Ethiopian Journal of Environmental Studies and Management EJESM Vol. 5 no.4 (Suppl.1) 2012

GROUNDWATER HYDROCHEMISTRY EVALUATION IN RURAL BOTSWANA: A CONTRIBUTION TO INTEGRATED WATER RESOURCES MANAGEMENT BATISANI, N. http://dx.doi.org/10.4314/ejesm.v5i4.S12

Received 19th July 2012; accepted 9th October 2012

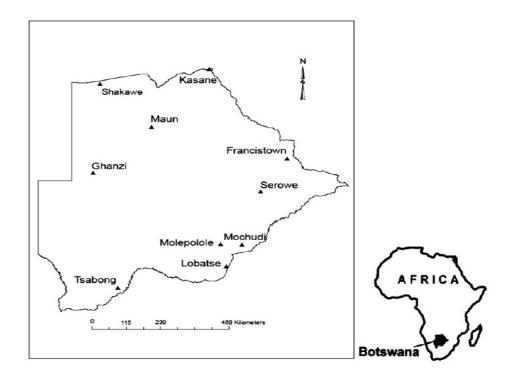
Abstract

Groundwater is one of the major sources of exploitation in arid and semi -arid regions. To protect this scarce resource information on its quality status over time is important. This paper examines the quality of groundwater from domestic water supply boreholes across rural Botswana. Ionic concentrations of K^+ , Na^+ , Ca^{2+} , Mg^{2+} , F, Cl, SO_4^{2-} , HCO_3^- , Fe^{3+} , Mn^- , and N. Parameters such as pH, total dissolved solids (TDS), and electrical conductance (EC) were correlated and their levels compared to international standards. Levels of various physico-chemical parameters were also analyzed for temporal trends for in the various districts across the country and those with significant trends were then contoured to determine areas at risk of groundwater contamination. Groundwater in rural Botswana is generally suitable for human consumption despite high levels of cations. Nevertheless, levels of Na^+ , Ca^{2+} , EC and TDS are showing increasing trends in some parts of the country highlighting the need for periodic monitoring of groundwater quality to isolate and possibly advise on discontinuation of polluted boreholes.

Key words: Groundwater, Rural, Physico-chemical, Water Resources, Botswana

Introduction

Extreme climate conditions in the form of higher maximum temperatures and frequent droughts are expected in the twenty-first century due to climate change. In particular, Africa and Asia are expected to become more vulnerable to droughts (Sukhija, 2008). This situation is expected to affect arid regions most as humanity's sustenance hinges on groundwater in these places (Sukhija, 2008). Khodapanah et al. (2009) noted that groundwater is the only reliable water resource for human consumption in semi-arid regions. While (JMP, 2008, MacDonald et al., 2009) observed that one of the key uncertainties surrounding the impacts of a changing climate in Africa is its effect on the sustainability of rural water supplies. Furthermore, the rapid depletion of groundwater supplies as a consequence of continued population growth and pollution threatens the quality of many aquifers in these regions (Khodapanah et al., 2009).Once the groundwater is contaminated, its quality cannot be restored by stopping the pollutants from the sources. It therefore becomes imperative to regularly monitor the quality of groundwater and to device ways and means to protect it (Lateef, 2011).


Department of Agricultural Engineering and Land Planning, University of Botswana, Private Bag 0027 Gaborone, Botswana nnyaladzi.batisani@gmail.com In many areas, particularly arid and semiarid zones such as Botswana, groundwater quality limits the supply of potable fresh water. To utilize and protect valuable water resources effectively and predict the change in groundwater environments, it is necessary to understand the hydrochemical characteristics of the groundwater and its evolution under natural water circulation processes (Lawrence *et al.*, 2000; Edmunds *et al.*, 2002, 2006; Guendouz *et al.*, 2003; Wen *et al.*, 2005; Ma *et al.*, 2005; Ma and Edmunds 2006; Jianhua *et al.*, 2009).

Thus, knowing the quality of groundwater is a crucial component of integrated water resources management. As such improved knowledge can contribute to effective management and utilization of this vital resource. In this regard, monitoring the quality of groundwater is as important as assessing its quantity (Khodapanah et al., 2009).Botswana is part of the drought prone region of Southern Africa, therefore, conservation and careful management of water resources is a matter of necessity and great importance. Hence the focus on water resources management in the country and in particular, an integrated approach that links both ground and surface sources has become critical over the past decade (Ganesan, 2001).

Consequently, the goal of this paper is to add to overall knowledge on groundwater status and subsequently water resources management in Botswana. It reaches this goal through three analyses. The first analysis evaluates various water quality parameters through basic statistics in an attempt to compare their levels with acceptable international standards. The second analysis determines trend in levels of various parameters over time to identifying areas at risk of water pollution. Thirdly, significant trends of physico-chemicalparameter levels were displayed spatially explicitly.

Materials and Methods Study Area

Botswana is a land-locked country straddling the tropic of Capricorn in the center of the southern African plateau. The mean altitude above sea level is approximately 1000 m, with total land area of 582,000 km² and population of 2 million. The country shares borders with Zimbabwe, South Africa, Namibia, and Zambia (Figure 1). Much of the country is flat, with gentle undulating, occasionally rocky, outcrops. About two thirds of the land comprises the kgalagadi desert, which supports scrubs and grasses, despite almost lacks surface water sources.

Figure 1 Map of Study Area

Botswana is situated close to the subtropical high pressure belt of the southern hemisphere. As a result, the country is largely arid or semiarid. Mean annual rainfall ranges from 650 mm in the extreme northeast to less than 250 mm in the extreme southwest. Almost all the rainfall occurs during the summer months, from October to April, while May to September is normally dry. Most of the rainfall occurs in localized showers and thunderstorms, and its incidence is highly variable both in time and in space. Average daily maximum and minimum temperatures range from 22° C in July to 33° C in January (max.) and 5° C in July to 19° C in January (min.). Evaporation rates are high, ranging from 1.8 to 2.2 m annually for surface water. Clear skies and low relative humidity lead to maximum insolation during the day and rapid energy loss at night, resulting in relatively hot days and cool nights and a large diurnal of temperature range. Drought is a recurring event in the country resulting in poor crop production and reduction in livestock population (Khupe, 1996).

Groundwater Resources in Botswana

Groundwater is the main source of portable water supply in Botswana. Much of the country (about 66 percent) depends entirely on groundwater (Table 1). Although groundwater recharge is very limited, thus making the resource finite and non-renewable, it is an indispensable water resource in the country. With the envisaged increase in water demand in the country, (Figure 2), its importance is set to increase. Besides pollution, over abstraction is likely to be a threat in to groundwater sustainability in the future (Table 2).

		Cumulative	
Wellfield	Developed available resource (m ³ /d)	Resources developed (m ³ /d)	Sustainable Resource (Mm ³ /yr)
Dukwi	5700	5700	0.039
Palla Road	7500	13200	1.46
Ghanzi	1850	15050	0.68
Kanye	3950	19000	1.44
Letlhakane	1500	20500	0.06
Gaotlhobogwe	7500	28000	5.84
Palapye	4000	32000	1.64
Ramotswa	5000	37000	1.83
Serowe	6200	43200	1.28
Tsabong	2000	45200	0.73
Kang-Phuduhudu	7860	53060	3.27
Boteti	8950	62010	1.96
Maitengwe	9400	71410	3.43
Matsheng	9600	81010	3.52
Pitsanyane	1000	82010	0.37
Maun	8000	90010	10.07
Masama*	20480	110490	-
Botlhapatlou*	14000	124490	-
Bobonong*	3800	128290	-
Mabule Dolomite Cluster*	3000	131290	-

(Department of Water Affairs, 2008)

NB: m^3/d refers to cubic metres per day, Mm^3/yr refers to million cubic metres per year *expected yield per day

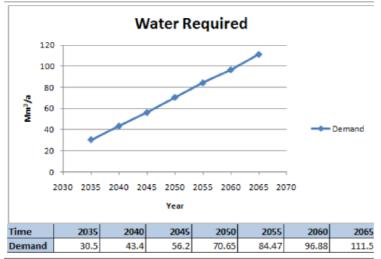


Figure 2. Botswana water demand projection per annum (GoB, 2010).

Groundwater Hydrochemistry Evaluation in Rural...... Batisani EJESM Vol. 5 no.4 (Suppl.1) 2012

Wellfield	Available Developed resource	Sustainable Resource (m ³ /d	Current Abstraction (m ³ /d)	Annual Abstraction (Mm ³ /y)
Dukwi	5700	600	6600	2.44
Mahalapye	7500	4000	4000	1.48
Ghanzi	1850	1850	1850	0.69
Kanye	3950	3950	6900	2.56
Letlhakane	1500	950	1500	0.56
Palapye	4000	2700	3200	1.19
Ramotswa	5000	5000	4000	1.48
Serowe	6200	3500	4500	1.67
Tsabong	2000	300	1600	0.59

Table 2. Sustainable Groundwater Resources in Botswana (2008)	Table 2.	Sustainable	Groundwater	Resources i	n Botswana	(2008)
---	----------	-------------	-------------	-------------	------------	--------

(Department of Water Affairs, 2008)

Data

Ionic concentrations of K^+ , Na^+ , Ca^{2+} , Mg^{2+} , F^- , Cl^- , $SO4^{2-}$, $HCO3^-$, Fe^{3+} , Mn^- , and NO_3^- ; along with pH, total dissolved solids (TDS), and electrical conductance (EC) of groundwater (boreholes) for domestic use across the country for the period of 1985-2006 at district level were obtained from the Department of Water Affairs, Botswana Government.

Analysis

descriptive statistics such as Basic correlation matrix and range were calculated to evaluate water quality standard. While level trends of various parameters over time were determined through Mann-Kendall test (MK) (Mann, 1945, Kendall, 1975; Turkes et al., 2002). In MK, the standardized statistical test (Z) is used, with positive Z values indicating increasing trends and negative Z values indicates decreasing trends. When testing either increasing or decreasing monotonic trends at a p significance level, the null hypothesis is rejected for absolute values of Z greater than $Z_{1-p/2}$, obtained from the standard normal cumulative distribution tables. In this paper, standard significance levels of p = 0.05and 0.10 were applied. Parameters showing significant trends were then contoured using the spline interpolation technique in ArcGIS 9.2 to determine areas at risk of ground water contamination.

Results and Discussion

Correlation matrix between the different chemical parameters was computed in order to deduce geochemical processes determining the quality of groundwater (Table 1). Statistics of groundwater show poor correlation ions. Nevertheless a few such as EC with TDS, EC with Ca^{+2} and Mg^{+2} , Mg^{+2} with Cl^- , Ca^{+2} with Mg^{+2} , Ca^{+2} with $So4^{2-}$, and Na^- with HCO3⁻ show moderate to high correlation. High correlation and also level indicate chemical weathering and leaching of secondary salts contribution followed by multiple source inputs like industrial and agricultural effluents, which exhibit poor correlation in groundwater (Udayalaxmi et al., 2010). Other anthropogenic sources such as sewage effluent (McCarthy et al., 1994) also play a major role in controlling shallow groundwater chemistry.

A high positive correlation is observed between TDS and EC because conductivity increases as the concentration of all dissolved constituents/ions increases. Likewise, a strong correlation is also observed between Mg^{2+} and Ca^{+2} indicating most of the ions are involved in various physiochemical reactions, such as oxidation-reduction and ion exchange in the groundwater aquifer system (Udayalaxmi *et al.*, 2010). A marginal negative correlation is seen between the pH and all other parameters, except potassium (Table 3).

	Na⁺	K⁺	Ca ²⁺	Mg ²⁺	CI	SO42-	HCO3 ⁻	NO ³	рН	TDS	Fe ³⁺	F	Mn	EC
Na⁺	1													
K⁺	0.19	1												
Ca ²⁺	0.73*		1											
Mg ²⁺	-0.05		0.84	1										
Cl	0.13	0.17	0.45	0.83	1									
SO42-	0.83		0.79	0.13	0.53	1								
HCO3 ⁻	0.84		0.01	0.13	0.01	0.21	1							
Ν								1						
pН	-0.19	0.43	-0.24	-0.27	-0.04	-0.22	-0.53		1					
TDS	0.55	0.20	0.43	0.51	0.93	0.61	0.14	-0.21	-0.19	1				
Fe ³⁺			0.36	-0.40							1			
F										-0.18		1		
Mn⁻			0.12	-0.02					0.54				1	
EC	0.68	0.08	0.86	0.77	0.64	0.49	0.13		-0.37	0.87				1

Ethiopian Journal of Environmental Studies and Management EJESM Vol. 5 no.4 (Suppl.1) 2012

Groundwater Chemistry

Among major cations, Na⁺ was generally dominant with concentration ranging from 38.4 to 450 mgl⁻¹. Calcium ion was second highest with maximum concentration of 98 mgl⁻¹. Potassium and magnesium ions were of secondary importance, with maximums of 29 and 58 mgl⁻¹ respectively. While maximum concentrations of chloride, sulfate and bicarbonate ions were 532, 220, and 287 mgl⁻¹ respectively. The electrical conductivity (EC) varies from 300 to 18200µmhos cm⁻¹ indicating that there are fresh water (<500 µmhos cm⁻¹), marginal water (500-1500 µmhos cm⁻¹) and brackish water types (>1500µmhos cm⁻¹) in domestic groundwater boreholes in the country. Total dissolved solids ranges from 245 to 583 mgl⁻¹. The pH value is high (8.5 to 10.3) indicating the alkaline nature of rural groundwater in the country (Table 4).

Table 4. Physico-chemical	characteristics of groundwater in rural Botswana

Parameter	Range (mgl ⁻¹)	WHO limit (2004)
Na ⁺	38.4-450	200
K^+	2-29	30
Ca ²⁺	26-98	200
Mg ²⁺	14-58	150
Cl	110-532	250
SO4 ²⁻	34-220	400
HCO3 ⁻	72-287	-
NO ⁻ 3	0.32-9.2	10
pН	8.5-10.3	6.5-8.5
TDS	245-583	1000
F	0.10-1.20	1.50
EC	0.30-18.20 (mS/m)	-

Groundwater Hydrochemistry Evaluation in Rural...... Batisani EJESM Vol. 5 no.4 (Suppl.1) 2012

Spatio-Temporal Physico-Chemical Trends

Of the various chemical parameters evaluated, only Ca²⁺, EC,pH, and TDS showed significant temporal trends at different boreholes across the country, which were then interpolated to get country coverage. Calcium levels depict increasing trend in the extreme north of the country while decreasing in the southern part. Electrical conductivity shows increasing trend in the dry south west and also in the north east but decreasing in the north and southern parts. Trends in pH across the country display increase in the southwest, and decrease in the north and northeast.TDS show a decreasing trend for most parts of the country except the northeast (Table 5, Figure 3).

District	EC	p value	pН	p value	TDS	p value	Ca	p value
	trend							
Central (central)	1.69	0.009***	-1.41	0.16	0.48	0.63	-0.59	0.55
Chobe (north)	-1.38	0.01***	0.90	0.37	-1.72	0.09***	0.81	0.02**
Kgatleng (southern)	-3.67	0.000*	2.20	0.003 **	-3.19	0.000*	-1.04	0.03**
Kgalagadi (south western)	0.68	0.005***	-1.58	0.11	0.73	0.46	-0.28	0.04*
South-East	-0.82	0.004**	-2.85	0.000*	-0.10	0.34	-0.03	0.006***

 Table 5. Groundwaterphysico-chemical temporal trends across the country

*Significant at p<0.001,**significant at p<0.005, *** significant at p< 0.1

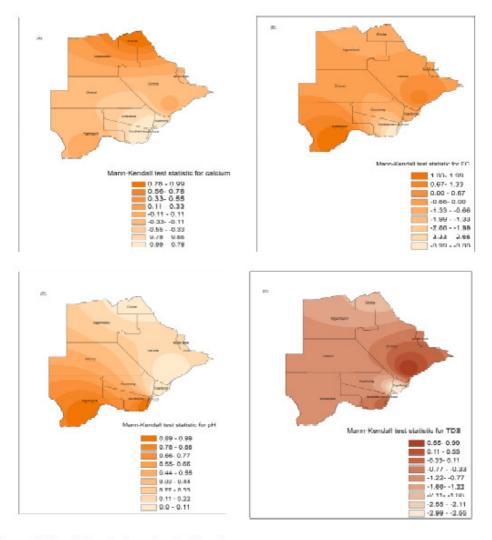


Figure 3. Trends in physico-chemical levels

Water Quality Assessment

The goal of hydrogeochemical assessment is to determine groundwater suitability to different uses based on different chemical indices. An assessment of rural borehole water suitability for domestic consumption was evaluated by comparing the aggregated hydrochemical parameters of the water with prescribed specification of World Health Organization (WHO, 2004) (Table 4). Although the desirable pH range for drinking water is 6.5 to 9.2, the range for rural groundwater in Botswana is 8.5 to 10.3, indicating the alkaline nature of the water and values outside WHO standards. Furthermore, the upper range of EC is also more than the maximum permissible limit of 1500 µmhos cm ⁻¹.In the same vain, the upper range of sodium is also outside the prescribed limit of 200 mgl⁻

Conclusion

This paper evaluated the quality status of groundwater in Botswana; a vital component of integrated water resources management. In general, groundwater in the country is suitable for human consumption except for some high levels of cations. The Physico-chemical levels are constant across the country except for Ca, EC, pH, and TDS, which depict either increasing or decreasing trends in different parts of the country. Therefore, periodic monitoring of groundwater quality to isolate and possibly advise on discontinuation of boreholes with high levels of physicochemicals need to be carried out. Such groundwater quality monitoring could, provide invaluable information for water management strategies.

References

Adriogué, J. and Wesson, D. (1994). Blackwell's basics of medicine: Potassium.

Blackwell Scientific Publications, Boston, MA Botswana Water Statistics. Central Statistics Office, Gaborone, Botswana

Buckley, N., Dawson, A. and Reith, D. (1995). Controlled release drugs in overdose: clinical considerations. *Drug Saf.* 12, 73-84.

Department of Water Affairs (2010). Feasibility Design Study on the Utilization of the Water Resources of the Chobe/Zambezi River. WRC. Republic of Botswana Ministry of Minerals, Energy and Water Resources Ganesan, C. (2001). Water resources development and management *A challenging task for Botswana* Water International. 26: 80-85

Gosselin, R., Smith, R. and Hodge, H. (1984). Clinical toxicology of commercial products.5th edition.Williams & Wilkins, Baltimore, MD.

JMP (Joint Monitoring Programme) (2008). Global water supply and sanitation report. Joint Monitoring Programme WHO/UNICEF. World Health Organization, Geneva, Switzerland

Kendall, M. (1975). Rank correlation methods. Charles Griffin, London.

Khodapanah, L., Sulaiman, W. and Khodapanah, N. (2009). Groundwater quality assessment for different purposes in Eshtehard District, Tehran, Iran. *European Journal of Scientific Research*, 36, 543-553

Khupe, J. (1996). Water supply, sewerage and waste management for Gaborone, Botswana. *Ambio.*, 25, 134-137

Lateef, K. (2011). Evaluation of groundwater quality for drinking purpose for Tikrit and Samarra cities using Water quality index. *European Journal of Scientific Research*, 58, 472-481

Lewis, J. (1997). Hawley's condensed chemical dictionary. 13th edition. Van NostrandReinhold, New York, NY.

MacDonald, A., Calow, R., MacDonald, D., Darling, W. and Dochartaigh, B. (2009). What impact will climate change have on rural groundwater supplies in Africa? *Hydrological Sciences Journal*, 54, 690-703

Mann, B. (1945). Non-parametric tests against trend. Econometrika. 13: 245-259.

McCarthy, T., Ellery, W. and Gieske, A. (1994). Possible ground water pollution by sewage effluent at camps in the Okavango delta: suggestions for its prevention. *Botswana Notes and Records*, 26, 129-138

Nkansah, M. and Ephraim, J. (2009). Physicochemical studies of water from selected boreholes in the Bosomtwi-Atwima-Kwanwoma district of Ghana. *The Pacific Journal of Science and Technology*, 10, 643-648

Sukhiha, B. (2008). Adaptation to climate change: strategies for sustaining groundwater resources during droughts. *Geological Society, London, Special Publications,* 288, 169-181

Turkeş, M., Sűmer, M. and Demir, I. (2002). Re-evaluation of trend and changes in mean,maximum, and minimum temperatures of Turkey for the period 1929-1999. *International Journal of Climatology*, 22, 947–977. World Health Organisation (WHO), (2003). Guidelines for drinking-water quality, 23(11)1: 45-196.

World Health Organisation (WHO), (2004). Guidelines for drinking-water quality, 3(11)1: 45-196.