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Abstract 

This study presents a fractional reduced differential transform method (FRDTM) to find 

approximate analytical solutions of nonlinear time fractional two dimensional Klein Gordon 

equation. The fractional derivative used in this study is in the Caputo sense. A few important 

lemmas which are essential to solve the problems using the proposed method are proved. 

The advantage of this method is that it uses appropriate initial conditions and finds the 

solution to the problems without any discretization, linearization, perturbation, or any 

restrictive assumptions. Model examples are presented to demonstrate the applicability and 

effectiveness of the proposed method. The obtained results reveal that the FRDTM is very 

effective and simple for solving linear and non-linear fractional partial differential 

equations. Finally, some graphical features are presented to give a visual interpretation of 

the solutions behaviour.  

Keywords: Klein-Gordon Equation; Caputo Fractional Derivative; Fractional Reduced 

Differential Transform Method 

Introduction 
In recent years, linear and nonlinear fractional partial differential equations have gained 

popularity and importance mainly, due their demonstrated applications in all disciplines of 

applied sciences and engineering, see (Ali et al., 2020a; Ali et al., 2020b; Arif et al., 2020; 

Sunthrayuth et al., 2021) and the references therein. The nonlinear Klein–Gordon equation 

(NLKGE) is a model of such a partial differential equation. This type of partial differential 

equation mainly arises in relativistic quantum mechanics and field theory, in high-energy 

physicists, in study of perturbation theory, in modelling the propagation of dislocations in 

crystals, spin waves, nonlinear optics, and in modelling the behaviour of elementary 

particles (Belayeh et al., 2020; Biswas et al., 2012; Chang and Kuo, 2014).  

There have been attempts to develop new methods by different scholars to obtain 

approximate analytical solutions of fractional order differential equations which converge to 

exact solutions. A few of these schemes are the Adomain decomposition method (ADM) 

(Daftardar-Gejji and Jafari, 2005;  Daftardar-Gejji and Jafari, 2007; Duan et al., 2012), the 

differential transform method (DTM) (Ghazanfari and Ebrahim, 2015; Secer et al., 2012), 

the reduced differential transform method (RDTM) (Deresse et al., 2021; Jafari et al., 2016). 

The majority of these methods are sometimes complex and contains terms not easily 

calculable, and it is difficult to obtain approximate analytical solutions. To deal with such 

types of difficulties, Keskin and Oturanc, (2010) have developed an alternative method, 

known as fractional reduced differential transform method (FRDTM). Very recently, in 

papers (Arshad and Lu, 2017; Mussa et al., 2021; Srivastava et al., 2014; Taghavi et al., 
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2015; Yadeta et al., 2020)  different scholars have shown the capabilities of FRDTM in 

solving linear and nonlinear  fractional  order partial differential equations . 

Bearing in mind the capability of FRDTM, the central goal of this paper is to find 

approximate analytical solutions of time fractional NLKGE in two dimensions of the form:   

𝜕2𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡2𝛼
+ 𝛽

𝜕𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡𝛼
= 𝜃 (

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑥2
+

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑦2
) − 𝑁𝑢 + 𝑓(𝑥, 𝑦, 𝑡)         (1) 

subject to the initial conditions       

𝑢(𝑥, 𝑦, 0) = 𝜑1(𝑥, 𝑦) and  𝑢𝑡(𝑥, 𝑦, 0) = 𝜑2(𝑥, 𝑦) ,                                      (2) 

where  𝑡 > 0 , 0 < 𝛼 ≤ 1, 𝑁𝑢  is a nonlinear term, 𝜑1  and 𝜑2  are prescribed functions in 

two space variables, 𝛽  is the so-called dissipative term, which is assumed to be a real 

number with 𝛽 ≥ 0. When 𝛽 = 0, Equation (1) reduces to the undamped Klein–Gordon 

equation, while when 𝛽 > 0, to the damped one, and  𝜃 is non negative real number. 

Materials and Method 

Preliminaries 

We consider first the following basic definitions that can be used for the next sections. 

Definition 1. The gamma function. The gamma function 𝛤(𝑧) is simply a generalization of 

the factorial real arguments. The Gamma function can be defined as (Podlubny, 1999) 

𝛤 (𝑧) =  ∫ 𝑒−𝑡
∞

0
𝑡𝑧−1𝑑𝑡, 𝑧 ∈ ℂ                                                     (3) 

 Definition 2.  The Caputo fractional derivative is defined as (Podlubny, 1999) 

      𝐷𝑡
𝛼𝑓(𝑡) ≔ {

1

Γ(𝑛−𝛼)
∫

𝑓𝑛(𝜏)

(𝑡−𝜏)𝛼+1−𝑛
𝑑𝜏 ,    𝑛 − 1 < 𝛼 < 𝑛

𝑡

𝑎

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡)                           ,                    𝛼 = 𝑛

,           (4) 

where 𝛼 >  0, 𝑡 >  𝑎, 𝑛 ∈  𝑁, and  𝛼, 𝑎, 𝑡 ∈  R. 

The Caputo fractional derivative is one among the several definitions of fractional 

derivatives. We use this definition in this paper for the reason that  the initial conditions of 

the fractional order differential equation are in a form involving only the limit values of 

integer-order derivative at the lower terminal initial time (𝑡 = 𝑎), and also the fractional 

derivative of a constant function is zero.   

     i)     𝐷𝑎
𝛼C = 0,   C is a constant. 

     ii)   𝐷𝑎
𝛼tγ = {

0                     ,     𝛾 ≤ 𝛼 − 1
Γ(𝛾+1)

Γ(𝛾−𝛼+1)
𝑡𝛾−𝛼  ,     𝛾 > 𝛼 − 1   

 

Similar to integer order differentiation, fractional order differentiation in Caputo’s sense is a 

linear operation , 

𝐷𝑎
𝛼(𝜉𝑓(𝑥) + 𝜂𝑔(𝑥)) = 𝜉𝐷𝑎

𝛼𝑓(𝑥) + 𝜂𝐷𝑎
𝛼𝑔(𝑥) ,                             (5) 
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where 𝜉and 𝜂 are constants.       

Fractional Reduced Differential Transform Method (FRDTM) 

The following definitions and properties of FRDTM are according to the references (Arshad 

and Lu, 2017; Srivastava et al., 2014; Taghavi et al., 2015 ). 

Definition 3. If 𝑢(𝑥, 𝑦, 𝑡) is analytic and continuously differentiable with respect to space 

variables 𝑥, 𝑦  and time variable 𝑡  in the domain of interest, then the fractional reduced 

differential transform of the function 𝑢(𝑥, 𝑦, 𝑡) is defined as  

𝑈𝑘(𝑥, 𝑦) =
1

Γ(kα+1)
[
𝜕𝑘𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡𝑘𝛼
]
𝑡=𝑡0

, where 𝑘 = 0,1,2,   .  .  .          (6) 

Definition 4.  The fractional reduced differential inverse transform of 𝑈𝑘(𝑥, 𝑦) is defined as   

𝑅𝐷
−1[𝑈𝑘(𝑥, 𝑦)] ≅ 𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑘(𝑥, 𝑦)(𝑡 − 𝑡0)

𝑘𝛼∞
𝑘=0              (7) 

From Eqs. (6) and (7) one can deduce that 

𝑢(𝑥, 𝑦, 𝑡) = ∑
1

Γ(kα+1)
∞
𝑘=0 [

𝜕𝑘𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡𝑘𝛼
]
𝑡=𝑡0

(𝑡 − 𝑡0)
𝑘𝛼                 (8) 

Note that when 𝑡0 = 0, Eq. (7) becomes 

𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘𝛼∞

𝑘=0                                                            (9) 

From Definition 4, it can be seen that the concept of FRDTM is derived from the power 

series expansion of a function. Then, the inverse transform of the set of values [𝑈𝑘(𝑥, 𝑦)]𝑘=0
𝑛  

gives the n-term approximate solutions: 

𝑢̅𝑛(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑘(𝑥, 𝑦)
𝑛
𝑘=0 𝑡𝛼𝑘                                           (10) 

Therefore, the exact solution is given by:  

𝑢(𝑥, 𝑦, 𝑡) = lim𝑛→∞ 𝑢̅𝑛(𝑥, 𝑦, 𝑡) = ∑ U𝑘(𝑥, 𝑦)t
αk∞

𝑘=0                 (11) 

Some of the basic properties of FRDTM that can be deduced from Eqs. (6) and (7) are given 

below, where  𝑘 = 0,1,2,⋯, and 𝛼, 𝛽 and 𝛾 are constants.  

1. If  𝑤(𝑥, 𝑦, 𝑡) = 𝛼𝑢(𝑥, 𝑦, 𝑡) + 𝛽𝑣(𝑥, 𝑦, 𝑡), then  𝑊𝑘(𝑥, 𝑦) = 𝛼𝑈𝑘(𝑥, 𝑦) + 𝛽𝑉𝑘(𝑥, 𝑦),  
2. If  𝑤(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡)𝑣(𝑥, 𝑦, 𝑡) , then 𝑊𝑘(𝑥, 𝑦) = ∑ 𝑈𝑟

𝑘
𝑟=0 (𝑥, 𝑦)𝑉𝑘−𝑟(𝑥, 𝑦) 

3. If  𝑤(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡)𝑣(𝑥, 𝑦, 𝑡)𝑠(𝑥, 𝑦, 𝑡), then 

𝑊𝑘(𝑥, 𝑦) = ∑ ∑ 𝑉𝑖(𝑥, 𝑦)𝑈𝑗−𝑖(𝑥, 𝑦)𝑆𝑘−𝑗
𝑗
𝑖=0

𝑘
𝑗=0 (𝑥, 𝑦) 

4. If  𝑤(𝑥, 𝑦, 𝑡) =
𝜕𝑁𝛼

𝜕𝑡𝑁𝛼
𝑢(𝑥, 𝑦, 𝑡), then 𝑊𝑘(𝑥, 𝑦) =

𝛤((𝑘+𝑁)𝛼+1)

𝛤(𝑘𝛼+1)
𝑈𝑘+𝑟(𝑥, 𝑦) 

5. If  𝑤(𝑥, 𝑦, 𝑡) =
𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑦, 𝑡 ), then  𝑊𝑘(𝑥, 𝑦) =

𝜕2

𝜕𝑥2
𝑈𝑘(𝑥, 𝑦) 

6. If  𝑤(𝑥, 𝑦, 𝑡) =
𝜕2

𝜕𝑦2
𝑢(𝑥, 𝑦, 𝑡 ), then  𝑊𝑘(𝑥, 𝑦) =

𝜕2

𝜕𝑦2
𝑈𝑘(𝑥, 𝑦) 

7. If  𝑤(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝛼𝑥 +  𝛾𝑦 + 𝛽𝑡), then  𝑊𝑘(𝑥, 𝑦) =  
𝛽𝑘

𝑘!
𝑠𝑖𝑛 (𝛼𝑥 + 𝛾𝑦 +

𝑘𝜋

2
),   

8. If  𝑤(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠(𝛼𝑥 + 𝛾𝑦 + 𝛽𝑡), then   𝑊𝑘(𝑥, 𝑦) =
𝛽𝑘

𝑘!
𝑐𝑜𝑠 (𝛼𝑥 + 𝛾𝑦 +

𝑘𝜋

2
). 
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Lemma  1 If 𝑤(𝑥, 𝑦, 𝑡) = 𝑠𝑖𝑛(𝜔𝑦) 𝑠𝑖𝑛(𝛼𝑥 + 𝛽𝑡), then 𝑊𝑘(𝑥, 𝑦) =
𝛽𝑘

𝑘!
𝑠𝑖𝑛 (𝛼𝑥 +

𝑘𝜋

2
) 𝑠𝑖𝑛(𝜔𝑦),   

where  𝜔, 𝛼, 𝛽  are constants and 𝑘 = 0, 1, 2, 3,   .  .  . . ,                                   (12)  

Proof: By Definition 3 and  basic properties of FRDTM, we have   

   𝑊𝑘(𝑥, 𝑦) =
1

𝛤(𝑘𝛼+1)
[
𝜕𝑘𝛼(𝑠𝑖𝑛(𝜔𝑦)𝑠𝑖𝑛(𝛼𝑥+𝛽𝑡))

𝜕𝑡𝑘𝛼
]
𝑡=𝑡0

,  

   𝑊𝑘(𝑥, 𝑦) =
1

𝛤(𝑘𝛼+1)
[
𝜕𝑘𝛼 𝑠𝑖𝑛(𝛼𝑥+𝛽𝑡)

𝜕𝑡𝑘𝛼
]
𝑡=𝑡0

𝑠𝑖𝑛(𝜔𝑦), 

   𝑊𝑘(𝑥, 𝑦) =
𝛽𝑘

𝑘!
𝑠𝑖𝑛 (𝛼𝑥 +

𝑘𝜋

2
) 𝑠𝑖𝑛(𝜔𝑦),  

where 𝜔, 𝛼, 𝛽 are constants and  𝑘 = 0, 1, 2, 3,   .  .  . ,. 

Implementation of the Method 

To demonstrate the basic concepts of the FRDTM, we consider the time fractional NLKGE 

in two dimensions given in Eq. (1) with initial conditions (2). According to Definition 3 and 

basic properties of FRDTM discussed in the previous section, we can construct the 

following iteration formula: 

𝛤((𝑘+2)𝛼+1)

𝛤(𝑘𝛼+1)
𝑈𝑘+2(𝑥, 𝑦) + 𝛽

𝛤((𝑘+1)𝛼+1)

𝛤(𝑘𝛼+1)
𝑈𝑘+1(𝑥, 𝑦) = 𝜃 [

𝜕2𝑈𝑘(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈𝑘(𝑥,𝑦)

𝜕𝑦2
] − 𝑁𝑘(𝑥, 𝑦) +

𝐹𝑘(𝑥, 𝑦),                                     (13) 

where 𝑁𝑘 = 𝑁(𝑈𝑘(𝑥, 𝑦)) and 𝐹𝑘(𝑥, 𝑦) are the transformed form of the nonlinear term 𝑁𝑢 

and the source function  𝑓(𝑥, 𝑦, 𝑡) respectively. Similarly, the transformed form the initial 

conditions (2) are 

 𝑈0(𝑥, 𝑦) = 𝜑1(𝑥, 𝑦)  and     𝑈1(𝑥, 𝑦) = 𝜑1(𝑥, 𝑦) respectively.         (14) 

The first nonlinear terms are computed below, 
𝑁0 = 𝑁(𝑈0)                                                                                  

𝑁1 = 𝑁(1)(𝑈0). 𝑈1                                                                      

𝑁2 = 𝑁(1)(𝑈0). 𝑈2 +
1

2!
𝑁(2)(𝑈0). 𝑈1

2                                    

 𝑁3 = 𝑁(1)(𝑈0). 𝑈3 + 𝑁
(2)(𝑈0). 𝑈1. 𝑈2 +

1

3!
𝑁(3)(𝑈0). 𝑈1

3
}
 
 

 
 

,              (15) 

 where 𝑁(𝑘)(𝑈0) is the 𝑘𝑡ℎ order derivative of the nonlinear term at 𝑈0.  

Substituting the initial conditions (4.4) and the components of 𝑁(𝑈𝑘(𝑥, 𝑦)) into (13) and 

straight forward iteration, we obtain the values of  {𝑈𝑘(𝑥, 𝑦)}𝑘=0
∞ . Then, the inverse 

fractional reduced differential transform can be obtained as  

 𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘∞

𝑘=0  

          = 𝑈0(𝑥, 𝑦) + 𝑈1(𝑥, 𝑦)𝑡
1 + 𝑈2(𝑥, 𝑦)𝑡

2 + 𝑈3(𝑥, 𝑦)𝑡
3 + 𝑈4(𝑥, 𝑦)𝑡

4 +⋯    (16) 

Convergence of the Method 

We study the convergence of the FRDTM when it is used in Equations (1) and (2).  

Theorem 1. The series solution ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘∞

𝑘=0  given in Eq. (16), converges if ∃  0 < 𝜆 <
1 such that 

                      ||𝑈𝑘+1(𝑥, 𝑦)|| ≤  𝜆||𝑈𝑘(𝑥, 𝑦)||, ∀𝑘 ∈ 𝑁 ∪ {0}                            (17) 
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Proof:  

Let (𝐶[𝑙], ||. ||)  be the Banach space of all continuous function on 𝑙  with the 

norm    ||𝑈𝑘(𝑥, 𝑦)|| . Also, assume that ||𝑈0(𝑥, 𝑦)|| < 𝜂0 , where η0  is a positive number. 

Define the sequence of partial sum {𝑆𝑛}
∞
𝑛=0

  as 

                     𝑆𝑛 = 𝑈0 + 𝑈1 + 𝑈2+ . . .  +𝑈𝑛                                                                 (18) 

We want to show that {𝑆𝑛}
∞
𝑛=0

 is a Cauchy sequence in this Banach space. To achieve this 

goal,  

we take  

  ||𝑆𝑛+1 − 𝑆𝑛 || = ||𝑈𝑛+1 || ≤  𝜆||𝑈𝑛 || ≤  𝜆
2||𝑈𝑛−1|| ≤  . . .  ≤ 𝜆𝑛+1||𝑈0|| ≤ 𝜆

𝑛+1𝜂0     (19) 

For any 𝑛, 𝑚 ∈ 𝑁, 𝑛 ≥ 𝑚, we have  

       ||𝑆𝑛 −  𝑆𝑚|| = ||(𝑆𝑛 − 𝑆𝑛−1) + (𝑆𝑛−1 − 𝑆𝑛−2)+ . . .  +(𝑆𝑚+1 − 𝑆𝑚)|| 
                           ≤ ||(𝑆𝑛 − 𝑆𝑛−1)|| + ||(𝑆𝑛−1 − 𝑆𝑛−2)||+ . . .  +||(𝑆𝑚+1 − 𝑆𝑚)|| 
                           ≤ 𝜆𝑛||𝑈0||  + 𝜆

𝑛−1||𝑈0|| +. . . + 𝜆
𝑚+1||𝑈0||  

                           ≤ (𝜆𝑛−𝑚−1 + 𝜆𝑛−𝑚−2+ . . . +1)||𝑈0||   

                           ≤ (
1−𝜆𝑛−𝑚

1−𝜆
) 𝜆𝑚+1||𝑈0|| ,                                                                          (20) 

and because 0 < 𝜆 < 1, we obtain  

                        𝑙𝑖𝑚𝑛,𝑚→∞ ||𝑆𝑛 −  𝑆𝑚|| = 0                                                                                

(21) 

Therefore, {Sn}
∞
n=0

 is a Cauchy sequence in the Banach space (𝐶[𝑙], ||. ||). Then the series 

solution ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘∞

𝑘=0  , defined in Eq. (x1) converges and completes the proof.  

 

If the series solution ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘∞

𝑘=0  convergence then it is an exact solution of time 

fractional NLKGE in two dimensions given in Eq. (1).   

Theorem 2. Suppose that the series solution ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘∞

𝑘=0  converges to the solution 

𝑢(𝑥, 𝑦, 𝑡).  
If the truncated series ∑ 𝑈𝑘(𝑥, 𝑦)𝑡

𝑘𝑚
𝑘=0  is used as an approximation to the solution 𝑢(𝑥, 𝑦, 𝑡), 

then  

the maximum absolute truncated error is computed as  

                                    ||𝑢(𝑥, 𝑦, 𝑡)  − ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘𝑚

𝑘=0 || ≤ (
1

1−𝜆
) 𝜆𝑚+1||𝑈0|| ,                  (22) 

Proof.  

According to Theorem (1), by following the inequality Eq. (20), for 𝑛 ≥ 𝑚, we have 

                           ||𝑆𝑛 −  𝑆𝑚|| ≤ (
1−𝜆𝑛−𝑚

1−𝜆
) 𝜆𝑚+1||𝑈0|| ,                                                    (23) 

Also, since 0 < 𝜆 < 1, we get 1 − 𝜆𝑛−𝑚 < 1, therefore, the inequality (23) can be changed 

to   

                  ||𝑆𝑛 −  𝑆𝑚|| ≤ (
1 

1−𝜆
) 𝜆𝑚+1||𝑈0||                                                                      (24) 

It is evident when 𝑛 → ∞, 𝑆𝑛 →  𝑢(𝑥, 𝑦, 𝑡). Thus, Eq. (22) is obtained. This completes the 

proof. 

 

Model examples and Results 

To demonstrate the performance and efficiency of the proposed method two model 

examples are illustrated. 
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Example 1. Consider the following time fractional NLKGE   

  
𝜕2𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡2𝛼
−

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑥2
−

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑦2
+ 𝑢2(𝑥, 𝑦, 𝑡) = −𝑥𝑦 𝑐𝑜𝑠(𝑡) +  𝑥2𝑦2𝑐𝑜𝑠2(𝑡), 𝑡 > 0,   (25)      

with initial conditions, 

       𝑢(𝑥, 𝑦, 0) = 𝑥𝑦 and  𝑢𝑡(𝑥, 𝑦, 0) = 0,                                                                          (26)  

where  0 < 𝛼 ≤ 1 is the order of the fractional derivative in the sense of Caputo.       

     

Applying properties of FRDTM to Eq. (25), we obtain the following recurrence relation 

  𝑈𝑘+2(𝑥, 𝑦) =
𝛤(𝑘𝛼+1)

𝛤((𝑘+2)𝛼+1)
[
𝜕2𝑈𝑘(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈𝑘(𝑥,𝑦)

𝜕𝑦2
−𝑁𝑘(𝑥, 𝑦) + 𝐹𝑘(𝑥, 𝑦)].                        (27)     

where 𝑁𝑘(𝑥, 𝑦) is the fractional reduced differential transform of 𝑢2(𝑥, 𝑦, 𝑡) and 𝐹𝑘(𝑥, 𝑦) is 

the fractional reduced differential transform of the function   𝑓(𝑥, 𝑦, 𝑡) = −𝑥𝑦 cos (𝑡) +
𝑥2𝑦2cos2(𝑡) .  
By similar scheme from (26), we obtain  

        𝑈0(𝑥, 𝑦) = 𝑥𝑦 and  𝑈1(𝑥, 𝑦) = 0.                                                       (28)        

Let 

        𝑔(𝑥, 𝑦, 𝑡) =– 𝑥𝑦 cos (𝑡)                                                                                           (29)        

and 

        ℎ(𝑥, 𝑦, 𝑡) = 𝑔2(𝑥, 𝑦, 𝑡) = 𝑥2𝑦2cos2(𝑡).                                                        (30)      

Applying properties of FRDTM on Eqs. (29) and (30), we get  

       𝐺𝑘(𝑥, 𝑦) = −𝑥𝑦
1

𝑘!
cos (𝑘

𝜋

2
), 𝑘 = 0, 1, 2, 3,   .  .  .                                                    (31)    

 and 

        𝐻𝑘(𝑥, 𝑦) = ∑ 𝐺𝑖(𝑥, 𝑦)𝐺𝑘−𝑖(𝑥, 𝑦)
𝑘
𝑖=0 ,  𝑘 = 0, 1, 2, 3,   .  .  .                                     (32)     

respectively. 

Thus, 

        𝐹𝑘(𝑥, 𝑦) = 𝐺𝑘(𝑥, 𝑦) + 𝐻𝑘(𝑥, 𝑦).                                                   (33)   

We then compute the set of values of {𝑢𝑘(𝑥, 𝑦)}𝑘=0
∞   . 

When 𝑘 = 0, from Eqs. (15), (31) and (32), we obtain 

         

𝑁0(𝑥, 𝑦) = 𝑈0
2(𝑥, 𝑦) = 𝑥2𝑦2,                                                     

𝐺0(𝑥, 𝑦) = −𝑥𝑦  and                                                                    

𝐻0(𝑥, 𝑦) = ∑ 𝐺𝑖(𝑥, 𝑦)
0
𝑖=0 𝐺𝑘−𝑖(𝑥, 𝑦) = 𝐺0

2(𝑥, 𝑦) = 𝑥2𝑦2    

                               (34)    

respectively.                                                                       

So, equation (33) when 𝑘 = 0 yields 

        𝐹0(𝑥, 𝑦) = 𝐺0(𝑥, 𝑦) + 𝐻0(𝑥, 𝑦) = −𝑥𝑦 + 𝑥2𝑦2.                                    (35)    

Hence, from Eq. (27) when  𝑘 = 0, we obtain 

      
𝑈2(𝑥, 𝑦) =

1

𝛤(2𝛼+1)
[
𝜕2𝑈0(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈0(𝑥,𝑦)

𝜕𝑦2
 − 𝑁0(𝑥, 𝑦) + 𝐹0(𝑥, 𝑦)] 

                       = −
𝑥𝑦

𝛤(2𝛼+1)
                                                                      

                       (36)       

Accordingly,  
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𝑁1(𝑥, 𝑦) = 2𝑈1(𝑥, 𝑦)𝑈0(𝑥, 𝑦) =  0 ,       

𝐺1(𝑥, 𝑦) = 0,                                                 

𝐻1(𝑥, 𝑦) = ∑ 𝐺𝑖(𝑥, 𝑦)
1
𝑖=0 𝐺𝑘−𝑖(𝑥, 𝑦) = 0

                                                     (37)         

We have, 𝐹1(𝑥, 𝑦) = 𝐺1(𝑥, 𝑦) + 𝐻1(𝑥, 𝑦) = 0  and hence, when 𝑘 = 1, Eq. (27) yields 

           
𝑈3(𝑥, 𝑦)  =

𝛤(𝛼+1)

𝛤(3𝛼+1)
[
𝜕2𝑈1(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈1(𝑥,𝑦)

𝜕𝑦2
−𝑁1(𝑥, 𝑦) + 𝐹1(𝑥, 𝑦)]  

=  0                                                                          
 ,         (38)       

Using similar procedure we obtain the following results 

         

𝑈4(𝑥, 𝑦) =
𝛤(2𝛼+1)

𝛤(4𝛼+1)
(𝑥2𝑦2 (

2

Γ(2α+1)
− 1) +

𝑥𝑦

2
) ,                                                            

𝑈5(𝑥, 𝑦) = 0 ,                                                                                                                         

𝑈6(𝑥, 𝑦) =
𝛤(4𝛼+1)

𝛤(6𝛼+1)

[
 
 
 𝛤(2𝛼+1)
𝛤(4𝛼+1)

(2(𝑥2 + 𝑦2) (
2

𝛤(2𝛼+1)
− 1))                                         

− (
𝛤(2𝛼+1)

𝛤(4𝛼+1)
(2𝑥3𝑦3) (

2

𝛤(2𝛼+1)
− 1) + 𝑥2𝑦2) +

𝑥2𝑦2

3
−

𝑥𝑦

4! ]
 
 
     (39)       

and so on.    

The fractional reduced differential inverse transform of  {𝑈𝑘}𝑘=0
∞  gives the following series 

solution:    

      𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘𝛼∞

𝑘=0  

                     = 𝑈0(𝑥, 𝑦) + 𝑈1(𝑥, 𝑦)𝑡
𝛼 + 𝑈2(𝑥, 𝑦)𝑡

2𝛼 + 𝑈3(𝑥, 𝑦)𝑡
3𝛼 + 𝑈4(𝑥, 𝑦)𝑡

4𝛼 +⋯                             

𝑢(𝑥, 𝑦, 𝑡) =

[
 
 
 
 
 
 𝑥𝑦 −

𝑥𝑦

𝛤(2𝛼+1)
𝑡2𝛼 +

𝛤(2𝛼+1)

𝛤(4𝛼+1)
(𝑥2𝑦2 (

2

Γ(2α+1)
− 1) +

𝑥𝑦

2
) 𝑡4𝛼                                         

                                                                     

+
𝛤(4𝛼+1)

𝛤(6𝛼+1)

[
 
 
 𝛤(2𝛼+1)
𝛤(4𝛼+1)

(2(𝑥2 + 𝑦2) (
2

𝛤(2𝛼+1)
− 1))                                         

− (
𝛤(2𝛼+1)

𝛤(4𝛼+1)
(2𝑥3𝑦3) (

2

𝛤(2𝛼+1)
− 1) + 𝑥2𝑦2) +

𝑥2𝑦2

3
−

𝑥𝑦

4! ]
 
 
 
𝑡6𝛼 + ⋯

]
 
 
 
 
 
 

 ,    (40) 

   In particular, if in Equation (40)  α = 1, we obtain 

             𝑢(𝑥, 𝑦, 𝑡) = 𝑥𝑦 (1 −
1

2!
𝑡2 +

1

4!
𝑡4 −

1

6!
𝑡6 +⋯) .                         (41)   

which converges efficiently to the exact solution 𝑢(𝑥, 𝑦, 𝑡) = 𝑥𝑦 cos(𝑡) ,  (Belayeh et al., 

2020). 

Numerical results corresponding to Example 1 are depicted in table 1 and figure 1. 
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Table 1. Approximate solution of Example 1 for different values of fractional order 𝛼 at  𝑥 = 𝑦 = 1, and 

               comparison with the exact solution. 

𝑡 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1 Exact 
Absolute Error 

|𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝛼=1| 
0.1 0.856759092 0.944652453 0.982533952 0.995004165 0.995004165 2.48E-13 

0.2 0.785269046 0.878448085 0.947688257 0.980066578 0.980066578 6.35E-11 

0.3 0.746078516 0.812139523 0.901550971 0.955336488 0.955336489 1.63E-09 

0.4 0.730951748 0.749195265 0.847103358 0.921060978 0.921060994 1.62E-08 

0.5 0.735767941 0.691541894 0.786522413 0.877582465 0.877582562 9.66E-08 

0.6 0.757971505 0.640381058 0.721578900 0.825335200 0.825335615 4.15E-07 

0.7 0.795789515 0.596477428 0.653770474 0.764840765 0.764842187 1.42E-06 

0.8 0.847903105 0.560293526 0.584374095 0.696702578 0.696706709 4.13E-06 

0.9 0.913283179 0.532063951 0.514466126 0.621599388 0.621609968 1.06E-05 

1 0.991098338 0.511840836 0.444927334 0.540277778 0.540302306 2.45E-05 
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(c) (d) 
Figure 1.  3 D view of the solution behaviour of Example 1 at  t = 0.1 when  (a)  α = 0.1,  (b) α = 0.4,   

               (c) 𝛼 = 0.7, and  (d) 𝛼 = 1. 
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Example 2. Consider the following time fractional NLKGE   

   
𝜕2𝛼𝑢(𝑥,𝑦,𝑡)

𝜕𝑡2𝛼
−

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑥2
−

𝜕2𝑢(𝑥,𝑦,𝑡)

𝜕𝑦2
+ 𝑢3(𝑥, 𝑦, 𝑡) = cos(𝑥) cos(𝑦) sin(𝑡) + cos3(𝑥) cos3(𝑦), 

      𝑡 > 0,   0 < 𝛼 ≤ 1                                                                

(42)     

with initial conditions, 

         𝑢(𝑥, 𝑦, 0) = 0   and  𝑢𝑡(𝑥, 𝑦, 0) = cos(𝑥) cos(𝑦).                        (43)     

By applying FRDTM on Eq.  (42), the following recursive equation is obtained:  

    𝑈𝑘+2(𝑥, 𝑦) =
Γ(k𝛼+1)

Γ((k+2)𝛼+1)
[
𝜕2𝑈𝑘(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈𝑘(𝑥,𝑦)

𝜕𝑦2
− 𝑁𝑘(𝑥, 𝑦) + 𝐹𝑘(𝑥, 𝑦)]        (44)   

where 𝑁𝑘(𝑥, 𝑦) is the transformed form of 𝑢3 (𝑥, 𝑦, 𝑡) and 𝐹𝑘(𝑥, 𝑦) is the transformed form 

of the function 𝑓 (𝑥, 𝑦, 𝑡) = cos(𝑥) cos(𝑦) sin( 𝑡) + cos3(𝑥) cos3(𝑦) sin3( 𝑡) .  
The fractional reduced differential transform of Eq. (43) is 

             𝑈0(𝑥, 𝑦) = 0   and  𝑈1(𝑥, 𝑦) = 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦).                        (45)         

Let 𝑔(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) 𝑠𝑖𝑛( 𝑡) 

                       =
1

4
[𝑠𝑖𝑛(𝑡 + 𝑥 − 𝑦) + 𝑠𝑖𝑛(𝑡 − 𝑥 + 𝑦) + 𝑠𝑖𝑛(𝑡 + 𝑥 + 𝑦) + 𝑠𝑖𝑛(𝑡 − 𝑥 − 𝑦)]  

(46)   

and 

         ℎ(𝑥, 𝑦, 𝑡) = 𝑔3(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠3(𝑥) 𝑐𝑜𝑠3(𝑦) 𝑠𝑖𝑛3(𝑡).                         (47)    

Then the fractional reduced differential transform of the Eqs. (46) and (47) are  

        𝐺𝑘(𝑥, 𝑦) =
1

4
[
1

𝑘!
𝑠𝑖𝑛 (𝑘

𝜋

2
+ 𝑥 − 𝑦) +

1

𝑘!
𝑠𝑖𝑛 (𝑘

𝜋

2
− 𝑥 + 𝑦) +

1

𝑘!
𝑠𝑖𝑛 (𝑘

𝜋

2
+ 𝑥 + 𝑦) +

1

𝑘!
𝑠𝑖𝑛 (𝑘

𝜋

2
− 𝑥 − 𝑦)]                                                                                     (48)  

and 

       𝐻𝑘(𝑥, 𝑦) =  ∑ ∑ 𝐺𝑖(𝑥, 𝑦)
𝑗
𝑖=0

𝑘
𝑗=0 𝐺𝑗−𝑖(𝑥, 𝑦)𝐺𝑘−𝑗(𝑥, 𝑦)                  (49)   

respectively. Therefore, 

       𝐹𝑘 (𝑥, 𝑦) = 𝐺𝑘  (𝑥, 𝑦) + 𝐻𝑘  (𝑥, 𝑦) as defined in Eq. (33).                                   

Next we compute the set of values of {𝑢𝑘(𝑥, 𝑦)}𝑘=0
∞ . 

From Eqs. (15), (48)  and (49) when  𝑘 = 0,  we obtain 

𝑁0(𝑥, 𝑦) = ∑ (∑ 𝑈𝑖
𝑗
𝑖=0 𝑈𝑗−𝑖𝑈𝑘−𝑗) = 𝑈0

3(𝑥, 𝑦) = 00
𝑗=0                                                        

 𝐺0(𝑥, 𝑦) =
1

4
⌈𝑠𝑖𝑛(𝑥 − 𝑦) + 𝑠𝑖𝑛(−𝑥 + 𝑦) + 𝑠𝑖𝑛(𝑥 + 𝑦) + 𝑠𝑖𝑛(−𝑥 − 𝑦)⌉ = 0, 𝑎𝑛𝑑

𝐻0(𝑥, 𝑦) = ∑ ∑ 𝐺𝑖(𝑥, 𝑦)
0
𝑖=0

0
𝑗=0 𝐺𝑗−𝑖(𝑥, 𝑦)𝐺𝑘−𝑗(𝑥, 𝑦) = 𝐺0

3(𝑥, 𝑦) = 0                           

       (50)  

respectively. 

Thus, 𝐹0(𝑥, 𝑦) = 𝐺0(𝑥, 𝑦) + 𝐻0(𝑥, 𝑦) = 0, and therefore, Eq. (44) when 𝑘 = 0 becomes  

         𝑈2(𝑥, 𝑦) =
1

𝛤(2𝛼+1)
[
𝜕2𝑈0(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈0(𝑥,𝑦)

𝜕𝑦2
− 𝑁0(𝑥, 𝑦) + 𝐹0(𝑥, 𝑦)] = 0                    (51)  

When 𝑘 = 1, we have 
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𝑁1(𝑥, 𝑦) = 3𝑈0
2(𝑥, 𝑦)𝑈1(𝑥, 𝑦) = 0                                                                                                         

𝐺1(𝑥, 𝑦) =
1

8
[𝑠𝑖𝑛 (

𝜋

2
+ 𝑥 − 𝑦) + 𝑠𝑖𝑛 (

𝜋

2
− (𝑥 − 𝑦)) + 𝑠𝑖𝑛 (

𝜋

2
+ 𝑥 + 𝑦) + 𝑠𝑖𝑛 (

𝜋

2
− (𝑥 + 𝑦))]

= 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑦,                                                                                                           

𝐻1(𝑥, 𝑦) = ∑ ∑ 𝐺𝑖(𝑥, 𝑦)
𝑗
𝑖=0

1
𝑗=0 𝐺𝑗−𝑖(𝑥, 𝑦)𝐺𝑘−𝑗(𝑥, 𝑦) = 3𝐺0

2(𝑥, 𝑦)𝐺1(𝑥, 𝑦) = 0                      
 

,   

(52)  

As a result, 𝐹1(𝑥, 𝑦) = 𝐺1(𝑥, 𝑦) + 𝐻1(𝑥, 𝑦) = 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦). So, Eq. (44) implies 

    
𝑈3(𝑥, 𝑦) =

𝛤(𝛼+1)

𝛤(3𝛼+1)
[
𝜕2𝑈1(𝑥,𝑦)

𝜕𝑥2
+

𝜕2𝑈1(𝑥,𝑦)

𝜕𝑦2
− 𝑁1(𝑥, 𝑦) + 𝐹1(𝑥, 𝑦)]

= −
𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦)𝛤(1+𝛼)

𝛤(1+3𝛼)
                                

              (53)  

In a similar manner, we obtain 

   

𝑈4(𝑥, 𝑦) = 0 ,                                                      

𝑈5(𝑥, 𝑦) =
𝑐𝑜𝑠(𝑥)𝑐𝑜𝑠(𝑦)(12 𝛤(1+𝛼)−𝛤(1+3𝛼))

6𝛤(1+5𝛼)
      

 𝑈6(𝑥, 𝑦) = 0                                                        

                                         (54)  

and so on. 

The differential inverse transform of  {𝑈𝑘}𝑘=0
∞  will give the following series solution: 

        𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑈𝑘(𝑥, 𝑦)𝑡
𝑘𝛼∞

𝑘=0  

𝑢(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠 𝑥 𝑐𝑜𝑠 𝑦 𝑡𝛼 −
𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦)𝛤(1+𝛼)

𝛤(1+3𝛼)
 𝑡3𝛼 +

𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦)(12 𝛤(1+𝛼)−𝛤(1+3𝛼))

6𝛤(1+5𝛼)
𝑡5𝛼− . ..   

(55) 

In particular, if 𝛼 = 1 , in Eq. (55) becomes  

𝑢(𝑥, 𝑦, 𝑡) = 𝑐𝑜𝑠(𝑥) 𝑐𝑜𝑠(𝑦) (𝑡 −
1

3!
𝑡3 + 

1

5!
𝑡5 − 

1

7!
𝑡7 +⋯).                   (56 )  

The exact solution of Example 2 is 𝑢(𝑥, 𝑦, 𝑡) = cos(𝑥) cos(𝑦) sin(𝑡)  as in (Chang and Kuo,  

2014). 

Numerical results corresponding to the two dimensional NLKGE given in Example 2 are 

depicted in table 2 and figure 2. 
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Table 2. Approximate solution of Example 2 for different values of fractional order 𝛼 at  𝑥 = 𝑦 = 1, and 

                comparison with the exact solution. 

𝑡 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1 Exact 
Absolute Error 

|𝑢𝐸𝑥𝑎𝑐𝑡 − 𝑢𝛼=1| 

0.1 0.103707403 0.070936099 0.045905820 0.029144028 0.029144028 5.79E-12 

0.2 0.128562353 0.103145512 0.078666153 0.057996859 0.057996859 7.40E-10 

0.3 0.145818607 0.125922839 0.106485408 0.086270216 0.086270204 1.27E-08 

0.4 0.161213440 0.143258743 0.130566657 0.113681660 0.113681566 9.47E-08 

0.5 0.176965847 0.157087985 0.151426402 0.139957510 0.139957059 4.51E-07 

0.6 0.194221367 0.168672013 0.169384673 0.164835761 0.164834147 1.61E-06 

0.7 0.213667235 0.178970147 0.184699751 0.188069005 0.188064267 4.74E-06 

0.8 0.235756382 0.188780924 0.197619331 0.209427351 0.209415311 1.20E-05 

0.9 0.260807313 0.198807392 0.208403716 0.228701342 0.228673947 2.74E-05 

1 0.28905491 0.209691335 0.217337613 0.245704873 0.245647748 5.71E-05 
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(c) (d) 

Figure 2.  3 D view of the solution behaviour of Example 2 at  t = 0.1 when  (a)  α = 0.1,  (b) α = 0.4,   

               (c) 𝛼 = 0.7, and  (d) 𝛼 = 1. 
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Discussion  

Tables 1 and 2 exhibit the solutions behaviour of Examples 1 and 2, respectively for 

different values of fractional order  𝛼 and 𝑡, and comparisons of the approximated solutions 

by the proposed method with the corresponding exact solutions. As it can be seen in tables 1 

and 2 the proposed method is in good agreement with the exact solutions under suitable 

initial conditions when  0 < 𝑡 <  1. Further, when 𝛼 approaches to 1, the corresponding 

approximate solutions are closer and closer to the exact solutions. Thus, the proposed 

method yields good approximate solutions for small values of 𝑡  and for 𝛼  close to 1, 

whatever the values of x and y are within the domain of interest. 

Figures 1 and 2 demonstrate the physical behaviour of the solution graphs of Examples 1 

and 2 for different values of fractional order 𝛼, and also these figures depicts that when 𝛼 

goes to 1 the approximated solution graphs resemble the graph of the corresponding exact 

solution of the classical two dimensional NLKGE, (Belayeh et al. 2020). Further, solution 

depends on the time-fractional derivative. Accuracy and efficiency can be enhanced by 

increasing the number of iterations. 

Conclusion  

In this paper, FRDTM is implemented for solving time fractional two-dimensional NLKGE. 

The scheme gives a series solution which converges rapidly to exact or approximate 

solutions with easily calculable terms. Applicability of the method is investigated by 

considering two model examples examples; only small amounts of computations gave rapid 

convergence to the exact solutions, and only a few iterations are enough to yield good 

approximate solutions. Effects of the fractional order 𝛼 and 𝑡 on the approximate solutions 

are shown using tables 1 and 2, and figures 1 and 2. The results obtained reveal that FRDTM 

is a reliable and powerful method for solving different types of higher orders nonlinear time 

fractional partial differential equations. 
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