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Abstract 

In this paper, the numerical solution of second order one dimensional linear hyperbolic 

telegraph equation using crank Nicholson and fourth order stable centeral  difference 

methods have been presented. First, the given domain is discretized and the derivatives 

of the differential equation were replaced by finite difference approximations and then, 

transformed to system of equations that can be solved by matrix inverse method. The 

stability and consistency of the method are established. To validate the applicability of 

the method,  model examples have been considered and solved for different mesh sizes.  

As it can be observed from the numerical results presented in Tables and graphs, the 

present method approximates the exact solution very well.  
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INTRODUCTION  

Partial differential equations have 

enormous applications compared to 

ordinary differential equations, to mention 

some of these: dynamics, electricity, heat 

transfer, electromagnetic theory, quantum 

mechanics and so on (Erwin, 2006). 

Telegraph equations are pairs of coupled, 

linear differential equations that describe 

the voltage and current on an electrical 

transmission line with distance and time. 

The telegraph equation is one of the 

important equations of mathematical 

physics with applications in many different 

fields such as transmission and propagation 

of electrical signals (Kajiwara et al., 2010), 

vibration systems, random walk theory and 

mechanical systems (Chakraverty and 

Behera, 2013), etc. The heat diffusion and 

wave propagation equations are particular 

cases of the telegraph equation. The 

telegraph equation is more suitable than 

ordinary diffusion equation in modeling 

reaction diffusion (Dosti and Nazemi, 

2012). 

Biologists encounter these equations in the 

study of pulsate blood flow in arteries and 

in one-dimensional random motion of bugs 

along a hedge (Eftimie,2012). Also the 

propagation of acoustic waves in Darcy-

type porous media (Heider et al., 2012), 

and parallel floes of viscous Maxwell fluids 

(Liu et al., 2011) are just some of the 

phenomena modeled by the telegraph 

equation.  

In recent years, different methods have 

been applied to find the numerical solution 

of the second order one dimensional linear 

hyperbolic telegraph equation. To mention 

some: Radial basis function approximation 

(Saadatmandi and Dehghan, 2010), He’s 

variational iteration method (Dehghan et 

al., 2011), Laguerre-Legendre spectral 

collocation method (Tatari and Haghighi, 

2014), differential quadrature method 

(Jiwari et al., 2014), differential transform 

method (Srivastava et al., 2014), method of 

weighted residuals (Odejide and Binuyo, 

2014), Fibonacci polynomials (Kurt and 

Yalcinbas, 2016) and meshless local radial 

point interpolation (Elyas and Hamid, 

2015).  

However, it is necessary to present the 

accurate and convergent numerical method 

for solving the second order one 

dimensional linear hyperbolic telegraph 

equation. The fourth order stable central 

difference method to find the numerical 

solution of the second order self-adjoint 

singularly perturbed ordinary differential 

equation subject to certain types of 

boundary conditions is presented by Terefe 

et al. (2016). In this paper, our aim is to 

apply the amalgamation of stable central 

difference method and the Crank Nicholson 

method to find the accurate numerical 

solution of the second order one 

dimensional linear hyperbolic telegraph 

equation.
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 Description of the method 

Consider the second order one dimensional linear hyperbolic telegraph equation of the 

form: 

      
2 2

2 2
( , ), 0 , 0

u u u
u f x t x b t T

tt x
 

  
       

 
       (1) 

subject to the initial conditions: 

         

   

   

0
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,0

,0

u x f x
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x f x
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          (2) 

and with boundary conditions: 

          
   

   

0
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0,

,

u t g t

u b t g t




                (3) 

where   and   are given positive constants and we assume that 0 ( )f x , 1( ),f x   

0 ( )g t  and 1( )g t  are continuous functions. 

To describe the scheme, we divide the interval [0, ] and [0, ]b T into N and M equal 

subintervals of mesh length andh k  respectively. Let 0 1 20 , Nx x x x b      and 

0 1 20 Nt t t t T     be the mesh points with 0 0and ,jix x ih t t jk    for 

1,2, ,i N   and 0,1, ,j M  .  

For the sake of simplicity, use ( , ) j
i j iu x t u , ( , )

n jn
i

i jn n

uu
x t

x x




 
, ( , )

n jn
i

i jn n

uu
x t

t t




 
 

1n   and ( , ) j
i j if x t f . Eq. (1) can be re-written at discretized points as: 

        
2 2

2 2
( , )

j j j
ji i i

i i j

u u u
u f x t

tt x
 

  
    

 
     (4) 

Assume that ( , )u x t  has continuous higher order partial derivatives on the 

region [0, ] [0, ]b T . Using Taylor's series expansion for any point ( , )i ju x t with uniform 

step mesh sizes h and k in the direction of x and for fixed t, we have:  

      

2 3 4 52 3 4 5

1 2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

ii

u u u u uh h h h
u u h

x x x x x


    
      

    
    (5)    
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    (6) 

In the same way, using Taylor's series expansion in the direction of t, for a fixed x, we 

have: 

  

2 3 4 52 3 4 5
1

2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

i i

u u u u uk k k k
u u k

t t t t t

     
      

    
    (7) 
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1

2 3 4 5
...

2! 3! 4! 5!

j j j j j
j j i i i i i

i i

u u u u uk k k k
u u k

t t t t t

     
      

    
    (8) 

Adding Eqs. (5) with (6), and subtracting Eq. (8) from Eq. (7), gives:  
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where:  
4 5 62 4 4

1 2 34 5 6
, and
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x t t
  

    
  

  
                        

From Crank Nicholson finite difference method,  average values 
2

2
and

j
j i

i

u
u

x
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3

j j j j
i i i iu u u u              (12) 
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                   (13) 

Now,  substituting Eqs. (10) – (13) into Eq. (4) yields:  
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   (14) 

where: 4 3 2      

Differentiating Eq. (1) successively with respect to t, and evaluated at ( , )i jx t  we obtain:  
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                 (15) 

   

4 2 2 22 2
2

4 2 2 2 2 2
( ) ( ) ( )

j j j j j
j ji i i i i

i i

u u u u u
f f

t t tt t x t x t
    

       
      

       
     (16) 

Substituting Eqs. (15) and (16) into Eq. (14), gives: 
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        (17) 

Using the finite difference approximation of Eqs. (9) – (11), we have: 

   
2

1 1 1 11 1
51 1 1 12 2

1
( ) ( 2 2 )

2

j
j j j jj ji
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            (18)  
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42

5 4
( )

12

j
iuh

t x


 


 
   and  

42 2

6 2 4
( )

12

j
iuh

t x


 


 
                                                                                                                                                                                                                                                                                                             

Putting Eqs. (18), (19) and the central finite difference approximation for
2

2
,

j j
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 into Eq. (17), we get: 
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Rearranging Eq. (20), gives the recurrence relation:  
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where: 7
j

iT 
 
.  

Eq. (21) can be re-written as: 
1 1 1 1 1 1

1 1 1 1 1 1
j j j j j j j j j j j

i i i i ii i i i i iAu Bu Au Cu Du Cu Eu Fu Eu H T
     
                       (22) 
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      for 1,2,3,..., 1i N   and   0,1,2,..., 1j M                                                                                                                                                               

where:  
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But, for 0j  , from Eq. (22), we get: 

  1 1 1 0 0 0 1 1 1 0
1 1 1 1 1 1i i i i i i i i i iAu Bu Au Cu Du Cu Eu Fu Eu H  
                           (23) 

Using the initial condition given in Eq. (2) and the relations with Eq. (10) at 0j 
 

we have: 
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2

i iu uu
x f x
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                            (24) 

From Eq. (24), we get the value for 1 1 1
1 1, andi i iu u u  
  , and then putting these values  

into Eq. (23) and then, rearranging, yields: 

  

0
1 1 1 0 0 0 1

1 1 1 1

0 0
01

( ) ( ) ( ) 2 (
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  (25) 

    For 1,2,3,..., 1i N  .  

Hence, Eqs. (22) and (25) gives system of equations which can be solved by matrix  

inverse method.  

To apply the matrix inverse method, we considered the schemes given in Eqs. (22)  

and (25) which can be re-written as a matrix vector form of: 

      
1j jM x r                                         (26) 

where: [ ]ijM m
 
a square matrix of order ( 1) ( 1)N N   , with

1jx 
 and 

jr are column 

matrices and it can be expressed for both cases as: 

Case-I: using Eq. (25), for 0, 1, 2, . . . , 1j i N   , we have: 

 

1 0
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1 0
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0 ... 0

0
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A E B F A E
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A E B F
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For 2, 3, . . . , 2,i N   
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Case-II: using Eq. (22), for 1, 2, . . . 1j M   and 1, 2, . . . , 1i N  , we have: 

1
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            1 11
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j j j jj j j j
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          ,   for 2, 3, . . . , 2i N   

        1 1 1 1
1 2 1 1 2 1

j j j j j j j j j
N N NN N N N N NCu Du Cu Eu Fu Eu H Au    

             , for 1i N   

A square matrix [ ]ijM m  to be strictly diagonally dominant if for every row, the 

magnitude of the diagonal entry in a row is larger than the sum of the magnitude of all the 

non-diagonal entries in that row, that is: ii ij

j i

m m



  for all 1 1,i N    where ijm  

denotes the entry in the 
thi  row and 

thj  column. And we know that if the matrix 

[ ]ijM m  is strictly diagonally dominant matrix, then M is invertible.  

For 0j  ,   
2
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2

2 2 2

2 5 5 5
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which implies ;B A  for 1 and 1,i i N     

2

2 2 2

1 5 10 10
and 2 ,

2 12 12 24 12 12

k k k
B A

kk h h

      
         

which shows that 2B A , for 2, 3, . . . , 2i N   

Thus, matrix M is strictly diagonally dominant matrix.  Thus, matrix M is invertible.  

Stability Analysis and Consistency of the method 

The Von Neumann stability technique is applied to investigate the stability of the proposed 

method. Such an approach has been used by many researchers like (Rashidinia et al., 2013, 

Gemechis et al., 2016 and Shokofeh and Rashidinia, 2016). We assume that the solution of 

Eq. (4.22) at the grid point ( , )i ju x t  is given by: 

          j j ip
iu e                                             (27) 

where 1p    ,   is the real number and   is the complex number. 

Now, putting Eq. (27) into the homogenous part of Eq. (22), gives: 

 

1 ( 1) 1 1 ( 1) ( 1)

1 ( 1) 1 1 ( 1)

j i p j ip j i p j i p j ip

j ip j i p j ip j i p

A e B e A e C e D e

C e E e F e E e

    

   

    

   

     

    

    

  
 

This implies: 
1 1( ) ( ) ( ) 0j ip p p j ip p p j ip p pe Ae B Ae e Ce D Ce e Ee F Ee                        

 
Since, the value of 1p    and cos sinpe p     ,  the above equation can be written:  

 
1 1(2 cos ) ( 2 cos ) ( 2 cos ) 0j ip j ip j ipe A B e C D e E F                     (28) 

Dividing both sides Eq. (28) by
1 ,j ipe  

 we obtain: 

  
2 (2 cos ) ( 2 cos ) ( 2 cos ) 0A B C D E F                              (29) 

Since, 2cos 1 2sin ( )
2


   , Eq. (29) is written in the form of: 

    
2 0P Q R                                 (30) 

where:  

22 4 sin ( ),
2

P A B A


        
22 4 sin ( )

2
Q C D C


     and  

22 4 sin ( )
2

R E F E


     

Using Routh-Hurwitz criterion and the transformation 
1

1

z

z






into Eq. (30), we have: 

  

2
1 1

0
1 1

z z
P Q R

z z

    
     

    
, which is reduced to: 

  
2( ) 2( ) ( ) 0P Q R z P R z P Q R                               (31) 
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The necessary and sufficient condition for 1,  from Eq. (31) is: 

 0P Q R   ,    0P R    and 0P Q R   .                                      (32) 

From Eq. (30), we have: 

 

2
2

2 2

2

2

2

2

8 2 4
sin

2 33

1
( sin ( ) ) and

2 123

4
sin ( )

2

P Q R
h k

k k
P R

kh

P Q R
h

  

 





 
     

 

   

   

                (33) 

Since, and   are positive real constants and from Eq. (33), it is clearly observed that 

the inequality of Eq. (32) are satisfied for any values of . Thus, the proposed method is 

stable for the second order one dimensional linear hyperbolic telegraph equation.  

To show the consistency of the method, expand Eq. (4) in Taylor series and replace the 

derivatives involving x and t for the relation:  

     
2 2

2 2

j j j
j ji i i

i i

u u u
u f

tt x
 

  
   

 
                                          

and then we drive a local truncation error. The truncation errors of the proposed method, 

using Eqs. (9) – (13) given for the one dimensional linear hyperbolic telegraph equation is: 

   

6 5 4 32
4

6 5 4 3

4 4 42 2 2
2

4 2 4 4

1 ( )
( )
360 120 144 72

1
( ( ) ( )) ( )

144 36

j j j j
j i i i i

i

j j j
i i i

u u u u
T k

t t t t

u u uh k
h

t x t x x

      
   

   

   
  

    
  

(34) 

Thus, the right hand side of Eq. (34) vanishes as 0 and 0h k   and implies 0T  . 

Hence, the scheme is consistent with the order of
4 2 2 2( )O k h k h  . Therefore, the 

scheme developed in Eq. (22), is convergent. 

Numerical Examples and Results 

To demonstrate the applicability of the method, two model examples of the one -

dimensional linear hyperbolic telegraph  equations have been considered.  

Example 1: Consider the telegraphic equation of the form: 

         
2 2

2 2 2

2 2
(2 2 )( ) 2t tu u u

u t t x x e t e
tt x

   
       
 

 

subject to the initial conditions: ( ,0) 0u x  ,   ( ,0) 0
u

x
t





   for  0 1x   

and   the  boundary conditions:  (0, ) 0, (1, ) 0, 0u t u t t    

The exact solution is given by 2 2( , ) ( ) tu x t x x t e   
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Table 1: Point wise absolute and root mean square errors for Example 1 at 0.01t   

x  Present method Odejide  and Binuyo, (2014) 

0.00 0.0000 0.0000 

0.25 1.2454e-09 3.6735633e-07 

0.50 1.6758e-09 4.8980846e-07 

0.75 1.2454e-09 3.6735635e-07 

1.00 0.0000 0.0000 

RMS 2.6832e-09 3.193160467e-07 

 

 

Table 2:  Point wise and maximum absolute errors for Example 1, in the  

region ( , ) [0,1] [0,1]x t  
 

 

ix  
i

t  0.25h k   0.125h k 

 

0.0625h k   

0.25 0.25 5.0503e-04 9.8387e-05 2.0727e-05 

 0.5 8.9854e-04 3.1433e-04 7.9327e-05 

 0.75 1.8188e-03 4.8147e-04 1.2420e-04 

0.5 0.25 9.5221e-04 2.5029e-04 6.5151e-05 

 0.5 7.7531e-04 3.2036e-04 9.5877e-05 

 0.75 2.4344e-03 8.1746e-04 2.1688e-04 

Max. Abs. 

errors 
2.4344e-03 8.1746e-04 2.1688e-04 
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Figure 1: The physical behavior of Example 1 at different mesh sizes. 

Example 2: Consider the telegraphic equation of the form:  

    
2 2

2 2 2 3 2

2 2
20 25 (6 60 )( (1 ) ) (12 12 2)

u u u
u t t x x t x x

tt x

  
        

 
 

subject to the conditions:     

( ,0) 0

( ,0) 0 ; 0 1, and 0

(0, ) 0 (1, )

t

u x

u x x t

u t u t




   
  

 

The exact solution is given by 3 2 2( , ) (1 )u x t t x x 
 

Table 3: Pointwise, maximum absolute and root mean square errors for Example 2
 

( , )i jx t  0.2h k   0.1h k   0.05h k   

(0.2, 0.2)  5.4350e-05 1.2885e-05 3.9343e-06 

(0.4, 0.4)  4.2612e-04 1.1950e-04 3.2055e-05 

(0.6, 0.6)  8.4846e-04 2.3539e-04 6.1170e-05 

(0.8, 0.8)  3.0432e-04 7.8122e-05 1.9923e-05 

Max. Absolute errors 1.6476e-03 4.9860e-04 1.2690e-04 

RMS 1.5581e-03 6.7579e-04 2.5208e-04 
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Figure 2:  Absolute pointwise errors decreases as the number of mesh sizes decreases  

                 for Example 2.  
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DISCUSSION AND CONCLUSION 

In this paper, Crank Nicholson and fourth 

order stable central finite difference 

methods are used to obtain the scheme for 

solving the second order one-dimensional 

linear hyperbolic telegraph equation. First, 

the given domain is discritized and the 

derivatives of the partial differential 

equation are replaced by finite difference 

approximations and then, transformed to 

system of equations which can be solved 

by matrix inverse method. The stability and 

consistency of the method is well 

established. To validate the applicability of 

the method, two model examples have been 

considered and solved at different mesh 

sizes of h and k.   

As it can be observed from the numerical 

results presented in Table 1, the present 

method approximates the exact solution 

very well. From Tables (2) and (3) as the 

values of h and k decreases, the accuracy of 

the method increases. Figure 1 shows the 

physical behavior of telegraph equation for 

the solution of Example 1 and also, Figure 

2 shows as the values of mesh sizes 

decrease, the pointwise absolute error also 

decreases. Moreover, results obtained by  

presented method is compared with the 

results of Odejide and Binuyo (2014), and 

it shows, the obtained  result  is more 

accurate.  

Therefore, the present scheme that obtained 

from the finite difference methods is more 

accurate and convergent method for 

solving the second order one-dimensional 

linear hyperbolic telegraph equation. 
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