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ABSTRACT

This paper presents a fitted fourth order numerical scheme for solving singularly perturbed 
convection-diffusion equations. The obtained scheme is transformed into a three-term 
recurrence relation and solved by Thomas algorithm. The stability and convergence of the 
present method have been investigated. The numerical results are presented by tables and 
graphs. The present method helps us to get good results and also to know the behavior of 
the solution in the boundary layer for perturbation parameter ε is less than mesh size h. 
Moreover, the present method improves the findings of some existing numerical methods 
reported in the literature. 
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____________________________________________________________

INTRODUCTION

The classification of singularly perturbed 
higher order problems depends on how the 
order of the original equation is affected 
when small positive parameter 𝜀𝜀𝜀is 
multiplying the highest derivative 
occurring in the differential equation. If the 
order is reduced by one, we say that the 
problem is of convection-diffusion type and 
reaction-diffusion type if the order is 
reduced by two. Singularly perturbed delay 
differential equations are special cases of 
functional differential equations, where the 
evolution of a system at a certain time, 
depends on the present state of the system 

as well as the state of the system at an 
earlier time. For example, in the predator-
prey model (Martin and Raun, 2001), the 
birth of predators is affected by prior levels 
of the predator-prey model along with its 
recent levels. In general, a singularly 
perturbed delay differential equation is an 
ordinary differential equation in which the 
highest derivative is multiplied by a small 
parameter and involving at least one delay 
term. Delay differential equations arise 
frequently in the mathematical modeling of 
various occurrences such as reaction-
diffusion equations (Bestehorn and 
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Grigorieva, 2004), control systems 
(Mackey and Glass, 1997), neuron 
variability (Lange and Miura, 1994), 
thermo-elasticity (Ezzat et al., 2002), 
micro-scale heat transfer (Tzou, 1997), etc. 
According to Doolan et al. (1980) still there 
is a lack of accuracy and convergence of 
numerical methods because of the 
treatment of singular perturbation problems 
is not trivial, and the solution depends on 
perturbation parameter and mesh size. Due 
to this, the numerical treatment of 
singularly perturbed delay differential 
equations needs improvement. In recent 
years, many researchers have tried to 
develop different numerical methods for 
solving singularly perturbed delay 
differential equations. For examples, finite 
difference method of various orders and 

approaches (Awoke and Reddy, 2013; 
Phaneendra and Soujanya, 2014; Gemechis 
et al., 2017; Gashu et al., 2018), Spline 
method (Kanth and Kumar, 2017), 
Numerical integration method (Reddy et 
al., 2012; Sirisha and Redddy, 2017), 
hybrid initial value method (Subburayan, 
2016), Galerkin method (Swamy et al., 
2016), and Differential quadrature method 
(Prasad and Reddy, 2012) are presented for 
solving singularly perturbed delay 
differential equations. However, the issue 
of accuracy and convergence of the scheme 
still needs attention and improvement. In 
this paper, we present a stable and 
convergent method and more accurate than 
the stated methods for solving singularly 
perturbed delay convection-diffusion 
equations.

MATERIALS AND METHODS 

Description of the Method 

Consider a singularly perturbed delay convection-diffusion equation of the form:
( ) ( ) ( ) ( ) ( ) ( ),y x a x y x b x y x f x       for [0, 1]x     (1)

with the interval and boundary conditions,

( ) ( ), 0y x x x      and (1)y    (2)
where   is a perturbation parameter, 0 1   and   is a delay parameter,
0 1  ; ( ), ( ), ( )a x b x f x  and ( )x  are bounded smooth functions in  0,1 and 

  is a given constant. For a function ( )y x  to be a smooth solution of the Eq. (1), it must 
satisfy the boundary conditions Eq. (2), be continuous on [0,1] and be continuously 
differentiable on (0,1). It is also assumed that    0, 0,1b x x     , where θ is a 

positive constant. Further, when   0a x   Eqs. (1) and (2) have boundary layer on left 

end of the interval and when   0a x 
 
it has boundary layer on right end of the interval. 

The layer is maintained at the same end for sufficiently small , i.e., when ( )o  . The 
layer behavior can change its character and even be destroyed as the delay increase, i.e., 
when ( )O  , Lange and Miura, (1994).

When ( )o  , the use of Taylor’s series expansion for the term containing delay is 
valid (Tian, 2000). Thus, by using Taylor series expansion, we have:
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2'( ) '( ) ''( ) ( )y x y x y x O             (3)

Substituting Eq. (3) into Eq. (1), we obtain an asymptotically equivalent singularly 
perturbed boundary value problem of the form:

              '' '( )y x a x y x b x y x f x    , for 0,1 ,
       (4)

where   0a x     , and 0 1  , under the boundary conditions,

        00y   and  1y  .           (5)

Discretizing the given interval [0,1]  into N equal parts with constant mesh size h , we 

have 0 , 0,1,2, ,ix x ih i N   . 

Using the Taylor’s series expansions of 1iy   and 1iy  up to 5( )O h , we get the finite 

difference approximations for iy  and iy as:
2

1 1
12 6

i i
i i

y y hy y
h

            (6)

where,
4

(5)
1 1( )

120
h y   , for  1 1,i ix x  , and

    

2
(4)1 1

22

2
12

i i i
i i

y y y hy y
h

     
     

(7)

Where 
4

(6)
2 2( )

360
h y   , for  2 1,i ix x  .

Substituting Eqs. (6) and (7) into Eq. (4) and simplifying, we obtain:

    

   1 1 1 12

2 2
(4)

2
2

6 12

i
i i i i i

i i i i i i i

ay y y y y
h h

h ha y y b y f



 

      

         
(8)

where, 4 (5) (6) 5
1 2( ) ( ) ( )

120 360
i

i
ah y y O h      

 
 is the local truncation error 

and ( ) ,i ia x a ( ) ,i ib x b ( ) and ( ).i i i if x f y y x   
By successively differentiating both sides of Eq. (4) and evaluating at ix , and using into 
Eq. (8), we obtain:
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   

 

1 1 1 12

2 2 22

2
2

2
6 12

i
i i i i i

i i
i i i

i i i i i i i

ay y y y y
h h

h a ah a b y

A y B b y f C




 

      

         
   
      

(9)

where,

            

   
2 2

2 2

2 2

2
6 12

6 12

12 12

i
i i i i i i i i

i i
i i i i

i
i i i i i

ah hA a a b a b a b

a bh hB a b b

a h hC f f f

 

 




          
 

     
 

    

Now, introducing a fitting parameter  and using central difference approximation for 
andi iy y   in Eq. (9), we have:

   

  

2 2 2

1 12

1 1

1 2 2
12 12

1
2

i
i i i i i

i i i i

h a h a b y y y
h

a A y y
h


  

 

 
     

 

  
 

 i i i i iB b y f C   
       

(10)

Multiplying both sides of Eq. (10) by h  and taking the limit as 0h , we obtain:  

    

   2 2
1 10

1 10

12 lim 2
12

lim( ) 0
2

i i i ih

i
i ih

a y y y

a y y

 
  

 

  

       
(11) 

where 
h


 .

From the theory of singular perturbations and (O’Malley, 1974) we have two cases for 
( ) 0a x   and ( ) 0a x  .  

Case 1: For ( ) 0a x   (right-end boundary layer), we have:
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 

   

1 10

1(0)
(0) (0)

0 0

lim 2

(0) 2

i i ih

a i
a a

y y y

y e e e


  

 

 
    

 

   

 

 

   

1 10

1(0)
(0) (0)

0 0

lim

(0)

i ih

a i
a a

y y

y e e e


  

 

 
    



  
 Thus, from Eq. (11), we get:   
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6 (0) (0)0 coth
212 (0)

a a
a

 


     
       

Case 2: For ( ) 0a x   (left-end boundary layer), we have:
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1 10

1(1)
(1) (1)

0

lim 2

(1) 2

i i ih

a i
a a

y y y

y e e e


  

 

 
    

 

   

   

 

   

1 10

1(1)
(1) (1)

0

lim

(1)

i ih

a i
a a

y y

y e e e


  

 

 
    



  
Thus, from Eq. (11), we get:   

      

   2 2

6 (1) (1)1 coth
212 (1)

a a
a

 


     
In general, for discretization, we take a variable fitting parameter as:

        2

6 coth
212 ( )

i i i i
i

i i

a a
a

 


     
     

(12)

where, i
i

h
a


 




. 

Simplifying Eq. (10), we get the tri-diagonal system of the equation of the form:   

1 1 ,i i i i i i iE y F y G y H    (13)

for 1,2,..., 1i N  .      
where, 

    
   

2

2

12
12 12 2

i i i i
i i i i i

aE a b a A
h h
          
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2

2

2 2
6 6

i i i i
i i i i i

aF a b b B
h
          

     
   

2

2

12
12 12 2

i i i i
i i i i i

aG a b a A
h h
             

     i i iH f C 

The tri-diagonal system in Eq. (13) can be easily solved by Thomas algorithm with the 
help of Matlab 2013.  

Stability and Convergence Analysis      
Eqs. (4) and (5) can be written as:

     

   
     
( ) '' '( )L y x y x a x y x

b x y x f x
  

 

under the boundary conditions,   00y   and  1y  .
      

Lemma 1 (Minimum Principle): Suppose ( )x  is a smooth function satisfying

(0) 0, (1) 0   . Then ( ) 0,L x   0,1x   implies ( ) 0, [0,1]x x     
(Gashu et al., 2018).

Lemma 2: (Boundedness of the Solution)
Let ˆ( )y x  be the solution of the Eqs. (4) and (5), then we have:

 1
0ˆ max ,y f    ,

where .  is the L norm given by 
0 1

ˆ ˆmax ( )
x

y y x
 

 . 

Proof: Let us construct the two barrier functions    defined by:

 1
0 ˆ( ) max , ( )x f y x      

Then we have:

     

 
 

1
0

1
0 0

ˆ(0) max , (0)

max , 0

f y

f

   

   

 



  

   

       

 
 

1
0

1
0

ˆ(1) max , (1)

max , 0

f y

f

   

   

 



  

   

Thus,    ( ) ( ( )) ( ( )) ' ( )L x x a x x b x x         
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The tri-diagonal system in Eq. (13) can be easily solved by Thomas algorithm with the 
help of Matlab 2013.  

Stability and Convergence Analysis      
Eqs. (4) and (5) can be written as:

     

   
     
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  

 

under the boundary conditions,   00y   and  1y  .
      

Lemma 1 (Minimum Principle): Suppose ( )x  is a smooth function satisfying

(0) 0, (1) 0   . Then ( ) 0,L x   0,1x   implies ( ) 0, [0,1]x x     
(Gashu et al., 2018).

Lemma 2: (Boundedness of the Solution)
Let ˆ( )y x  be the solution of the Eqs. (4) and (5), then we have:

 1
0ˆ max ,y f    ,

where .  is the L norm given by 
0 1

ˆ ˆmax ( )
x

y y x
 

 . 

Proof: Let us construct the two barrier functions    defined by:

 1
0 ˆ( ) max , ( )x f y x      

Then we have:

     

 
 

1
0

1
0 0

ˆ(0) max , (0)

max , 0

f y

f

   

   

 



  

   

       

 
 

1
0

1
0

ˆ(1) max , (1)

max , 0

f y

f

   

   

 



  

   

Thus,    ( ) ( ( )) ( ( )) ' ( )L x x a x x b x x         
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  
  

1
0

1
0

ˆ( ) max , ( )

( ) max , ( )

b x f L y x

b x f f x

  

  





  

  

As ( ) 0b x   
 
implies 1( ) 1b x      and since ( )f f x , we get:

        

 
 0

( ) ( )

( ) max , 0, (0,1).

L x f f x

b x x


 

   

   

Therefore by Lemma 1, we obtain ( ) 0, [0,1]x x     , which gives the required 
estimate.

 
Lemma 3: (Stability)
Let D is a coefficient matrix of the tri-diagonal of Eq. (13). Then, for all 0  , the 
matrix D is an irreducible and diagonally dominant matrix.

Proof:  Writing Eq. (13), in matrix-vector form, we obtain:

DY L           
where, D is a tri-diagonal coefficient matrix, 

 1 2 1, , , T
NY y y y  and  1 1 0 2 1 1, , , T

N NL H E H H G     . 

The co-diagonals of matrix D are iE  and iG .    

It is easily seen that, 0iE  and 0iG  , 1,2,..., 1i N   . Hence, D  is irreducible 

(Varga, 1962). By the assumption 0ib  , so i i iE G F  . Thus, D is diagonally 
dominant. Hence, the scheme in Eq. (13) is stable (Gemechis et al., 2017). 

Definition 1 (Consistency): The method is consistent if the local truncation error 

  0i h 
 
as 0h (Richard and Douglas, 2011). 

The local truncation error in Eq. (8) is   0 as 0i h h   , for  3 1 1i N  . Thus, 
the present method is consistent by Definition 1. Therefore, it is convergent of order four. 
Since, stability + consistency ⟺ convergence.  

RESULTS 

To demonstrate the applicability of the 
method, three model examples having 
constant and variable coefficients with left-
end and right-end boundary layers have 

been carried out. For the variable 
coefficients, the maximum absolute errors 
are computed using the double mesh 
principle (Doolan et al., 1980).  
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Example 1. Consider the singularly perturbed delay convection-diffusion equation, 

( ) ( ) ( ) 0y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 1y  .

The analytical solution of this equation is given by: 

 
2 1 1 2

1 2

(1 ) ( 1)m m x m m x

m m

e e e ey x
e e

  


   
Where, 

1
1 1 4( )

2( )
m

 
 

   



and   1

1 1 4( )
2( )

m
 

 
   




.

Table 1. The maximum absolute errors of Example 1, for different values of  with

0.01 
  210N  310N  410N 

Present Method
0.1 1.9498e-05 1.7660e-09 3.2174e-11

0.3 4.0241e-05 3.7673e-09 2.9427e-11

0.6 1.5860e-04 2.0195e-08 1.7700e-11

0.8 4.8525e-04 1.6543e-07 1.4487e-11
Sirisha and Reddy (2017)

0.1 0.090733 0.012286 0.001279

0.3 0.108033 0.015622 0.001644

0.6 0.127778 0.026309 0.002870

0.8 0.100404 0.048338 0.005688
Phaneendra and Soujanya (2014)

0.1 5.4191e−04 5.0759e−08 3.2564e−11

0.3 1.4385e−03 1.3787e−07 2.9030e−11

0.6 9.9988e−03 1.2835e−06 1.1959e−10

0.8 6.1971e−02 2.0628e−05 2.0281e−09
Reddy et al. (2012)

0.1 0.09073 0.01228 0.00127

0.3 0.10803 0.01562 0.00164

0.6 0.12777 0.02630 0.00287

0.8 0.10040 0.04833 0.00568
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Example 1. Consider the singularly perturbed delay convection-diffusion equation, 

( ) ( ) ( ) 0y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 1y  .

The analytical solution of this equation is given by: 

 
2 1 1 2

1 2

(1 ) ( 1)m m x m m x

m m

e e e ey x
e e

  


   
Where, 

1
1 1 4( )

2( )
m

 
 

   



and   1

1 1 4( )
2( )

m
 

 
   




.

Table 1. The maximum absolute errors of Example 1, for different values of  with

0.01 
  210N  310N  410N 

Present Method
0.1 1.9498e-05 1.7660e-09 3.2174e-11

0.3 4.0241e-05 3.7673e-09 2.9427e-11

0.6 1.5860e-04 2.0195e-08 1.7700e-11

0.8 4.8525e-04 1.6543e-07 1.4487e-11
Sirisha and Reddy (2017)

0.1 0.090733 0.012286 0.001279

0.3 0.108033 0.015622 0.001644

0.6 0.127778 0.026309 0.002870

0.8 0.100404 0.048338 0.005688
Phaneendra and Soujanya (2014)

0.1 5.4191e−04 5.0759e−08 3.2564e−11

0.3 1.4385e−03 1.3787e−07 2.9030e−11

0.6 9.9988e−03 1.2835e−06 1.1959e−10

0.8 6.1971e−02 2.0628e−05 2.0281e−09
Reddy et al. (2012)

0.1 0.09073 0.01228 0.00127

0.3 0.10803 0.01562 0.00164

0.6 0.12777 0.02630 0.00287

0.8 0.10040 0.04833 0.00568
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Example 2. Consider the singularly perturbed delay convection-diffusion equation, 
0.25( ) ( ) ( ) 0xy x e y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 1y  .

Table 2. The maximum absolute errors of Example 2, for different values of  with

0.1 
  210N  310N  410N 

Present Method
0.1 4.6555e-07 4.5285e-09 4.5816e-11

0.3 2.3007e-06 2.2768e-08 2.2038e-10

0.6 1.4360e-05 1.4228e-07 1.4228e-09

0.8 7.7836e-05 7.6779e-07 7.6790e-09
Sirisha and Reddy, (2017)

0.1 6.2687e –
003

6.6646e − 
004

6.7072e − 005

0.3 8.0060e –
003

8.6458e − 
004

8.7156e − 005

0.6 1.342e –
002

1.5282e − 
003

1.5493e − 004

0.8 2.3860e –
002

3.0459e − 
003

3.1280e − 004

Reddy et al., (2012)
0.1 0.00632996 0.000674268 6.7871251e−

005
0.3 0.00815917 0.000882563 8.8986856e−

005
0.6 0.01384760 0.001579726 1.6020004e−

004
0.8 0.02477158 0.003173235 3.2602775e−

004

Example 3. Consider the singularly perturbed delay convection-diffusion equation, 

( ) ( ) ( ) 0y x y x y x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 1y   .

The analytical solution of this equation is given by: 

 
2 1 1 2

2 1

(1 ) ( 1)m m x m m x

m m

e e e ey x
e e

  






Ethiop.  J.  Educ. & Sc.    Vol.    14    No   2      March, 2019                                          111

 

 

where  1
1 1 4( )

2( )
m

 
 

  



    and   1

1 1 4( )
2( )

m
 

 
  




.

Table 3. The maximum absolute errors of Example 3, for different values of  with

0.01 
  210N  310N  410N 

Present Method
0.1 2.9926e-05 2.8375e-09 3.8704e-11

0.15 2.5884e-05 2.4837e-09 4.0326e-11

0.25 1.9653e-05 1.9319e-09 3.3466e-11
Sirisha and Reddy (2017)

0.1 0.165949 0.022109 0.002285

0.15 0.158945 0.021173 0.002186

0.25 0.146034 0.019539 0.002013
Phaneendra and Soujanya (2014)

0.07 1.8573e−01   
8.4819e−05

 8.4629e−09

0.15 8.0711e−02   
1.7927e−05

 1.8318e−09

0.25 3.2547e−02   
4.7036e−06

 4.9565e−10

Example 4. Consider the singularly perturbed delay convection-diffusion equation, 

( ) ( ) ( ) 0xy x e y x xy x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 1y  .
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where  1
1 1 4( )

2( )
m

 
 

  



    and   1

1 1 4( )
2( )

m
 

 
  




.

Table 3. The maximum absolute errors of Example 3, for different values of  with

0.01 
  210N  310N  410N 

Present Method
0.1 2.9926e-05 2.8375e-09 3.8704e-11

0.15 2.5884e-05 2.4837e-09 4.0326e-11

0.25 1.9653e-05 1.9319e-09 3.3466e-11
Sirisha and Reddy (2017)

0.1 0.165949 0.022109 0.002285

0.15 0.158945 0.021173 0.002186

0.25 0.146034 0.019539 0.002013
Phaneendra and Soujanya (2014)

0.07 1.8573e−01   
8.4819e−05

 8.4629e−09

0.15 8.0711e−02   
1.7927e−05

 1.8318e−09

0.25 3.2547e−02   
4.7036e−06

 4.9565e−10

Example 4. Consider the singularly perturbed delay convection-diffusion equation, 

( ) ( ) ( ) 0xy x e y x xy x       

under the interval and boundary conditions 

( ) 1, 0y x x     and (1) 1y  .
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Table 4. The maximum absolute errors of Example 4, for different values of  with

0.1 
  210N  310N  410N 

Present Method
0.1 2.8367e-06 2.8375e-08 9.2817e-10

0.3 4.3993e-06 4.3986e-08 6.8711e-10

0.6 4.5006e-06 4.4996e-08 6.6965e-10

0.8 4.2986e-06 4.2982e-08 5.8605e-10
Sirisha and Reddy (2017)

0.1 7.7065e –
003

8.5743e − 
004

8.6724e − 005

0.3 5.5572e –
003

6.0006e − 
004

6.0487e − 005

0.6 3.8911e –
003

4.1085e − 
004

4.1314e − 005

0.8 3.2241e –
003

3.3750e − 
004

3.3908e − 005

Reddy et al. (2012)
0.1 0.00575975 0.00050842 5.02478e-005

0.3 0.003932768 0.00036132 3.58384e-005

0.6 0.002702569 0.00025507 2.53643e-005

0.8 0.00224689 0.00021413 2.13134e-005

Table 5. The maximum absolute errors for different values of  with 0.1  .

h  62 72 82 92 102

Example 1
52 3.3421e-06 2.1111e-07 1.3110e-08 8.1806e-10 5.1093e-11
62 3.0230e-05 1.7100e-06 1.0764e-07 6.6856e-09 4.1734e-10
72 1.9052e-04 1.5280e-05 8.6506e-07 5.4360e-08 3.3764e-09
82 6.5639e-04 9.6012e-05 7.6816e-06 4.3509e-07 2.7317e-08
92 2.0070e-03 3.2994e-04 4.8197e-05 3.8514e-06 2.1819e-07

102 5.9446e-03 1.0094e-03 1.6541e-04 2.4146e-05 1.9283e-06
Example 2

52 6.7763e-06 1.1087e-06 2.4256e-07 5.8380e-08 1.4454e-08
62 3.7179e-05 3.4920e-06 5.6227e-07 1.2275e-07 2.9501e-08
72 2.2014e-04 1.8974e-05 1.7725e-06 2.8339e-07 6.1742e-08
82 9.0978e-04 1.1163e-04 9.5843e-06 8.9292e-07 1.4239e-07
92 2.1924e-03 4.5874e-04 5.6208e-05 4.8167e-06 4.4814e-07
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102 5.6334e-03 1.0991e-03 2.3033e-04 2.8202e-05 2.4145e-06
Example 3

52 5.4692e-06 3.3774e-07 2.1167e-08 1.3220e-09 8.2685e-11
62 4.6516e-05 2.7755e-06 1.7201e-07 1.0766e-08 6.7245e-10
72 3.7262e-04 2.3428e-05 1.3986e-06 8.6851e-08 5.4309e-09
82 1.9573e-03 1.8759e-04 1.1758e-05 7.0206e-07 4.3643e-08
92 6.6024e-03 9.8475e-04 9.4116e-05 5.8900e-06 3.5173e-07

102 1.0734e-02 1.8986e-03 2.2852e-04 1.7447e-05 9.9921e-07
Example 4

52 1.7254e-05 4.9015e-06 1.2492e-06 3.1359e-07 7.8612e-08
62 1.4820e-05 8.0941e-06 2.3694e-06 6.0717e-07 1.5261e-07
72 3.4529e-04 8.7906e-06 3.9110e-06 1.1637e-06 2.9906e-07
82 1.5400e-03 1.7630e-04 4.7413e-06 1.9211e-06 5.7651e-07
92 4.2463e-03 7.7697e-04 8.9065e-05 2.4573e-06 9.5192e-07

102 9.7408e-03 2.1328e-03 3.9021e-04 4.4760e-05 1.2503e-06

Table 6. Rate of convergence  for different values of  δ with  𝜀𝜀𝜀 𝜀 𝜀𝜀𝜀   at      . 
   40 60 80 100

Example 1
0.1 3.8056 3.9074 3.9465 3.9653

0.15 3.7856 3.8972 3.9405 3.9614

0.25 3.7355 3.8710 3.9248 3.9510
Example 2

0.1 3.8523 3.9125 3.9224 3.9134

0.15 3.8369 3.8985 3.9046 3.8894

0.25 3.8038 3.8734 3.8774 3.8555
Example 3

0.1 3.8631 3.9360 3.9633 3.9763

0.15 3.8735 3.9411 3.9663 3.9782

0.25 3.8910 3.9496 3.9712 3.9814
Example 4

0.1 3.8257 3.9670 4.0618 4.1560

0.15 3.8642 4.0238 4.1586 4.1195

0.25 3.9483 4.1752 4.2576 4.2270
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102 5.6334e-03 1.0991e-03 2.3033e-04 2.8202e-05 2.4145e-06
Example 3

52 5.4692e-06 3.3774e-07 2.1167e-08 1.3220e-09 8.2685e-11
62 4.6516e-05 2.7755e-06 1.7201e-07 1.0766e-08 6.7245e-10
72 3.7262e-04 2.3428e-05 1.3986e-06 8.6851e-08 5.4309e-09
82 1.9573e-03 1.8759e-04 1.1758e-05 7.0206e-07 4.3643e-08
92 6.6024e-03 9.8475e-04 9.4116e-05 5.8900e-06 3.5173e-07

102 1.0734e-02 1.8986e-03 2.2852e-04 1.7447e-05 9.9921e-07
Example 4

52 1.7254e-05 4.9015e-06 1.2492e-06 3.1359e-07 7.8612e-08
62 1.4820e-05 8.0941e-06 2.3694e-06 6.0717e-07 1.5261e-07
72 3.4529e-04 8.7906e-06 3.9110e-06 1.1637e-06 2.9906e-07
82 1.5400e-03 1.7630e-04 4.7413e-06 1.9211e-06 5.7651e-07
92 4.2463e-03 7.7697e-04 8.9065e-05 2.4573e-06 9.5192e-07

102 9.7408e-03 2.1328e-03 3.9021e-04 4.4760e-05 1.2503e-06

Table 6. Rate of convergence  for different values of  δ with  𝜀𝜀𝜀 𝜀 𝜀𝜀𝜀   at      . 
   40 60 80 100

Example 1
0.1 3.8056 3.9074 3.9465 3.9653

0.15 3.7856 3.8972 3.9405 3.9614

0.25 3.7355 3.8710 3.9248 3.9510
Example 2

0.1 3.8523 3.9125 3.9224 3.9134

0.15 3.8369 3.8985 3.9046 3.8894

0.25 3.8038 3.8734 3.8774 3.8555
Example 3

0.1 3.8631 3.9360 3.9633 3.9763

0.15 3.8735 3.9411 3.9663 3.9782

0.25 3.8910 3.9496 3.9712 3.9814
Example 4

0.1 3.8257 3.9670 4.0618 4.1560

0.15 3.8642 4.0238 4.1586 4.1195

0.25 3.9483 4.1752 4.2576 4.2270
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Fig. 1: The numerical solution of Examples 1 with 𝜀𝜀 𝜀 𝜀𝜀   and N = 100.

Remark 1: The figure of Example 2 is similar with the figure of Example 1 at the above 
given parameters 𝜀𝜀 and  . 
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Fig. 2: The numerical solution of Example 3 with 𝜀𝜀 𝜀 𝜀𝜀   and N = 100.

Fig. 3: The numerical solution of Example 4 with 𝜀𝜀 𝜀 𝜀𝜀   and N = 100.
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Fig. 3: The numerical solution of Example 4 with 𝜀𝜀 𝜀 𝜀𝜀   and N = 100.
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DISCUSSION

Fitted fourth order numerical method for 
solving singularly perturbed delay 
convection-diffusion equations has been 
presented. To demonstrate the efficiency of 
the method, four model examples with 
constant and variables coefficients have 
been considered for different values of the 
perturbation parameter  , and delay 
parameter  . The numerical solutions are 
tabulated (Tables 1 to 5) in terms of 
maximum absolute errors and observed that 
the present method improves the findings 
of Reddy et al. (2012), Phaneendra and 
Soujanya (2014) and Sirisha and Reddy 
(2017). Further, it is significant that all of 
the maximum absolute errors decrease 
rapidly as N increases, which in turn 
shows the convergence of the computed 
solution. Also, we have presented the 
numerical results when h   and obtain a 
good results, (see Table 5). The 
convergence analysis of the present method 
is investigated. The results presented in 
Table 6 confirmed that the computational 
rate of convergence, as well as theoretical 
estimates, indicates that the present method 
is of fourth order convergence.  

To demonstrate the effect of delay on the 
left and right boundary layer of the 
solution, the graphs for different values of 
delay parameter  are plotted in Figs. 1-3. 
Accordingly, depending on the sign of the 
coefficient of delay term one can see that, 
from Fig. 1 as a delay parameter   
increases the width of the left boundary 
layer decreases. When the coefficient of the 
delay term in the problem is of (1)o and 
delay increases, the thickness of the right 
boundary layer decreases (Fig. 2) but when 
the coefficient of the delay term of (1)O
and delay increases, the thickness of the 
right boundary layer increases (Fig. 3).     

CONCLUSION

A fitted fourth order numerical method is 
developed. To assured the presented 
scheme is useful, the stability and 
convergence of the method are established 
well. To check the validity of the present 
method, we have considered four model 
examples of singularly perturbed delay 
convection-diffusion equations. In general, 
the present method is stable, convergent 
and more accurate for solving singularly 
perturbed convection-diffusion equations. 
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