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ABSTRACT 

Stable numerical method for singularly perturbed boundary value problem with two small 
positive parameters is presented. Given problem is converted into asymptotically 
equivalent boundary value problem. Then, using the finite difference approximations, the 
obtained differential equation is transformed to a three-term recurrence relation. The 
stability and convergence of the method have been established. To validate the 
applicability of the proposed method, three examples have been considered and solved for 
different values of perturbation parameters. Both theoretical error bounds and numerical 
rate of convergence have been established for the method. The numerical results have been 
presented in tables and graphs, as it can be observed from the numerical results, the 
present method approximates the exact solution very well. Moreover, the present method 
gives better results than some existing numerical methods reported in the literature. 

Keywords: Boundary value problems; Singular perturbation; Stability and convergence 
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______________________________________________________ 

INTRODUCTION

The problems in which the highest order 
derivative term is multiplied by small 
positive parameters are known to be 
perturbed problems and the parameter is 
known as the perturbation parameter 
(Vasil’eva, 1976). Singularly perturbed 
problems arise in various branches of 
applied mathematics and physics such as 
fluid mechanics, quantum mechanics, 

elasticity, plasticity, semi-conductor device 
physics, geophysics, optimal control 
theory, aerodynamics, oceanography, and 
mathematical models of chemical reactions 
(Firdous et al., 2016) and also in 
engineering, biology and lubrication theory 
(Kumar, 2012). 
A singularly perturbed boundary value 
problem with two small positive 
parameters are getting more attention in the 
more recent years; with the parameters is 
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the coefficient of the second and first order 
derivatives of the definitional equation. 
There are various methods proposed for 
solving such second order singularly 
perturbed boundary value problems with 
two small parameters. Some of the methods 
are B-spline collocation, finite difference, 
finite element, exponential spline, and Haar 
wavelet approach and fourth order stable 
central difference methods; see 
(Kadalbajoo and Yadaw, 2008, 2011; 
Kadalbajoo and Kumar, 2010; Zahara and 
El Mhlawy, 2013; Pandit and Kumar, 2014 
and Terefe et al., 2016).  
Classical numerical methods, which have 
been known to be effective for solving 

most problems that arises in application, 
have failed when applied to singularly 
perturbed problems. Most of these methods 
are not effective for solving singularly 
perturbed boundary value problems, 
because as the parameter closer and closer 
to zero the error in the numerical solution 
increases and often become not comparable 
in magnitude to the exact solution (Firdous 
et al., 2016 and Kumar, 2012). To 
overcome this drawback, we proposed 
stable numerical method for solving 
singularly perturbed boundary value 
problems with two small positive 
parameters.  

MATERIALS AND METHODS

Consider the following   two-parameter singularly perturbed boundary value problem.

''( ) ( ) '( ) ( ) ( ) ( )
[0,1]

y x a x y x b x y x f x
x

   
 

 
(1) with boundary conditions  

(0) and (1)y y      (2) 
where   and   are small parameters such that  
0 , 1   with ( ), ( )a x b x and ( )f x are bounded smooth functions in the given 
domain and  ,  are given constant. 
To describe the scheme, we divide the interval [0,1] into N  equal subintervals of 

uniform mesh length .h let  0 1 20 , , , ..., 1Nx x x x  be the mesh points. Then, we 

have   0ix x ih  or 1i ix x h   1,2,..., 1.i N  For the sake of simplicity, let 

us denote ( )i ia x a , ( )i ib x b ,  i ip x p ,  i iq x q , ( ) ,i if x f ( )i iy x y

( ) , ( )i i i iy x y y x y     and  ( ) ( )( )n n
i iy x y . 

Now, Eq. (4.1) can be re-written as. 

0,1, 2, . . . , .
i i i i i iy p y q y r

i N

    

  (3)

where 

i
i

ap 

 ,

i
i

bq 
  and 

.i
i

fr 

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Assume that the solution  y x has continuous higher order derivatives on [0,1],
continuously differentiable on (0,1) and satisfies Eqs. (1) and (2). Using Taylor series 

expansion, we obtain central difference approximation for iy  and iy  as. 
2

1 1
1' ,

2 6
i i

i i

y y hy y
h

    
 (4) 

2
1 1 (4)

22

2
'' ,

12
i i i

i i

y y y hy y
h

  
  

 (5) 

where 

4 (5)

1 120
ih y


 and 

 
4

6
2 .

360 i
h y

Substituting Eqs. (4) and (5) into Eq. (3), we obtain. 

 

12 2

2

12

2
4

3

1 2
2

1
2 6

,
12

i
i i i

i
i i i

i i

p y q y
h h h

p hy p y
h h

h y r





        
  

      
 

  
            (6) 

where 

 
44 (5)

6
3   .

120 360
i i

i
p h y h y  

  

Solving Eq. (3) for iy  and differentiating successively yield. 

 ' ' '.i i i i i i i i iy p y p q y q y r      
           (7) 

   
 
 

4 2 2 '

' '' 2 '

'' ' ' ''.

i i i i i

i i i i i i i

i i i i i i i

y p p q y

p p p q p q y

q p q y p r r

   

   

    (8)                                                                                                  

Substituting Eqs. (7) and (8) into Eq. (6) taking account the finite difference 
approximations in Eqs. (4) and (5) we get the following equality. 
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 

  

 

 

 

  

2
2

2

1

2
2

2

2 2

2
2

2

1

2 2

1 1( 2 '
2 6 12

'' 2 ' ' )
24

2 1( 2 '
3 6

' '' '
6 12

1 1( 2 '
2 6 12

'' 2 ' '
24

'' '
12 12

i i
i i i

i i i i i i

i
i i i i

i i
i i i i

i i
i i i

i i i i i i

i i
i i

p p p p q
h h
h p q p p q y

pq p p q
h
p q h h q p q y

p p p p q
h h
h p q p p q y

h r p h r r





      

   

     

  

     

   

   
(9) 

where   is called local truncation error. 

 

   

4

44 (4)
62

4 (5)

'' 2 ' '
72

2 '
144 360

.
120

i
i i i i i i

i
i i i i

i i

h yp q p p p q

h y hp p q y

p h y


    

   





Re-writing Eq. (9) in the three-term recurrence relation form: 
  1 1

N
i i i i i i iL y x E y F y G y H     

           (10) 

for 1,2,..., 1,i N   where   

 

  

2
2

2

1 1 2 '
2 6 12

'' 2 '
24

i i
i i i i

i i i i i

p pE p p q
h h
h p q p p q

      

  
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 

 

2
2

2

2 2

2 1 2 '
3 6

' '' '
6 12

i
i i i i i

i i
i i i

pF q p p q
h
p q h h q p q

     

  

 

  

2
2

2

1 1 2 '
2 6 12

'' 2 ' '
24

i i
i i i i

i i i i i

p pG p p q
h h
h p q p p q

     

   
  

  

22

'' '
12 12

i
i i i i

p hhH r r r  
 .

The system in Eq. (10) gives  1N  by 1N   tri-diagonal systems, which can easily be 
solved by Thomas algorithms (Terefe et al., 2016). 
Stability and Convergence Analysis 

Definition: in mathematics the class of L-matrices are those matrices whose off-diagonal 
entries are less than or equal to zero and whose diagonal entries are positive; that is, an L-
matrix satisfies (Varga, 1962) 

 , , ,; 0; 0,i j i i i jL l l l i j    ,

 for , 1,2,3,..., 1i j N 
To show the stability and convergence of the method we considered the following two 
theorems without proofs. 
Theorem 1: For any partition JUK  of the index set   1,2,3,....,n  of an n n  matrix

,A if there exists j J  and k K  such that 0jka   then A is an irreducible matrix 
(Young, 1971). 

Theorem 2: If A is an L-matrix which is symmetric, irreducible and has weak diagonal 
dominance, then A is a monotone matrix (Young, 1971). 
Theorem 3: Let A be a coefficient matrix of the discretized problem of Eq. (10). Then, for 
all , 0    and sufficiently small h , the matrix A is an irreducible and diagonally 
dominant matrix.  
Proof:  Writing Eq. (10) in matrix vector form we obtain.
AY B

 Where, A is a coefficient matrix, 1, 2, 1( ... )T
NY y y y  and  

1 1 2 2 1 1( , , ..., , )T
N N NB H E H H H G      .
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Clearly, A  is a tri-diagonal matrix. Matrix A is irreducible if its co-diagonals iE and 

iG  contain non-zero elements only. 

Multiplying both sides of Eq. (10) by h  , we get the equivalent tri-diagonal scheme: 

 

 

 

 

 

 

2
2

2

1

2
2

3 3

2
2

2

1

2

1 2 '
2 6 12

'' 2 ' ( ' )
24

2 2 '
3 6

'' '
6 12

1 2 '
2 6 12

'' 2 ' ( ' )
24

12

i i
i i i

i i i i i i

i
i i i i

i i
i i i i

i i
i i i

i i i i i i

i
i i

p hp h p p q
h

h p q p p q y

hp hhq p p q
h

h p q h q p q y

p hp h p p q
h

h p q p p q y

p hh r r






      



   




     



  




     



    



   
2

,
12 i
h r T h

   
  (11)

where 

 

5

5 (4) 5 (6)
2

5 (5)
6

( ) ( 2 )
72

( 2 )
144 360

.
120

i
i i i i i i

i i
i i i

i i

h yT h p q p p p q

h y h yp p q

p h y O h


      

   

 

It is easily seen that, for sufficiently small h , we have: 0iE   and 0iG  ,

1,2,..., 1i N   . Hence A is irreducible (Terefe et al., 2016). 

Again one can observe that , 0,i iE G  0iF   and the sum of the two off diagonal 
elements is less than or equal to the modulus of the diagonal element. This proves the 
diagonal dominance of A . Hence,  A  is diagonally dominant. 
Under these conditions, the Thomas Algorithm is stable (Kadalbajoo and Reddy, 1989).
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Theorem 4: Let ( )y x  be the analytical solution of the problem in Eq. (1) and (2) and  

 Ny x  be the numerical solution of the discretized problem of Eq. (10). Then, 
4Ny y Ch   for sufficiently small h  and C  is positive constant. 

Simplifying Eq. (11), we get the equivalent tri-diagonal scheme. 

1

1

( 1 ) (2 )
( 1 ) 0,

i i i i

i i i i

u y v y
w y g T





    
                                       (12)                                         

Where 

 

 

2 2 2
2

3

2
2 6 12

2 ( ) .
24

i i
i i i i

i i i i i

hp h p hu p p q

h p q p p q

     

     

 

 

2 2 2
2 2

4 4

2
3 6

.
6 12

i
i i i i i

i i
i i i

h p hv h q p p q

h p q h q p q

    


   

2 2 2
2

3

( 2 )
2 6 12

( 2 ( ))
24

i i
i i i i

i i i i i

hp h p hw p p q

h p q p p q

     

    

6

6 (4) 6 (6)
2

6 (5)
7

( ) ( 2 )
72

( 2 )
144 360

( ).
120

i
i i i i i i i

i i
i i i

i i

h yT h p q p p p q

h y h yp p q

p h y O h


      

   

 

Incorporating the boundary conditions 0 (0)y y   and (1)Ny y    in Eq. (12), 
we obtain. 

4 4
2

12 12
i

i i i i
p h hg h r r r   
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1 1

2 2

2

1 1

(2 ) ( 1 ) 0 ... 0
( 1 ) (2 ) .

0 0
0 ( 1 )

0 0 ( 1 ) (2 )
N

N N

v w
u v

w
u v



 

   
    
 
   
    

1

2

3

1N

y
y
y

y 

 
 
 
 
 
 
  

1 1

2

3

1 1

( 1 )

( 1 )N N

g u
g
g

g w



 

   
 
 
 
 
 
    

1

2

3

1

0

N

T
T
T

T 

 
 
 
  
 
 
  

This implies  
( ) ( ) 0,D P y M T h                                                          (13) 
where 

2 1 0 ... 0
1 2 1 ... 0

0 1
1

0 0 1 2

D

 
   
  
  
   ,

1 1

2 2 2

3 3

2

1 1

0 ... 0
... 0

0

0 0
N

N N

v w
u v w

P u v
w

u v


 

 
 
 
 
 
 
  

are tri-diagonal matrices of order 1N  , and 

1 1 2, 3 1 1( ( 1 ) ), ,..., ( ( 1 ) ) ,T
N NM g u g g g w          

6( ) ( )T h O h  and  1 2 3 1, , ,..., T
Ny y y y y 

,   1 2 3 1( ) , , ,..., T
NT h T T T T 

,

 0 0,0,0,...,0 T
 are the associated  column  vectors of Eq.(13). 

Let  1 2 3 1, , ,...,
TN N N N N

Ny y y y y y     be the solution, which satisfies Eq. (14), and 

then we have. 
( ) 0ND P y M                                                     (14) 
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Let  N
i i ie y y  , for  1,2,..., 1i N  be the discretization error, then 

 1 2 3 1, , ..., TN
Ny y e e e e  

. 
Subtracting Eq. (13) from Eq. (14) we get. 
( )( ) ( )ND P y y T h                                                                                     (15) 

     

Let  1ip c
 , 2ip c   , 3ip c  , 1iq k

, 

2iq k   , 3iq k   and i jt  be the  , thi j  element of the matrix P .Then, for, 

1,2,..., 2i N   and for sufficiently small   h the  ( , 1)thi i   of the matrix D is 1 .

Hence, the matrix ( )D P  is an irreducible, (Verga, 1962). Let iS  be the sum of the 

elements of the thi  row of the matrix ( )D P , then. 

For, 1i 
2

2

3
4

1 (11 2 '
2 12

( 2 ( )) ( ).
24 i

i
i i i i

i i i i

hp hS q p p

h p q p p q O h

     

     

For, 2,3,.... 2i N  , 2 4( ).i iS h q O h 

For, 1i N 

 

 

2
2

3
4

1 2 ' 11
2 12

'' 2 ' ( ' ) ( ).
24

i
i i i i

i i i i i

hp hS p p q

h p q p p q O h

    

    

For sufficiently small h , ( )D P  and  1( )D P   is monotone, since, ( )D P D 
which is symmetric and has weak diagonal dominance, (Verga, 1962 and Young, 1971). 

Hence, 
1( )D P   exists and 

1( ) 0D P   . 
From the error Eq. (16) we have. 

1( ) ( )Ny y D P T h                                                                                    (16) 

For sufficiently small h  , we have: 

For, 1i  : *
2

1

11
12iS h k

For 2,3,..., 2i N  : *
2

1iS h k
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For 1i N  : *
2

1

11
12iS h k

where 

 *1 1 1

4

1 1 1 1

1min '' '
12

min ( ) min .

i i i ii N

i ii N i N

k q q p q

q O h q

  

     

  

  

Let   
1

,( ) i kD P 
 be the  , thi j

 elements of   1( )D P   and we define  

 

 

1
11

,1 1 1

1 1

( ) max and

max

N

i ki N k

ii N

D P D P

T h T




   

  

  





                             (17)
    

Since  1
,( ) 0i kD P    , then from the theory of matrices, we have: 

 
1

1

,
1

. 1
N

ki k
k

D P S






  ,                                                               (18) 

 for 1,2,.., 1i N           

Hence, for  1,k 

*

1
,1 2

1 1

1 12 1( ) .
11iD P

s h k


 
     

 
For, 1k N 

*

1
, 1 2

1 1

1 12 1( )
11i N

N

D P
s h k






 
     

                                            (19)      
      

Further, for  2,3,... 2k N 

 
*

2
1

2,
2 1

2 2

1 1
min

N

i k
k k

k N

D P
S h k





  

  
                                              (20)  

    
Now, from Eqs. (16)-(20) we get:  

4Ny y Ch 
Where, 



Stable   Numerical   Method          Dugassa et al.                                                         19

 

 
*1

(4) (5) (6)
2

35 2
11 72

2
144 120 360

i
i i i i i i

i i i i
i i i

yC p q p p p q
k

y p y yp p q


       

    

Which is independent of the mesh sizes  h  .
  

Then, 4.Ny y Ch  This establishes that the  method is fourth order convergent. 

RESULTS 
To demonstrate the applicability of the method, it is applied on three model numerical 
examples. The maximum absolute errors, at the nodal points are evaluated by the formula 

ii yxyE  )(max
, for Ni ,...2,1,0 . 

Where, )( ixy and  iy  are the exact and computed solution of the given problem 
respectively. For those examples, which have no exact solutions, the maximum absolute 

errors are computed by using double mesh principle given by   2max
h

h
h i ii

Z y y  for  

1,2, ..., 1i N  , where h
iy is the numerical solution on the mesh   1

1

N
i i

x 


 at the 

nodal point ix and 0ix x ih   for 1,2,..., 1i N   and 2
h

iy is the numerical solution 

at the nodal point ix  on the mesh  2 1

1

N
i i

x 


where 0 2i

ihx x   for  1,2,...,2 1i N 

(i.e., the numerical solution on a mesh, obtained by bisecting the original mesh with 
number of mesh intervals, [12]. In the same way one can define 2/hZ  by replacing  h  by 

2/h  and 1N  by  12 N  , that is, 
4/2/

2/ max h
i

h
i

i
h yyZ 

,

for .12...,,2,1  Ni

 The computed rate of convergence is given by /2log( ) log( )
log 2

h hZ Z 
 .

Example 1: Consider the singularly perturbed boundary valued problem with two small 
parameters (Pandit and Kumar, 2014): 

cos( ), (0, 1),y y y x x      
With boundary conditions (0) 0 (1).y y 
Its exact solution is   
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1 2

1 1

( ) ( (1 ))

( ) cos( ) sin( )
x x

y x a x b x
Ae Be  

  

 

 

Where,  
2

1 2 2 2 2

1 2 2 2 2

1 ,
( 1)

,
( 1)

a

b




 


 


  


  

2 1

1 2 1 2

1 1
( ) ( )

(1 ) (1 ), .
1 1
a e b eA B

e e



 

  
 

 

 

   

For 1 2,   are the roots of the characteristic equation of 2 1 0     . The 
maximum absolute errors are presented in Table 1 for different values of  ,  at

128N  . The graph of the computed solution for different values of , and 32N  
is also given in Figure 1 below.  
  

Table 1:  The comparison of maximum absolute errors for Example 1 

210 and 128N  
410 and 128N  

 Pandit
(2014) Our Method Pandit

(2014)
Our
Method

310 4.2303 e-5 2.4810e-08 5.1964e-3 2.7138e-04
410 4.1318 e-5 2.4656e-08 4.1710e-3 2.7139e-04
510 4.1220e-5 2.4641e-08 4.0754e-3 2.7148e-04
610 4.1210e-5 2.4640e-08 4.0659e-3 2.7240e-04
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Figure 1. Physical behavior of numerical solution of Example 1 for 610  ,
32N  and different values of ε

Example 2: Consider the singularly perturbed boundary valued problem with two small 
parameters (Kadalbajoo and Kumar, 2010). 

(1 ) ,y x y y x      

boundary conditions (0) 1 and (1) 0.y y 

The exact solution is not available and the maximum absolute errors are presented for 
present method, in Tables 2 and 3 for different values of  ,  and N  . The graph for the 
behavior of the computed solution at different values of , and 64N   is given in 
Figure 2. 
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Table 2: The comparison of maximum absolute errors of Example 2 for 410 

128N  256N 

 

Kadalbajoo 
and 
Kumar(2010
)

Our 
Method

Kadalbajoo 
and Kumar 
(2010)

Our Method

110 4.0386e-06 1.5028e-10 9.8517e-07 9.3899e-12
210 6.9830e-05 2.6712e-08 1.7521e-05 1.6698e-09
310 6.9993e-04 2.6776e-06 1.7652e-04 1.6766e-07
410 1.3252e-03 2.5620e-04 5.7425e-04 1.6587e-05

Table 3: The comparison of maximum absolute errors of Example 2 for 210 

128N  256N 

 
Kadalbajoo 
and Kumar, 
(2010)

Our Method
Kadalbajoo 
and Kumar, 
(2010)

Our Method

110 7.0951e-05 2.6914e-08 1.7731e-05 1.6824e-09
210 7.0120e-05 2.6712e-08 1.7521e-05 1.6698e-09
310 7.0037e-05 2.6690e-08 1.7500e-05 1.6685e-09
410 7.0029e-05 2.6688e-08 1.7498e-05 1.6683e-09
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Figure 2. Physical behavior of numerical solution of Example 2 for 610  , N 
= 64 and at different values of ε.

Example 3: Consider the singularly perturbed boundary valued problem with two small 
parameters (Kadalbajoo and Yadaw, 2008). 

2 2(3 2 ) (1 ) ,y x y y x       
 with boundary conditions (0) 0 (1)y y  and its exact solution is not given. The 
maximum absolute errors are presented in Table 4 for different values of    , at

128N  and, in Table 5 at different values of  ,   and N . The graph of the 
computed solution for different values of , and 32N   is also given in Figure 3.  

Table 4: Maximum absolute errors of Example 3 at 128N 

 
 

310 410 510

110 3.3121e-10 3.2986e-10 3.2973e-10
210 2.7801e-08 2.7343e-08 2.7299e-08
310 2.7828e-06 2.6888e-06 2.6765e-06
410 2.6305e-04 2.5724e-04 2.5476e-04
510 1.6163e-02 1.5337e-02 1.4059e-02
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           Table 5: Maximum absolute errors of Example 3 at different values of ε, μ and N

210  410 

  N = 128 N = 256 N = 128 N = 256

310 2.7801e-08 1.7379e-
09 2.6305e-04 1.7595e-05

410 2.7347e-08 1.7095e-
09 2.5724e-04 1.6687e-05

510 2.7299e-08 1.7065e-
09 2.5476e-04 1.6440e-05

610 2.7294e-08 1.7062e-
09 2.5448e-04 1.6413e-05

710 2.7293e-08 1.7062e-
09 2.5445e-04 1.6410e-05

Figure 3: Physical behavior of numerical solution of Example 2 for 610  , N 
= 32 and at different values of ε.

Using double mesh principle for those Examples 1- 3, we have the following rate of 
convergence at different values of , and N  .
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Table 6: Rate of convergence for Examples 1–3 with 210 
N

  64 128 256

Example 4.1 310 3.9988 3.9997 4.0000
410 3.9988 3.9997 4.0000

Example 4.2 310 3.9989 3.9997 3.9999
410 3.9989 3.9997 3.9999

Example 4.3 210 3.9987 3.9997 3.9999
310 3.9989 3.9997 3.9999
410 3.9989 3.9997 3.9999

DISCUSSION
In this paper, stable central finite difference 
method is presented for solving singularly 
perturbed boundary value problems with 
two small positive parameters. First, the 
given interval is discretized and then a 
singularly perturbed boundary value 
problem is converted into an 
asymptotically equivalent boundary value 
problem. Then, the derivative of the given 
differential equation is replaced by the 
finite difference approximations which 
transformed into a three-term recurrence 
relation, that form system of equations 
whose solution can be obtained using 
Thomas algorithms. The stability and 
convergence of the method have been 
investigated and the present method is 
fourth order convergent.  
To validate the applicability of the method, 
the numerical results have been presented 
on three model examples in Tables 1–5 for 
different values of the two small positive 
parameters and different number of mesh 
sizes. The results obtained by the present 
method are compared with the methods in 
(Kadalbajoo and Yadaw, 2011; Zahara and 
El Mhlawy, 2013 and Pandit and Kumar, 
2014). It shows the present method give 
better results than the findings of the 
aforementioned scholars and the accuracy 

of the problem increased by increasing the 
resolution of the grid. Table 6 depicts that 
the present methods have the rate of 
convergence is four, which is in agreement 
with the theoretical rate of convergence. 
The graphs of the considered examples for 
different values of parameters and step size 
are plotted in Figures 1 –3, to examine the 
effect of the sufficiently small positive 
parameters on the solution of the problem. 
From Figures 1 and 2, when   decreases 
for fixed value of  the width of 
boundary layer decreases and became more 
and more stiff at 0x  and 1.x   Also, 
in Figure 3 when   decreases for fixed 
value of  the width of boundary layer 
decreases and became more and more stiff 
at 0x   and we get the boundary layer  
at the left end point of the interval. The 
results presented confirmed that 
computational rate of convergence as well 
as theoretical estimates indicate that the 
method is a fourth order convergent. 

CONCLUSION

Stable numerical method for solving 
singularly perturbed boundary value 
problem with two small positive 
parameters is presented. Given differential 
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equation is transformed into the finite 
difference approximations that can be 
written in a three-term recurrence relation 
form. The stability and convergence of the 
method have been established. To validate 
the applicability of the proposed method, 
three examples have been considered and 
solved for different values of small positive 
parameters ,  and mesh sizes h with the 
given numerical results in tabular and 
graphics. Both theoretical error bounds and 
numerical rate of convergence have been 
established for the method which shows the 
method is fourth order convergent.
Moreover, the present method gives better 
results than some existing numerical 
methods reported in the literature. 
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