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Abstract 

A fitted-stable central difference method is presented for solving singularly perturbed 

two point boundary value problems with the boundary layer at one end (left or right) of 

the interval. A fitting factor is introduced in second order stable central difference 

scheme (SCD Method) and its value is obtained using the theory of singular 

perturbations. Thomas Algorithm (also known as Discrete Invariant Imbedding 

Algorithm) is used to solve the resulting tri-diagonal system. To validate the applicability 

of the method, some linear and non-linear examples have been solved for different 

values of the perturbation parameter. The numerical results are tabulated and compared 

with exact solutions. The error bound and convergence of the proposed method has also 

been established. From the results, it is observed that the present method approximates 

the exact solution very well. 
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INTRODUCTION 

Singularly perturbed second-order two-

point boundary value problems occur very 

frequently in fluid mechanics, fluid 

dynamics, chemical reactor theory, 

elasticity etc and have received a 

significant amount of attention in past and 

recent years. The solution of these types of 

problems exhibits a multi scale characters. 

That is, there are a narrow region called 

boundary layer in which their solution 

changes rapidly and the outer region where 

solution changes smoothly.  
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Thus, numerical treatment of such 

problems is not trivial because of the 

boundary layer behavior of their solutions. 

There are a wide variety of asymptotic 

expansion methods available for solving 

singular perturbation problems. However, it 

may be difficult to apply these asymptotic 

expansion methods as finding of the 

appropriate asymptotic expansions in the 

inner and outer regions is not routine 

exercises rather requires skill, insight, and 

experimentations. Moreover, the matching 

of the coefficients of the inner and outer 

solution expansions can also be a 

demanding process.  For detail discussion 

of solving singular perturbation problems 

by asymptotic expansion methods, one can 

refer to the books and high level 

monographs: (O'Malley, 1974, 1991; 

Nayfeh, 173, 1981; Cole and Kevorkian, 

1979; Bender and Orszag, 1978; Eckhaus, 

1973; Van Dyke, 1975; and Bellman, 

1964).  

Moreover, in the recent times many 

researchers have been trying to develop and 

present numerical methods for solving 

these problems. For instance, based on the 

asymptotic behavior of singular 

perturbation problems, the researchers 

(Kadalbajoo and Patidar, 2002; and 

Kadalbajoo and Reddy, 1987a, 1988) have 

discussed numerical schemes for the 

solution of linear singularly perturbed two-

point boundary value problems. 

Reproducing kernel method (RKM) has 

been presented for solving a class of 

singularly perturbed boundary value 

problems by transforming the original 

problem in to a new boundary value 

problem whose solution does not change 

rapidly (Geng, 2011). RKM has the 

advantage that it can produce smooth 

approximate solutions, but it is difficult to 

apply the method for singularly perturbed 

boundary value problems without 

transforming using appropriate 

transformation. The authors (Padmaja and 

et al., 2012) have presented a nonstandard 

explicit method involving the reduction of 

order for solving singularly perturbed two 

point boundary value problems. The 

original problem is approximated by a pair 

of initial value problems. In order to know 

the behavior of the solution of the problems 

in the boundary layer region, these 

researchers solved the first initial value 

problem as outer region problem whose 

solution can be required in the second 

initial value problem which they 

considered it as an inner region problem 

and is modified using the stretching 

transformation. The Differential 

Quadrature Method (DQM) has been 

applied for finding the numerical solution 

of singularly perturbed two point boundary 

value problems with mixed condition 

(Prasad and Reddy, 2011). DQM is based 

on the approximation of the derivatives of 

the unknown functions involved in the 

differential equations at the mesh point of 

the solution domain and is an efficient 

discretization technique in solving 

boundary value problems using a 

considerably small number of grid points. 

Moreover, the scholars (Choo and Schultz, 

1993) also developed stable central 

difference methods (they call it SCD 

methods) for solving singularly perturbed 

two point boundary value problems. 

Thus, the objective of this paper is to 

formulate an easily applicable and efficient 

computational technique which helps to 

understand the behavior of the solutions of 

the problems in the inner region, where the 

solution of the problem changes rapidly, of 

the boundary layer where other classical 

numerical methods fail to give good results 

for h   and to find the computational 

results at uniform mesh length. Owing to 

this, a fitted-stable central difference 

(FSCD) method is presented for solving 

singularly perturbed two-point boundary 

value problems with the boundary layer at 
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one end (left or right) of the interval.  A 

fitting factor is introduced in second order 

stable central difference scheme (SCD 

Method) (Choo and Schultz, 1993) and its 

value is obtained using the theory of 

singular perturbations. Thomas Algorithm 

is used to solve the resulting tri-diagonal 

system. To validate the applicability of the 

method, some linear and non-linear 

problems have been solved. The results are 

computed for both SCD and FSCD 

methods and compared with exact solutions 

for different values of perturbation 

parameter. 

 

DESCRIPTION OF THE METHOD 

Consider a linear singularly perturbed two-point boundary value problem of the form: 

]1,0[    ),()()()()()(  xxfxyxqxyxpxyLy    (1) 

subjected to the boundary conditions 

)0(y
         (2) 

)1(y
         (3) 

where 10    is small positive 

parameter and  ,  are known constants. 

We assume that )(  ),( xqxp  and )(xf  

are bounded and continuously 

differentiable functions on )1,0( . 

Left-End Boundary Layer Problems  

In general, the solution of problem (1)-(3) 

exhibits boundary layer behaviour at one 

end of the interval [0, 1] depending on the 

sign of )(xp . We assume that 

0)(  Mxp  and 0)( xq  

throughout the interval ],1,0[  where M  is 

some constant. Under these assumptions, 

Eq. (1) has a unique solution )(xy  which 

in general exhibits a boundary layer of 

width )(O  on the left side of the 

underlying interval (Kadalbajoo and 

Reddy, 1987b). 

Now, we divide the interval ]1,0[  into 

N equal parts with uniform mesh 

length h . Let 1,,,,0 210  Nxxxx   

be the mesh points. Then we 

have Niihxi ,,2 ,1 ,0,  .  

For simplicity let 

iiiiiiii yxyfxfqxqpxp  )(,)(,)(,)( .  

Assuming that )(xy  has continuous fourth 

derivatives on ]1,0[   and by making use of 

Taylors series expansion for 

1 1andi iy y  , the following central 

difference formulae for y   and y   can be 

obtained at ix . 
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where 
!5

)(2 54

1

yh
R


  and 

!6
)(2 64

2

yh
R


  for ],[, hxhx ii  .  

Substituting  Eqs. (4) and (5) into Eq. (1), we obtain the central difference in a form that 

includes the )( 2hO  error term for y  . That is,  
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where 21

)4(2

12
RRp

yh
R i

i 





 .  Further, from Eq. (1) we have 

i i i i iy f p y q y    
 

      (7) 

Differentiating both sides of Eq. (7) and substituting into Eq. (6), we obtain 

 

i
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(8) 

Approximating the converted error term, which have the stabilizing effect (Choo and 

Schultz, 1993), in Eq. (8) by using the central difference formula for iy   and iy  from Eqs. 

(4) and (5), we obtain the SCD scheme: 

 

ii

i

i

i

ii

i

ii

ii

i

i

iiii

Tf
ph

f

y
qph

q
h

yy
qp

ph
p

h

yyyph















 








 





















 








 






6

626

2

6

2

2

11

2

2

11
22

 (9) 

where Ry
h

y
h

T iii 
 7272

4
)4(

4

 is the local truncation error. 

Introducing the fitting factor   into Eq. (9), we obtain  
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         (10) 

  Nyy      ,0        (11) 

where   is a fitting factor which is to be determined in such a way that the solution of 

Eqs. (10)- (11) converges uniformly to the solution of Eqs. (1)-(3). Multiplying Eq. (10) by 

h  and taking the limit as 0h ; we obtain 

 
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22

 is bounded. 

From the theory of singular perturbations it is known that the solution of Eq. (1)-(3) is of 

the form (O’Malley, 1974): 

  )()0(
)(

)0(
)()( 0 )(

)()(
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  (13) 

where )(0 xy is the solution of the reduced problem 

 )1(     ),()()()()( 000 yxfxyxqxyxp     (14) 

By taking the Taylor’s series expansion for )(xp  and )(xq  about the point '0'  and 

restricting to their first term, Eq. (13) becomes 
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Further, considering Eq. (15) at the point Niihxx i  , ,2 ,1 ,0  ,   and taking the 

limit as 0h we obtain 

      )()0(0lim
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  By substituting Eq. (16) into Eq. (12) and simplifying we obtain the fitting factor 
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Finally, by making use of Eq. (10) and   given by Eq. (17), we can get the three term 

recurrence relation of the form 
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This gives us the tri-diagonal system which can be easily solved by Thomas Algorithm. 

Right End Boundary Layer Problems 

Now we assume that 0)(  Mxp  throughout the interval ]1,0[ , where M is some 

constant. This assumption merely implies that the boundary layer will be in the 

neighborhood of 1x . Thus, from the theory of singular perturbations the solution of 

Eqs. (1)-(3) is of the form (O’Malley, 1974) 
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where )(0 xy is the solution of the reduced problem 

 )0(     ),()()()()( 000 yxfxyxqxyxp     (20) 

By taking the Taylor’s series expansion for )(xp  and )(xq  about the point '1'  and 

restricting to their first term, Eq. (19) becomes 

 
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Similarly, considering Eq. (21) at the point Niihxx i ,,2  ,1  ,0  ,   and taking 

the limit as 0h , we obtain 
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where


 h . Applying the same procedures as in section 2.1 (i.e. Eqs. (10) - (12)) and 

making use of Eq. (22), we can get the tri-diagonal system given by Eq. (18) with a fitting 

factor  
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and which can easily be solved by a well known algorithm known as Discrete Invariant 

Imbedding algorithm or Thomas Algorithm. 

As given in (Angel and Bellman, 1972; Kadalbajoo and Reddy, 1986), the stability of the 

discrete invariant imbedding algorithm is guaranteed by the conditions  

,0iE  ,0iG  iii GEF   and ii GE  .    (24) 

In our method, under the assumptions 0)( xq and 0)( xp  one can easily show that 

the conditions in Eq.  (24) hold and thus, the Discrete Invariant Imbedding algorithm is 

stable. 

 

CONVERGENCE ANALYSIS 

Writing the tri-diagonal system (18) in matrix-vector form, we obtain

 

CAY          (25) 

where,      1-,1  ,  NjimA ji  is a tri-diagonal matrix of order N-1 , with 
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 idC    and  is a column vector with  
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We also have    
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actual solution and  the local truncation error respectively.                       

From Eqs. (25) and (27), we have 
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Since 10   , for sufficiently small h  the matrix A is irreducible and monotone 

(Mohanty and Jha, 2005).  Then, it follows that 
1A  exists and its elements are non 

negative. Hence, from Eq. (29) we have 

   

)(1 hTAE                              (30) 

and 

)(.1 hTAE         (31) 

Let kim  be the  th
ki  element of 

1A . Since 0kim , from the operations of matrices 

we have 
1

i

1

 1  ,   1 , 2, ,  -1  
N

ki

i

m S k N




               (32) 

Therefore, it follows that 
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2
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1 1
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N
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i i i
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S h q

  
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We define 

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1

1
11

1 max
N

i

ki
Nk

mA  and    hThT i
Ni 11

max


 .  

Therefore, from Eqs.  (26), (30), (31) and (33), we obtain 
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which implies   
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Therefore, using the definitions and Eq. (34) 

       2hoE   

This implies that our method gives a second order convergence. 
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NUMERICAL EXAMPLES AND THEIR CORRESPONDING NUMERICAL 

RESULTS  

Numerical Examples with Left End Boundary Layer 

To demonstrate the applicability of the method, three singular perturbations with left end 

boundary layer are provided. The corresponding approximate solutions are compared with 

their exact solution.  

Linear Problems 

Example 1.  Consider the following non-homogeneous singular perturbation problem from 

fluid dynamics for fluid of small viscosity (Reinhardt, 1980).                                    

xxyxy 21)()(  ;  x[0,1] with  y(0) = 0 and y(1) = 1.   

The exact solution is given by
 
 /ε

x/ε

e

e
)εε-xxxy

11

1
12)21()(








 . 

Table 1.  Numerical Results of Example 1 for   h=0.001,    001.0  and 0001.0  

x SCD FSCD [Our Method] Exact Solution 

ε=0.001 

0.000 0.0000000 0.0000000 0.0000000 

0.001 -0.5978010 -0.6299651 -0.6298573 

0.002 -0.8363199 -0.8610827 -0.8609354 

0.003 -0.9311249 -0.9454712 -0.9453095 

0.004 -0.9684431 -0.9758798 -0.9757130 

0.006 -0.9878881 -0.9896713 -0.9895022 

0.008 -0.9892978 -0.9897863 -0.9896172 

ε=0.0001 

0.001 -0.4400840 -1.0012850 -0.9987538 

0.002 -0.6855697 -1.0003250 -0.9977964 

0.003 -0.8223085 -0.9993175 -0.9967916 

0.004 -0.8982761 -0.9983081 -0.9957848 

0.006 -0.9633093 -0.9962835 -0.9937652 

0.008 -0.9822213 -0.9942508 -0.9917376 

1.000 1.0000000 1.0000000 1.0000000 
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Nonlinear Problems 

Nonlinear singular perturbation problems were linearized by using the Quasilinearization 

process (Bellman and Kalaba, 1965). The reduced solution (the solution of the reduced 

problem by putting 0 ) is taken to be the initial approximation.  

Example 2. Consider the following singular perturbation problem from (Bender and 

Orszag, 1978, page 463; equation: 9.7.1).   

0e)x(y2)x(y )x(y  ;  10  x , with y(0)=0 and y(1)=0.  

The linear form of this example is 

  

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
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
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
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
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
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



 1

1x

2
log

1x

2
)x(y

1x

2
)x(y2)x(y e

 

We have chosen to use Bender and Orszag’s uniformly valid approximation (Bender and 

Orszag, 1978; page 463; equation: 9.7.6) for comparison.   











 /x2

ee e)2(log
1x

2
log)x(y  

For this example, we have boundary layer of thickness O() at x=0. (cf. Bender and 

Orszag, 1978). 

 

Table 2.  Numerical Results of Example 2 for   h=0.001,  001.0  and 0001.0  

x SCD FSCD [Our Method] Exact Solution 

ε=0.001 

0.000 0.0000000 0.0000000 0.0000000 

0.001 0.5190554 0.5984589 0.5983404 

0.002 0.6481187 0.6786520 0.6784537 

0.003 0.6796483 0.6886508 0.6884335 

0.004 0.6867860 0.6891432 0.6889226 

0.006 0.6873376 0.6873811 0.6871608 

0.008 0.6855088 0.6853981 0.6851789 

ε=0.0001 

0.001 0.1775080 0.6913452 0.6921477 

0.002 0.3090479 0.6891994 0.6911492 

0.003 0.4064577 0.6882086 0.6901517 

0.004 0.4785268 0.6872169 0.6891552 

0.006 0.5710662 0.6852362 0.6871651 

0.008 0.6211921 0.6832594 0.6851790 

1.000 0.0000000 0.0000000 0.0000000 
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Example 3:  Let us consider the following singular perturbation problem from (Kevorkian 

and Cole, 1981 page 56; equation 2.5.1).  

0)x(y)x(y)x(y)x(y  ; 10  x  with y(0)= -1 and y(1)=3.9995  

The linear problem concerned to this example is 

 9995.2x)x(y)9995.2x()x(y   

We have chosen to use the Kevorkian and Cole’s uniformly valid approximation 

(Kevorkian and Cole, 1981; pages 57-58; Eqs. 2.5.5, 2.5.11 and 2.5.14) for comparison. 




























 2

1
1 c

x

2

c
tanhcx)x(y , where c1=2.9995 and c2=(1/c1)loge[(c1-1)/(c1+1)] 

For this example also we have a boundary layer of width O() at x=0 (cf. Kevorkian and 

Cole, 1981, pages 56-66). 

Table 3.  Numerical Results of Example 3 for   h=0.001,  001.0  and 0001.0  

x SCD FSCD [Our Method] Exact Solution 

ε=0.001 

0.000 1.0000000 1.0000000 1.0000000 

0.001 2.5007470 2.9010340 2.4569400 

0.002 2.8765900 2.9965840 2.9718740 

0.003 2.9712890 3.0022920 3.0010170 

0.004 2.9957140 3.0035270 3.0034260 

0.006 3.0050350 3.0055390 3.0055000 

0.008 3.0074930 3.0075390 3.0075000 

ε=0.0001 

0.001 1.3623540 3.0018710 3.0005000 

0.002 1.6593130 3.0015340 3.0015000 

0.003 1.9027300 3.0025350 3.0025000 

0.004 2.1023020 3.0035350 3.0035000 

0.006 2.4002370 3.0055340 3.0055000 

0.008 2.6008820 3.0075340 3.0075000 

1.000 3.9995000 3.9995000 3.9995000 
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Numerical Examples with Right-End boundary Layer 

To demonstrate the applicability of the method, two singular perturbation problems with 

right end boundary layer are provided. The corresponding approximate solution is 

compared with the exact solution. 

Example 4.  Consider the following singular perturbation problem   

0)()(  xyxy ; x[0, 1]  with y (0) =1 and y (1) =0.     

The exact solution is given by  



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
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
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
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




1
1

1
1

)(





e

e

xy

x

 

Table 4.  Numerical Results of Example 4 for   h=0.001,   001.0  and 0001.0  

x SCD FSCD [Our Method] Exact Solution 

ε=0.001 

0.000 1.0000000 1.0000000 1.0000000 

0.992 0.9993449 0.9997575 0.9996645 

0.994 0.9959043 0.9976141 0.9975212 

0.996 0.9744003 0.9817759 0.9816834 

0.997 0.9360003 0.9503017 0.9502110 

0.998 0.8400003 0.8647456 0.8646612 

0.999 0.6000002 0.6321797 0.6320939 

ε=0.0001 

0.992 0.9904894 1.0000000 1.0000000 

0.994 0.9695455 1.0000000 1.0000000 

0.996 0.9024787 1.0000000 1.0000000 

0.997 0.8254883 1.0000000 1.0000000 

0.998 0.6877161 1.0000000 1.0000000 

0.999 0.4411764 0.9999546 0.9999546 

1.000 0.0000000 0.0000000 0.0000000 
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Example 5.  Now we consider the following singular perturbation problem 

0)()1()()(  xyxyxy  ; x[0, 1] with 






 




1
exp1)0(y  and 

e
y 11)1(  .  

The exact solution is given by 
   xx eexy    /11)(  

 

Table 5.  Numerical Results of Example 5 for   h=0.001,  001.0  and 0001.0  

x SCD FSCD [Our Method] Exact Solution 

ε=0.001 

0.000 1.0000000 1.0000000 1.0000000 

0.992 0.3714640 0.3711784 0.3711671 

0.994 0.3741479 0.3725589 0.3725573 

0.996 0.3948488 0.3875510 0.3875974 

0.997 0.4328066 0.4185158 0.4186246 

0.998 0.5283343 0.5034753 0.5036843 

0.999 0.7679049 0.7354721 0.7357859 

ε=0.0001 

0.992 0.3803346 0.3703522 0.3708343 

0.994 0.4005406 0.3696112 0.3700933 

0.996 0.4668741 0.3688718 0.3693539 

0.997 0.5434996 0.3685026 0.3689847 

0.998 0.6809073 0.3681346 0.3686159 

0.999 0.9270799 0.3686444 0.3682929 

1.000 1.3678790 1.3678790 1.3678790 

 

DISCUSSION AND CONCLUSION 

Exponentially fitted-stable central 

difference method for solving singularly 

perturbed two-point boundary value 

problems has been presented. The present 

method has been implemented on one 

linear and two non-linear examples with 

left-end boundary layer; and two examples 

with right-end boundary layer by taking 

different values of the perturbation 

parameter . Although the solutions are 

computed at all points of the mesh size h , 

only few values specifically in the inner 

region (boundary layers) have been 

reported. Numerical results are presented in 

tables for both SCD and FSCD methods 

and compared with the exact solutions. It 

can be observed from the tables (Tables 1-

5) that the present method, FSCD, 

approximates the exact solution very well 

than SCD for h . In fact, the existing 
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classical numerical methods produce good 

results only for h  , but this gives us a 

very large number of systems of equations 

that may require high capacity 

machines/computers or more time to run 

and to get the results easily. For h  the 

existing methods produce oscillatory 

solutions (Gemechis and Reddy, 2013). 

However, the present method, FSCD gives 

good result in the inner layer region where 

other classical finite difference methods 

fail to give good results. Moreover, the 

present method is easy to understand and 

efficient technique for solving singular 

perturbation problems.  Thus, the present 

method provides a good alternative 

technique to the conventional ways of 

solving singularly perturbed boundary 

value problems. 

 

 

REFERENCES 

Angel, E. and Bellman, R. (1972). 

Dynamic Programming and 

Partial differential Equations. 

Academic Press, New York. 

Bellman, R. (1964). Perturbation 

Techniques in Mathematics, 

Physics and Engineering. Holt, 

Rinehart & Winston, New York.  

Bellman, R. and Kalaba, R. (1965). 

Quasilinearization and Nonlinear 

Boundary Value Problems. Amer. 

Elsevier, New York.  

Bender, C. M., and Orszag, S. A. (1978). 

Advanced Mathematical Methods 

for Scientist and Engineers, 

McGraw-Hill, New York. 

Choo, J. Y., and Schultz, D. H. (1993). 

Stable Higher Order Methods for 

Differential Equations with Small 

Coefficients for the Second Order 

Terms, Journal of Computers and 

Mathematics with Applications, 

25(1), 105-123. 

 Cole, J. D., and Kevorkian, J. (1979). 

“Perturbation Methods in Applied 

Mathematics”, Springer, New 

York.  

 Eckhaus, W. (1973). “Matched Asymptotic 

Expansions and Singular 

Perturbations”, North- Holland, 

Amsterdam.  

Gemechis File and Reddy, Y. N. (2013). 

Domain Decomposition Method 

for Solving Singular Perturbation 

Problems, International Journal of 

Applied Science and Engineering, 

11(4), 433-448. 

Geng, F. (2011). A Novel Method for 

Solving a Class of Singularly 

Perturbed Boundary Value 

Problems Based on Reproducing 

Kernel Method, Applied 

Mathematics and Computation, 

218(8), 4211-4215. 

Kadalbajoo, M. K, and Patidar, K. C. 

(2002). Numerical Solution of 

Singularly Perturbed Nonlinear 

Two-Point Boundary Value 

Problems By Spline in 

Compression, International 

Journal of Computer 

Mathematics, 79(2), 271–288. 

Kadalbajoo, M. K, and Reddy, Y.N. 

(1988). A Boundary Value 

Method for a Class of Nonlinear 

Singular Perturbation Problems, 

Communications in Applied 



Ethiop.  J.  Educ.  &   Sc.                        Vol.  11   No   1,   September,   2015    76 
 

Numerical Methods, 4(4), 587–

594. 

Kadalbajoo, M. K, and Reddy, Y. N. 

(1987a). Numerical Treatment of 

Singularly Perturbed Two- Point 

Boundary Value Problems, 

Applied Mathematics and 

Computation, 21, 93–110.  

Kadalbajoo, M. K, and Reddy, Y. N. 

(1987b). Approximate Method for 

the Numerical solution of Singular 

Perturbation Problems, Applied 

Mathematics and Computation, 

21, 185–199. 

Kadalbajoo, M. K. and Reddy, Y. N. 

(1986). A Non Asymptotic 

Method for General Linear 

Singular Perturbation Problems, 

Journal of Optimization Theory 

and Applications, 55, 256–269. 

Kevorkian, J., and Cole, J. D. (1981). 

Perturbation Methods in Applied 

Mathematics, Springer-Verlag, 

New York. 

Mohanty, R. K. and Jha N. (2005). A Class 

of Variable Mesh Spline in 

Compression Methods for 

Singularly Perturbed Two Point 

Singular Boundary Value 

Problems, Applied Mathematics 

and Computation, 168, 704–716. 

Nayfeh, A. H. (1981). Introduction to  

Perturbation Techniques, Wiley, 

New York. 

 Nayfeh, A. H. (1973). Perturbation  

Methods, Wiley, New York. 

O'Malley, R. E. (1974). Introduction to 

Singular Perturbations, Academic 

Press, New York.  

O'Malley, R. E. (1991). Singular 

Perturbation Methods for 

Ordinary Differential Equations, 

Springer, New York.  

Padmaja, P., Chakravarthy, P. P., and 

Reddy, Y. N. (2012). A 

Nonstandard Explicit Method for 

Solving Singularly Perturbed Two 

Point Boundary Value Problems 

Via Method of Reduction of 

Order, International Journal of 

Applied Mathematics and 

Mechanics. 8(2), 62-76. 

 Prasad, H. Sh., and Reddy Y. N. (2011). 

Numerical Treatment of 

Singularly Perturbed Two-Point 

Boundary Value Problems with 

Mixed Condition Using 

Differential Quadrature Method, 

International Journal of Applied 

Science and Engineering, 9(3), 

207-221. 

Reinhardt, H.J. (1980). Singular 

Perturbations of Difference 

Methods for Linear Ordinary 

Differential Equations, Applicable 

Analysis: An International 

Journal, 10(1), 53-70. 

Van Dyke, M. (1975). Perturbation 

Methods in Fluid Mechanics, 

Parabolic Press, Stanford, CA.  

 


