borisov A.V. et 
al(2002), discoveries by Hertz was that, the 
usual integral variational principles such as 
the principle of least action or Hamilton’s 
principle do not hold for nonholonomic 
systems. Moreover, Hertz has classified 
Lagrangian system with linear constraints 
into holonomic and nonholonomic 
according to whether the imposed 
constraints are holonomic or not. 
The motion equations resulting from 
classical nonholonomic mechanics using 
the LagrangeD’Alembert principle is not 
given in the form of a variational problem. 
That is, the motion of the nonholonomic 
system is not a critical point of any 
functional in the sense of the Calculus of 
Variations Kozlov (1983).
In an attempt to circumvent this difficulty, 
Kozlov (1983), Arnold V.I.(1988), gives a 
variational formulation of constrained 
motion, calling the resulting equations of 
“variational axiomatic kind,” leading to the 
name “vakonomic.” 
One of the more interesting historical 
events Borisov A.V. et al(2002), Manuel de 
León.(2012), Абрамов Н.В. et al(2013), 
Bloch A.M.(2003) of nonholonomic 
systems is related to the paper by Korteweg 
(1899) .Up to that point there was some 
confusion in the literature between 
nonholonomic mechanical systems and 
variational nonholonomic systems. One of 
the purposes of Korteweg’s paper was to 
uncurl this misunderstanding. Accordingly 
the difference between nonholonomic and 
vakonomic dynamics relies in the different 
principle applied in both cases:

- Nonholonomic dynamics is derived 
using the d’ Alembert principle.

- Vakonomic dynamics is obtained 
using a variational principle looking 
for external curves among those 
satisfying the constraints.

The motion equations resulting from 
vakonomic and classical nonholonomic 
mechanics are genuinely different from 
each other as is shown in Lewis 
et.al(1995). Moreover, Kozlov himself 
made it clear that the equations obtained 
through vakonomic dynamics and classical 
nonholonomic mechanics are the same in 
the case of holonomic constraints and for 
nonintegrable constraints, vakonomic 
mechanics gives a different motion 
equation Kozlov V.V.(1982a) to classical 
nonholonomic mechanics.
In several articles Arnold V.I et al (1988), 
Lewis A. et.al (1995), Kozlov V.V.(1982a) 
the differences of motion equations 
resulting from vakonomic mechanics and 
classical nonholonomic mechanics are 
shown using experimentation of different 
particular examples. This paper gives a 
theoretical background showing that:

1. The two mechanics give the same 
motion equations for holonomic 
systems.

2. The two mechanics give different 
motion equations for first order 
linear nonholonomic systems.

In addition, in several literatures, the reason 
why the two mechanics give different 
motion equations is not addressed. This 
paper gives an answer to:

3.  The question “why do these 
methods give different motion 
equations?” is scrutinized. 

4. Moreover, in this paper, Chetaev 
equation is proved without using 
Chetaev condition.

The organization of the paper is, in section 
2, motion equations resulting from 
nonholonomic mechanics, Chetaev method 
and vakonomic mechanics are revisited. A 
particular example showing that the 
vakonomic mechanics gives a different 
motion equation from that of 
nonholonomic mechanics and Chetaev 
method is given. In section 3, an 
investigation of vakonomic mechanics for 
the cases of holonomic constraints is made. 



Investigation of Nonholonomic Mechanics,                                           Chernet  Tuge   23

In section 4, Chetaev equation is proved 
without using Chetaev condition. An 
example where Chetaev condition doesn’t 
hold is provided. Moreover, the reason why 

vakonomic mechanics gives different 
equation of motions to nonholonomic 
mechanics is scrutinized.  

Nonholonomic and Vakonomic Dynamics Revisited
Variational Principles for Constrained Systems
Let  be a configuration manifold Абрамов Н.В. et al(2013), Bloch A.M (2003), with 

dimension  and  its tangent bundle. Denote by  the 

coordinates on  and by the induced coordinates on . Define the 
regular mechanical Lagrangian as:
 : , where,  is the kinetic energy of 

the system,  is the potential energy of the system.   the set of real 
numbers.
A set of twice differentiable curves connecting two given points  and  , denoted by 

, [a,b]), in    is define on an interval   as:

, [a,b]) is 

a curve and  and is called the path space from  

to .(See Fig.1).

This set is a differentiable infinite-dimensional manifold Bloch A.M (2003), Мухарлямов 
Р.Г. (2013).The tangent space to  , [a, b]) at curve , [a, b]) 
is given as :

,[a,b]) is map  and 

)}()( bXaX =  



Ethiop.  J.  Educ.  &  Sc.                                          Vol.  11  No  1,   September,  2015   4

Since  is a tangent vector to the manifold we may write it as the 

tangent vector at  of a curve in ,  

 which passes through at , i.e. , as:

Given the Lagrangian function, two fixed points and a fixed time 

interval , the associated action integral is the Мухарлямов Р.Г. (2013), Cortés J. 
(2002) real valued map given by:

, [a, b])    defined by:

Theorem1.Hamilton’s variation principles, Мухарлямов Р.Г. (2013).
A curve   is a motion of the Lagrangian system defined by L if 

and only if  is a critical point of the action integral , (i.e.,  (c) = 0).

2.2 Modeling Mechanical Systems
Definition 1: A curve  , [a, b])  is called, Мухарлямов Р.Г. (2013),a 

critical point to the action integral  if  and only if  for every 

,[a,b]). 

It is convenient to write  as:

Equation (2.3), using the end point conditions , the 

commutation    and method of integration by parts leads to:

, [a, b]) and .

Note also that as can be seen from (2.4), 
the nonholonomic constrained variational 
problem does not immediately give the 
required equations of motion. This task is 

taken up in the following cases for 
nonholonomic and vakonomic mechanics 
in that order.
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Modeling Nonholonomic Mechanics
In this section, we derive the equations of 
motion for nonholonomic systems subject 
to affine constraints.
A nonholonomic Lagrangian, Lewis et 
al(1995), Мухарлямов Р.Г. (2013) system 
on a manifold Q consists of a pair  

 is the Lagrangian of the system and  is 

a submanifold of .
The allowed velocities for the 
nonholonomic Lagrangian system are those 
belonging to . We assume  is an affine 

sub bundle modeled on a vector bundle . 

Being an affine, there exists a vectorfield 
 on  such that  if and only 

if
The fulfilling, Мухарлямов Р.Г. (2013), of 
the constraints requires the introduction of 
some unknown reaction forces. In 
connection with the problem of eliminating 
this unknown character, it is customary to 
introduce the concept of virtual 
displacement. Let us consider a first order 
nonintegrable linear nonholonomic velocity 
constraint. In this case the constraints can 
be expressed in the form:

In contrast to holonomic constraints, the 
nonintegrable constraint (2.5) directly 
restricts the kinematically possible 
velocities and therefore cannot be directly 
embedded in  in order to 

reduce the number  of generalized 

coordinates to independent 
coordinates. But since virtual 
displacements  coincide with possible 

displacements  in the limit of frozen 

constraints ( , they satisfies the 
linear set of conditions,

This can be adjoined to expression (2.4) and results in:

 Where, are Lagrange multipliers  and 

 is Jacobian matrix of the constraints. The equation of motion 

including external forces  and the constraints is given by:
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If in instead of constraints defined by (2.5), the constraints are more generically defined by 
the vanishing of the set of  independent maps  

 , determine locally the nonlinear sub-

manifold ,then the Chetaev rule implies that the equations of motion for a constrained 
Lagrangian system, instead of (2.7), becomes:

Equation (2.9) together with the constraint 
equations (2.5) is called Chetaev 
equations.
Note that, in Chetaev equation the virtual 
displacement equation is given by the 

Chetaev condition:     in 

steady of (2.6).

Modeling Vakonomic Mechanics
The Lagrange-D’Alembert principle is not 
given in the form of a variational problem. 
That is, the motion of the nonholonomic 
system resulting from equation (2.8) is not 
a critical point of any functional in the 
sense of the Calculus of Variations Kozlov 
V.V.(1982a).
In an attempt to circumvent this Arnold 
V.I. (1985), difficulty, Kozlov V.V.(1983) 
gives a variational formulation of 
constrained motion, calling the resulting 

equations of “variational axiomatic kind,” 
leading to the name “vakonomic”.

Definition2: The vakonomic problem 
consists of extermizing the functional  
defined by equation (2.2) among the curves 
satisfying, Lewis et al (1995), the 
constraints. Hence a curve 

, , is a 

solution of the vakonomic problem if  is a 

critical point of 

We may use the Hamilton’s principle, 
where by the motions of the system are 
extremal of the variational problem of 
Lagrange. The equation of motion then can 
be obtained as the Euler-Lagrange 
equations for an extended singular 
Lagrangian: 

,  

Equation (2.10) can equivalently, Lewis et al(1995),be expressed in the form:
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Where,  are the Lagrange multipliers.

The Rolling Sphere.
In this section an example showing that the 
vakonomic mechanics gives a different 
motion equation to that of nonholonomic 
mechanics and Chetaev method is given. 
Example1.
Consider a homogeneous sphere rolling on 
a plane. Let the plane rotate with constant 
angular velocity  about the -axis and 

 be the 

angular velocity vector of the sphere 
measured with respect to the inertial frame. 
Let  be the mass of the sphere, 

 its inertia about any axis, and let 

 be its radius.The configuration space is 

 
denotes the position of the center of the 
sphere and  denote the 
Eulerian angles.
The contact condition in terms of the 
coordinate   of the 
center of the sphere,the angular velocity 

 of the rotating table (pointing upward) 

and that of the ball  may be written as:

and is equivalent to:

Let us consider the dynamic equation of the system using the different mechanics.

I. Nonholonomic mechanics equation of motion of the rolling Sphere 
The Lagrangian of the system is given by:

Based on equation (2.7) we have:

We use quasi-velocities such that

.

Let us define momenta:  
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Then from (2.13) and (2.14) we obtain:
, , , .

Setting an initial condition of 
, we obtain:

From (2.14) and (2.15) we obtain:                  

   

From equation (2.16), it follows that:  and  .

Using these values of ,  , the constraint equation (2.12) and (2.16) we have the 
dynamic equation of the system given by:

where  

II. Vakonomic mechanics equation of motion of the rolling Sphere 
The extended Lagrangian is given by:
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Let us define momenta:

From (2.10) and (2.18) we have:
,     ,    ,      .

Setting an initial condition of 
, we obtain: 

  .                                                                  (2.19)

From equations (2.18) and (2.19) it follows that:

 .                                         (2.20)

From (2.20) we obtain    and   . Using these values of 

 , , the values   ,  and the constraint equations (2.12), 

we have the dynamic equation given by:
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where  

One can observe that, motion equations 
(2.17) and (2.21) are in general not equal to 
each other. Moreover using Chetaev 
equation (2.9) one can easily show that, 
motion equation of the rolling sphere is 
identically equal to the motion equation 
given by (2.21) obtained from 
nonholonomic mechanics, equation (2.17).

Vakonomic Mechanics in the Case of 
Holonomic Constraints
In the vakonomic mechanics, Kozlov V.V. 
(1982a), Arnold V.I. et al (1988), the 
virtual displacement condition for a general 
nonholonomic constraint of the form 

 
is obtained by variation of the generalized 
coordinates and the generalized velocities 
and is given by:

The trajectory equations are given by:

Where,  is non-conservative force and  is the constraint force.

When        
)4.3(,0. =A

A qR d

then  will not appear in (3.2) and hence 
the equation becomes identical with that of 
vakonimic motion equation (2.11).But the 

work done by the constraint forces vanishes 
for ideal constraints where we have smooth 
surfaces. 
Let us investigate this as follows:

When constraint equation  is integrable, then there exists a function 

 such that:
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The integration of  represents a surface   , 

where c is a constant. 
Now

The variation of the constraints, equation (3.1), becomes:

From the equality:

integrating on equation on an interval [a, b] we obtain:

From (3.8) one can infer that, the virtual 
displacement of variation of the constraints 
is tangential to the surface 

 . This result is expected 
since for ideal constraints the surface is 
assumed to be perfectly smooth, the 
constraint forces are normal to the virtual 
displacements. Hence we can conclude that 

in case of ideal and integrable constraint, 
the virtual work done by the constraint 
force,  .That is 
vakonomic mechanics (3.2) based on (3.6) 
and (3.8), and with the choice of 

 have the form:
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We can conclude that, the vakonomic 
mechanics gives the same dynamic 
equation of motion as nonholonomic 
mechanics and Chetaevs method in the case 
of ideal constraints. In this case (3.2) 
reduces to equation (3.9). 

Vakonomic Mechanics in the Case of 
Nonholonomic Constraints
We shall show a unified approach to 
nonhohlonomic systems and compare it 
with vakonomic mechanics.
Let us start from variations of the 
constraint equation (3.1). Assuming the end 
point condition:

and integrating equation (3.1) on  we obtain an integral constraint:

Now given a functional

,

Subject to boundary conditions (4.1) and  first order nonlinear nonholonomic constraints 
of the form :

construct the extended functional:

and extremizing over {  leads to:

 

Where, On the other hand, multiplying (3.1) by the 
scalar function  and then 
integrating it on [a b] with respect to time, 
taking into account (4.1), we obtain:

Substituting (4.5) in (4.4) leads to:
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Making a proper choice of  and substituting   , and including the constraint 
equations we have:

Equation (4.7) gives a complete motion 
equation for systems constrained by first 
order nonlinear nonholonomic constraints 
of the form (4.2).
Note that (4.7) is the same as equation (2.9) 
including the constraint equations, except 
that Chetaev condition

 (i.e.  is nowhere used 

in the proof. Hence, expression (4.7) is a 
unified motion equation of nonholonomic 
system for nonholonomic constraints of the 
form 4.2).

Remark: The Chetaev condition in the example of the rolling sphere is 

nonzero. . Indeed: 

   .

Let us compare vakonimic mechanics, 
equation (2.11), and our model (4.7).
I. For these two to be equal, the term 

 in expression 

(2.11) has to vanish. We have already 
seen in equation (3.6) that 

, if the 

constraints are holonomic. That is 
(2.11) and (4.7) are equal provided that 
the constraints are holonomic.

II. As it is mentioned in definition2, 
vakonomic method of motion is 
obtained through a purely variational 
principle by imposing the fulfilling of 
the constraints on the variations 
themselves, not on the infinitesimal 

variations as it is the case in 
nonholonomic mechanics.

In this paper, it is shown that the variations 
of linear nonintegrable nonholonomic 
constraints are not consistent with the 
constraints. Let us investigate this problem 
using first order nonintegrable linear 
nonholonomic velocity constraints. In this 
case the constraints can be expressed in the 
form of expression (2.5).
Suppose the variation of expression (2.5) 
satisfies the constraints. Then we have:

Now with this immediate equation, 
imposing end point condition (4.1) and 
integrating over [a, b] for all we 
obtain:
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Moreover, 

  

Hence,

0

From this last equation, we see that for the 
variation of the constraints,  to 

satisfy the constraint equation, the 
constraint equation (2.5) must be an exact 
differential equation, i.e.

holds true, if and only if (2.5) is exact. 
Provided that the linear constraints (2.5) 
satisfy condition  (i.e. it is an exact 
differential equation), an integrand function 
of the form  therefore exists but 
may be unknown. Such constraints are 
termed semi-holonomic, Goldstein H. 
(2001). Semi-holonomic constraints are 
holonomic constraints but their integrand 
may not be known. The existence of such a 
function,  granted by exactness 
condition (4.8), contradicts our assumption 
that the constraint is nonintegrable.  

We can now conclude that, the immediate 
above proof and the discussion there in, 
ascertains that, only the variation of 
integrable constraints (semi-holonomic and 
holonomic constraints) satisfy the 
constraint equations of a given system. In a 
nonholonomic system, only the original 
constraint satisfies the constraint equations 
and its variations are not consistent with 
the constraints. To strengthen this 
conclusion let us take up the following 
particular example.

Example 2
Consider a linear nonholonomic constraint 
below and suppose a particle is moving in 
the space, subject to the constraint: 

Where and  are functions of 

 of class  and the 

Pfaffian form  does not admit an 

integrating factor. That is  is not known. 
The original orbit surely satisfies constraint 
(4.9), and so by hypothesis do the velocity 
and variations from it satisfies (4.9). So we 
have:
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Suppose the variation satisfies the constraint condition. That is possible only if

From (4.11) at each instant of time we have:

Note that we use the commutation:  for a linear in velocity 

nonholonomic systems, Zhongheng G. et al (1989). Subtracting (4.12) from (4.13) we 
have:

Expanding equation  we obtain:

                           
On the other hand, since the following proportion follows:

 

From which equation becomes:

This tells us that the constraint is exact and 
hence integrable. This is not true since the 
constraint is supposed to be nonintegrable. 
The assumption that the variation satisfies 
the constraints led to a contradiction. 

Hence, the variations from the original 
nonholonomic constraint do not conform to 
the equations of the constraint. In other 
words, there is no varied path   that 
satisfies the constraint condition in a linear 
nonholonomic system. It needs to be noted 
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that the infinitesimal variations  and the 

actual curve  (Look fig.1) satisfies the 
constraint conditions.

According to this paper, the main reason 
for vakonomic mechanics to give different 
motion equations to nonholonomic 
mechanics and our model equation (4.7) is 
that, in a purely variational approach to 
mechanical modeling, the variations from 
the original nonholonomic constraints don’t 
conform to the original constraint 
equations. 

As we have shown, for holonomic 
constraints all the motion equations 
obtained from Vakonomic nonholonomic 
mechanics and equation (4.7), Chetaev 
equation without Chetaev condition, are the 
same.

CONCLUSION:
In this article, different methods of 
modeling mechanical systems were 
investigated. The Vakonomic mechanics is 
compared against the nonholonomic 
mechanics and Chetaev method of 
constructing motion equations of 
constrained mechanical systems. It is 
ascertained that all of them gives the same 
motion equations for the case of holonomic 
constraints and the Vakonomic mechanics 
is different from the remaining ones for 
nonholonomic systems. The reason why 
Vakonomic mechanics is different in the 
case of nonholonomic constraints is 
detailed in the paper. Moreover, Chetaev 
equation is proved without using its 
conditions. It is verified using an example 
that there are cases when Chetaev condition 
is not valid.
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