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Abstract Background: MBL2 gene polymorphisms affect serum concentration of mannose-bind-

ing lectin and are associated with infectious conditions. Acute respiratory tract infections are among

the most prevalent infections in childhood with the highest incidence among children younger than

2 years. This study aimed at correlation between the occurrence of acute respiratory tract infections

and the prevalence of MBL2 gene codon (54) and promoter variants among the Egyptian infants in

the study.

Subjects and methods: This case-control study included 25 neonates (0.21 ± 0.19 months),

25 infants (9.65 ± 8.5 months) with acute respiratory tract infection and normal control group.

CBC, CRP and chest X-ray were done. DNA was extracted from peripheral blood. Genotypes

of MBL gene codon 54-exon 1(G54D) were identified by PCR-RFLP analysis. MBL2 promoter

genotyping was performed by allele-specific polymorphisms at �550 (H/L) and �221(X/Y).

Results: Incidence of LX promoter haplotype among the patients was (58%) (p< 0.05). Homo-

zygosity for codon (54) allele A (high expression activity) among patients was (72%) (p> 0.05).

Heterozygote codon 54 A/B genotype appeared more in patients (18%) (p < 0.05). Mutant

genotype (too low expression activity) was more in patients but the difference was insignificant.

Collectively the mutant allele (glycine to aspartic acid, allele B) appeared in 28% of patients com-

pared to 20% in control (p> 0.05). YA/XA heterozygote promoter genotype was more prevalent

among patients group (44%) (p< 0.05). Low-expression promoters (XA/B) and (B/B) appeared

more in the patients (20%) compared to (12%) among control group (p> 0.05). Among ICU
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neonates, LX promoter was the most prevalent among all grades of respiratory distress (39.13%)

followed by LY allele (34.78%). In the infants group, LY allele was (52.1%) with equal distribution

of LY and HY (23.91% each).

Conclusion: Although there is a significantly increased incidence of LX promoter coding for low

serum MBL concentrations among the ARTI patients; the YA/XA heterozygote promoter geno-

type was more prevalent over the homozygote mutant genotype. Also, the heterozygote codon 54

A/B genotype was more prevalent in the group of patients compared to the control. This may be

an example of heterosis (heterozygote advantage) which may support the concept of balanced poly-

morphism.

� 2014 Production and hosting by Elsevier B.V. on behalf of Ain Shams University.
1. Introduction

Many risk factors have been identified to contribute to the
occurrence of respiratory tract infections; however, it is also
possible that innate characteristics of the individuals such as

genetic factors could play a role, and various attempts have
been made to analyze the human genetic composition in rela-
tion to both infection susceptibility and development of clini-
cal manifestations [1]. Mannose-Binding Lectin (MBL) is a

serum protein [2] and believed to be particularly important
in the early stages of primary infections in infants during the
decay of maternal antibodies [3] The MBL is known to be

an important component of innate immunity toward microbes
by activating complement and augmenting opsonization and
phagocytosis [4]. MBL is also known to play a role in enhanc-

ing attachment, ingestion and killing of opsonized pathogens
by phagocytes [5] and activation of complement system
through the MBL-associates serine protease [6]. There is evi-

dence that the risk of developing bacteremia might be geneti-
cally modulated [7].

The susceptibility to Wuchereria bancrofti infection also ap-
pears to be significantly affected by the MBL expression geno-

type of the host [8]. Trans-racial studies have looked at the
association between the status of MBL protein production,
the MBL genotype and the clinical phenotype [9]. A single

gene, MBL2 located at chromosome 10, codes for human
MBL and exerts its action through binding to high mannose
and N-acetyl glucosamine oligosaccharides present on various

micro-organisms [10].
The present study aimed at characterization of the struc-

tural alleles of MBL2 gene located on chromosome 10 and try-
ing to make a correlation between genotyping of MBL2-codon

54 and promoter alleles with the occurrence of acute respira-
tory tract infections in Egyptian infants in addition; trying to
find out the most prevalent MBL2 variant promoter alleles

among the Egyptian samples in study.
2. Subjects and methods

This case-control study included 25 neonates (mean age
0.21 ± 0.19 months) and 25 infants (mean age
9.65 ± 8.5 months) (males to females ratio 3:1) with acute

respiratory tract infection. Inclusion criteria included: full term
infants, infants with pneumonia, sepsis and recurrent acute
respiratory tract infections. Normal control group of healthy

infants of matching age and sex was also included (n = 25).
The work is carried out in accordance with ‘‘The Code of

Ethics of the World Medical Association (Declaration of
Helsinki) for experiments in Human.’’ Also the work was car-
ried out after taking approval of the parents and approval of

the ethics committee of Ain Shams University.
All infants were subjected to full history taking, thorough

clinical examination in addition to complete blood picture

(CBC), C-reactive protein (CRP) and chest X-ray.
Genomic DNA extraction: DNA was extracted from

peripheral blood leucocytes by spin column method of Gene-

JET� Genomic DNA purification kit #K0722, Fermentas Life
Sciences, Finland .The eluted DNA was stored at �20 �C till
application.

Genotypes of MBL gene codon 54-exon 1(G54D) point
mutations were identified by PCR using the following primers
listed: Forward 50-GTAGGACAGAGGGCATGCTC-30.
Reverse 50-CAGGCAGTTTCCTCTGGAAGG-30 [11,12].

Template DNA (500 ng) was amplified in the presence of
25 ll Green Taq master mix containing 4 mM MgCl2,
0.4 mM for each of the dNTP (dATP, dCTP, dGTP and

dTTP) and 2.5 U/ll Ampli Taq DNA polymerase, in addition
to 1 lM for each of the forward and reverse primers and nucle-
ase free water to 50 ll total volume. Analysis of the amplified

products was done on agarose gel electrophoresis 1.5% to de-
tect the corresponding amplified fragments. The PCR products
were subsequently digested with the restriction enzyme BanI

(BshNI) FastDigest� (Fermentas Life Sciences, Cat#FD1004)
which permits identification of the mutation through its unique
cleavage site. The genotypes were determined by electrophore-
sis on 2% agarose gels stained with ethidium bromide. A frag-

ment with the wild type (A) allele is cleaved into two bands
(245 bp and 84 bp), while that with the mutant allele (B) shows
one band (329 bp). Three patterns were determined 54 W/W

(wild/wild), 54 W/m (wild/mutant), and 54 m/m (mutant/
mutant).

Genotyping of MBL promoter variants was performed by

allele specific PCR Polymorphisms in the promoter region of
the gene, at �550 (H/L variants) and �221 (X/Y variants).
Each primer ends with an allele specific base. LY, LX and
HY promoter regions were amplified using the appropriate

pairs of primers in parallel reactions by PCR. The genotypes
were determined by electrophoresis on 2% agarose gels stained
with ethidium bromide. The primer sequences were as follows:

(1) HY promoter: Forward 50 GCTTACCCAGGCAAGCCT
GTG-30. Reverse 5’-GGAAGACTATAAACA TGC TTT
CC-3’. (2) LY promoter: Forward 50-GCTTACCCAGGCAA

GCCTGTC-30. Reverse 5’-GGAAGACTATAA ACATG CT
TTCC-3’. (3) LX promoter: Forward 5’ GCT TAC CCAGGC
AAGCCTGTC-3’. Reverse 50-GGAAGACTATAAACATGC

TTTCG-30. The PCR protocol was performed on thermal
cycler HVD�, Austria as follows: Pre-PCR 94 �C/2 min.
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Thermocycling for 30 cycles each consists of 94 �C/15 s –
58 �C/30 s – 72 �C/30 s, then final extension at 72 �C/3 min.

MBL alleles were analyzed as previously described by Mad-

sen et al. [11] and Garred et al. [13] to detect the structural var-
iant allele (B), and the normal allele (designated as A). All
structural variant alleles including the variant allele (B) having

a considerable effect on MBL concentrations can be grouped
into one category (called allele O) (as sometimes referred to la-
ter in the discussion) [13]. The following MBL genotypes are to

be expected: the A/A group, i.e. two normal structural alleles
with high-expression promoter activity in position �221
(YA/YA), one high expression promoter and one low-expres-
sion promoter (YA/XA), or two low expression promoters

(XA/XA); the A/B group, i.e. one variant structural allele
(i.e. defective B allele) and one normal structural allele (A al-
lele) combined with a high expression promoter (YA/B) or a

low-expression promoter (XA/B); and the B/B group (=O/
O), i.e. two defective structural alleles. The X allele is not car-
ried on a haplotype containing structural B allele. The A/B

individuals carrying the low-expression X promoter allele on
the functional A chromosome have very low MBL levels in
their serum, therefore, these patients were added to those

homozygous for two defective structural alleles (B/B) into
one group. The HY, LY and LX haplotypes are associated
with high, medium and low serum MBL concentrations,
respectively.

2.1. Statistical methodology

Data were expressed as means ± SD. Values for the measured

parameters among studied and control groups were compared
using ANOVA (with the application of Welch statistics). Anal-
ysis of data was done using SPSS VERSION 14.5. Unpaired t-
Table 1 Comparison between ICU neonates and infants group as

findings.

Parameter ICU neonates

(A) Respiratory distress

1. Grade 0 1 (4%)

2- Grade II 1 (4%)

3. Grade III 14 (56%)

4. Grade IV 9 (36%)

(B) Laboratory findings (means ± SD)

1. Hb (gm/dl) 13.98 ± 2.53 (range: 9

2. WBCs (·103/Ul) 11.53 ± 6.25 (range: 1

3. PNL (%) 52.01 ± 13.86 (range:

4. Lymphocytes (%) 39.72 ± 13.68 (range:

5. CRP

(positive) 11 (44%)

(negative) 14 (56%)

(C) X-ray findings

1. Exaggerated bronchovascular markings 2 (8%)

2. Pneumonic patches 6 (24%)

3. White lung 2 (8%)

4. Collapsed lung 1 (4%)

5. Normal findings 15 (60%)

a Highly significant difference.
b Significant difference.
c Insignificant difference.
test was used to compare two independent groups as regards a
quantitative variable. Chi-square (v2) test was used to compare
qualitative variables. Correlation (r-value) between variables

was determined using Sperman’s correlation and Karl Pear-
son’s correlation co-efficient test.

3. Results

The ICU neonates group was associated with higher grades of
respiratory distress (grades III and VI appeared in 92%) com-

pared to infants group (60%) while grade II was evident in
40% of infants group compared to only 4% in ICU neonates
(p< 0.001). The hemoglobin level and PNL were lower

among infants group while lymphocytes level was higher than
among the ICU neonates group. The difference was significant
statistically. The C-reactive protein was positive in only 17 pa-

tients (34%) of our patients’ sample (p > 0.05). All of the in-
fants group showed abnormal X-ray findings especially
exaggerated broncho-vascular markings (92%). Pneumonic
patches were more evident among ICU neonates (24%) com-

pared to (20%) of the infants group while 15 of the ICU neo-
nates showed normal X-ray findings (Table 1).

There is a significantly increased incidence of LX promoter

haplotype among the patients (58%) compared to control
group (28%) (p< 0.05; r = 0.912).The most prevalent codon
54 genotype among both patients and control was wild/wild

type with high expression activity (allele A) (72% and 76%,
respectively; p> 0.05). The heterozygote W/M genotype
appeared more in patients group (18%) (p< 0.05). On the
other hand, the mutant genotype with too low expression

activity appeared in (10%) of the patients compared to
(16%) in control group but the difference was not significant
statistically. Collectively, the mutant allele (glycine to aspartic
regards respiratory distress grading, laboratory and radiological

Infants p-Value

0

10 (40%) <0.001a (HS)

11 (44%)

4 (16%)

(means ± SD)

–17.9) 9.89 ± 2.52 (range: 2.6–17) <0.001a

.31–25.1) 8.82 ± 2.9 (range: 2.8–20) >0.05c

66–77) 42.54 ± 15.48 (range 0–70) <0.05b

16–67.8) 49.03 ± 12.7 (range: 22–69.9) <0.05b

6 (24%) >0.05c

19 (76%)

23 (92%) <0.001a (HS)

5 (20%)

0

0

0



Table 2 MBL2 gene promoters haplotyping and codon 54 polymorphisms among patients compared to control group.

Group MBL2 promoters MBL2 codon 54-RFLP

LX HY LY W/W M/M W/M

Patients (n= 50) 29 (58%) 24 (48%) 41 (82%) 36 (72%) 5 (10%) 9 (18%)

Control (n= 25) 7 (28%) 9 (36%) 21 (84%) 19 (76%) 4 (16%) 1 (4%)

p-Value <0.05a >0.05b >0.05b >0.05b >0.05b <0.05a

W: wild type. M: mutant type.
a Significant.
b Insignificant difference.

Table 3 Genotyping of MBL2 gene promoters among patients and control group.

Genotype Patients Control (no= 25)% p-Value

ICU neonates (no= 25)% Infants (no= 25)% Total (no = 50)%

YA/YA 4 (16%) 9 (36%) 13 (26%) 17 (68%) >0.05b

YA/XA 12 (48%) 10 (40%) 22 (44%) 2 (8%) <0.05a

YA/B 1 (4%) 3 (12%) 4 (8%) 2 (8%) >0.05b

XA/XA 1 (4%) 0 (0%) 1 (2%) 1 (4%) >0.05b

B/B (or) XA/B 7 (28%) 3 (12%) 10 (20%) 3 (12%) >0.05b

a Significant difference.
b Insignificant difference.

Table 4 Relationship between MBL2 gene promoters and grade of respiratory distress.

Respiratory distress MBL promoters p-Value

LX HY LY Total alleles

(1) ICU neonates

Grade II 1 (2.17%) 1 (2.17%) 1 (2.17%) 3 (6.52%) >0.05a

Grade III 9 (19.56%) 7 (15.21%) 9 (19.56%) 25 (54.34%)

Grade IV 8 (17.39%) 4 (8.69%) 6 (13.04%) 18 (39.13%)

Total alleles 18 (39.13%) 12 (20.08%) 16 (34.78%) 46 (100%)

(2) Infants

Grade II 4 (8.69%) 3 (6.52%) 10 (21.73%) 17 (36.95%) >0.05a

Grade III 5 (10.86%) 5 (10.86%) 10 (21.73%) 20 (43.47%)

Grade IV 2 (4.34%) 3 (6.52%) 4 (8.69%) 9 (19.56%)

Total alleles 11 (23.91%) 11 (23.91%) 24 (52.17%) 46 (100%)

a Insignificant difference.
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acid, allele B) (=allele O) appeared in (28%) of patients com-
pared to (20%) in control (p > 0.05; r= 0.962) (Table 2).

The YA/XA heterozygote genotype with one high expres-

sion promoter and one low-expression promoter was more pre-
valent among patients group (44%) (p < 0.05) while the YA/
YA homozygote genotype (high-expression promoter activity)

was the most prevalent among control group (68%)
(p > 0.05). The low-expression promoter (XA/B) and the B/
B group (i.e., two defective structural alleles) appeared more
in the patients (20%) compared to (12%) control group, how-

ever, the difference was not statistically significant (Table 3). In
the ICU neonates, the LX promoter was the most prevalent al-
lele among all grades of respiratory distress (39.13%;

r= 0.894) followed by LY allele (34.78%; p> 0.05). In the in-
fants group, the LY allele was detected in a percentage of
(52.1%; r= �0.142) with equal distribution of LX and HY

(23.91% each; p > 0.05; r = 0.866) (Table 4). Respiratory dis-
tress grade III was the most prevalent among the ICU neo-
nates (56%) followed by grade IV (36%) while in the infants
group , grades II and III respiratory distress were more evident
(44% and 40%, respectively). The wild type genotype for co-

don 54 was the highest among the ICU neonates and the in-
fants group (64% and 76%, respectively; p> 0.05) followed
by the heterozygote genotype (W/M) (24%) among ICU neo-

nates (r = �0.5). In the infants group the mutant genotype
was equally detected in a percentage of (12%). However, no
statistically significant correlation was detected with genotypes
of codon 54 (r= 0.052) (Table 5 and Fig. 1).
4. Discussion

Mannose-binding lectin (MBL) is one of the genetically

determined factors that have been suggested to be involved
in systemic inflammation and sepsis [14]. MBL concentration
is highly dependent upon several promoter region



Table 5 Relationship between MBL2 codon 54 genotypes and grade of respiratory distress.

Respiratory distress RFLP genotypes of MBL2 codon 54 p-Value

Wild (W) Mutant (M) W/M Total genotypes

(1) ICU neonates

Grade II 0 0 1 (4%) 1 (4%) >0.05a

Grade III 11 (44%) 1 (4%) 2 (8%) 14 (56%)

Grade IV 5 (20%) 1 (4%) 3 (12%) 9 (36%)

Total 16 (64%) 2 (8%) 6 (24%) 25 (100%)

(2) Infants

Grade II 8 (32%) 1 (4%) 1 (4%) 10 (40%) >0.05a

Grade III 8 (32 %) 1 (4%) 2 (8%) 11 (44%)

Grade IV 3 (12%) 1 (4%) 0 4 (16%)

Total 19 (76%) 3 (12%) 3 (12%) 25 (100%)

a Insignificant difference.

1 2  3 4 M 5 6 7 8

329bp  245bp

   84bp  

Figure 1 Lane no. 1: mutant allele CD 54 (329 bp). Lane no. 2:

positive variant allele LX in the promoter of MBL2 gene. Lanes

no. 3 and 4: negative HY and LY variant alleles in the promoter of

MBL2 gene. M: molecular weight marker (50 bp). Lane no. 5:

positive for HY variant allele in the promoter ofMBL2 gene. Lane

no. 6: negative LX variant allele in the promoter of MBL2 gene.

Lane no. 7: wild type 54 allele (245 and 84 bp). Lane no. 8:

negative LY variant allele in the promoter of MBL2 gene.
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polymorphisms of the MBL2 gene alleles: Y and X which are
clinically the most important as well as polymorphisms in co-

don 54 in exon 1 [15].
The present study tried to make a correlation between the

prevalence of MBL2 allele genotypes and occurrence of acute

respiratory tract infections in Egyptian infants and to find out
the most prevalent MBL2 variant alleles among the Egyptian
samples in the study. We chose MBL2 genotypes over MBL

levels in serum, because serum MBL level can be influenced
by infection, drugs, and hormones and that MBL serum levels
strongly correlate with the MBL2 polymorphism genotypes
[16]. Yokota et al. [17] stated that genetic analyses are impor-

tant since neonates with wild-type MBL2 genotypes but low
MBL levels at birth were able to obtain normal levels within
time, in contrast to neonates with variant MBL2 genotypes.

The apparent serum concentration and complement-activating
activity of MBL markedly depend onMBL-2 gene point muta-
tions in codons 52, 54, and 57 of exon 1 [18]. The present study

concerned the G54D allele to be studied in Egyptian infant
patients. This allele is the most prevalent among Caucasian

populations [9]. The functionality of the MBL2 exon 1 and
promoter polymorphisms termed Y/X, has been well docu-
mented in Caucasian patients. Low serum levels of MBL due

to polymorphisms in the MBL gene are found in 10% to
15% of white populations. [19,11,20]. In the present study,
the mean age ranged from 0.21 ± 0.19 months in ICU neo-

nates to 9.65 ± 8.5 months in infants. MBL is believed to be
particularly important during the ‘window of vulnerability’
experienced by infants during the decay of maternal antibodies

[9]. The presence of MBL2 polymorphisms is associated with
the increased risk of respiratory infections during early child-
hood, especially during the first 6–18 months of life when the
adaptive immune system is immature [21,22]. The MBL2 gene

mutations occur about twice as frequently in pediatric patients
with recurrent infections of the respiratory system [18]. Both
heterozygosity and homozygosity for MBL mutations are

important risk factors for acute respiratory infections [23,24]
and seem to predispose to respiratory infections, bronchiolitis
and more severe post bronchiolitis wheezing in full term in-

fants before the age of 6 months [24,25]. There is a proved
association between variant MBL2 genotypes causing MBL
deficiency at birth both with an increased risk of developing
pneumonia and culture-proven sepsis during the first month

of life [26].
In the present study, only the full term neonates and infants

were selected. In neonates, low MBL levels are not only asso-

ciated with variant MBL2 genotype, but also with low gesta-
tional age [26–28]. The combination of prematurity and low
MBL levels increases the risk of sepsis to 70% [29]. However,

in a study on Egyptian preterm neonates [30], there was no sta-
tistical significant difference between preterm and full term
groups regarding MBL levels.

In the present study, C-reactive protein was positive in 34%
of the studied population (44% in ICU neonates and 24% in
infants group). Abnormal chest X-ray findings were evident
in the entire infants group (100%) while it was evident in only

40% of the ICU neonates group (p < 0.001). In agreement
with our results, Castellano et al. [31] stated that no correlation
was observed between the levels of MBL and CRP in either of

the acute or recovery pneumonia phases. MBL does not act
uniformly in all patients as an acute-phase reactant. There
was an absence of parallelism between both of MBL protein

and C-reactive protein. Interestingly, the patients with the
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wild-type MBL genotype had a greater risk of developing bac-
teremia. Like an acute-phase protein, MBL serum levels may
rise under stress [32–35].

In this study, MBL2 promoter genotyping revealed a statis-
tically significant increase in LX promoter among patients fol-
lowed by LY and HY promoters compared to control group.

The respiratory distress grade III was the most prevalent
(54.4%) among all MBL promoter variants in ICU neonates
followed by grade IV (39.1%). In the infants group, the LY

promoter variant was more evident in patients with grade II
and III equally, while HY and LX alleles were more evident
in the patients with grade III respiratory distress. Promoter
polymorphisms influence transcription activity and synthesis

of MBL [35]. The HY, LY and LX haplotypes are associated
with high, medium and low serum MBL concentrations,
respectively. Koch et al. [22] suggested that approximately

70% of LX homozygotes might be considered MBL insuffi-
cient. MBL levels were reported in persons of the same geno-
type [11,20]. In contrast, the Y variant is associated with high

MBL plasma levels. The presence of an increased LX promoter
among patients of the present study is in agreement with Hel-
lemann et al. [21] who stated that in particular, a base substi-

tution at codon-221 (G to C; promoter allele X) is associated
with a lower MBL serum concentration. MBL deficiency aris-
ing from mutations and promoter polymorphisms in the
MBL2 has been associated with increased risk, severity, and

frequency of infections [13,36]. The strongest and most signif-
icant inverse correlations between serum MBL and respiratory
disease were found in patients with grade III [18]. Each of the

three variants reduces the amount of functional MBL subunits
in heterozygous individuals 5- to 10-fold [37].

In the present study, MBL codon 54 wild type genotype

(AA) was detected in 72% of the patients. The heterozygote
genotype was more in the group of patients (18%) compared
to 4% in the control (p < 0.05). The mutant genotype ap-

peared equally in grades III and IV in both groups. There
was no statistically significant relationship between MBL co-
don 54 genotype and the grades of respiratory distress in both
of the ICU neonates and the infants group. This is in agree-

ment with Kronborg et al. [38] who stated that in patients
who have pneumococcal bacteremia, MBL genotypes do not
differ from those of healthy control persons. It is possible that

a putative effect of MBL is revealed only in patients with a
concomitant disturbance in the immune system that exposes
an MBL phenotype [39]. Also in agreement with our results,

Frakking et al. [40] found that of the eleven studied neonates
with a severe infection, five had variant, three had wild-type,
and three had unknown MBL2 genotypes. The homozygous
B variant of the MBL2 gene codon 54 and the down regulating

promoter LX in combination with the heterozygous B variant
were related to MBL deficiency [16]. There are positive findings
between the MBL codon 54 variants and hospital admission in

patients with chronic obstructive pulmonary disease (COPD)
[41]. The XA/O (heterozygote) and O/O homozygote geno-
type-carrying individuals are considered MBL insufficient.

Overall, MBL insufficiency (genotypes XA/O +O/O) was
associated with a significant 2-fold increased respiratory rate
in acute respiratory tract infections [22]. Summerfield et al.

[42] found that the prevalence of variant alleles of the MBL
gene in children with infections was twice that in children with-
out infections. Mombo et al. [9] found that homozygosity for
MBL2 variant alleles (O/O) causing MBL structural defects
was associated with the highest adjusted mortality rate fol-
lowed by homozygosity for the normal MBL2 allele (A/A)
encoding high MBL levels, whereas heterozygous A/O patients

had the most favorable outcome. The variant alleles in exon 1
and the X allele in the MBL XY polymorphism have been
found to be associated with serum MBL deficiency especially

in individuals homozygous for the variant alleles [32]. Individ-
uals who are homozygous for the mutant MBL alleles display
an increased susceptibility to infections while those who are

heterozygous for MBL mutations are much less susceptible
to infections than those who are homozygous for the wild-type
MBL allele[9] .This protective effect contrasts with the in-
creased susceptibility of homozygotes (for the mutant MBL al-

leles) to various infections. [43]. Helden et al. [44] stated that,
subjects homozygous for the wild-type MBL allele display an
increased risk of bacterial infections including tuberculosis. Pa-

tients homozygous for the variant codon 54B allele (54BB) had
worse severity of illness on admission, greater likelihood of
septic shock and increased odds of acute respiratory distress

syndrome (ARDS) when compared with heterozygotes and
homozygotes for the wild-type allele. On the other hand, no
association was found between ARDS and the MBL XY allele

[32].
In the present study, the appearance of heterozygosity in

18% of the studied patients group may support the concept
of a balanced polymorphism (the deleterious effects of the mu-

tant homozygotes in terms of high susceptibility to infections is
outweighed by the advantageous effects of heterozygotes)
which is probably applicable to the MBL gene, with an inter-

esting extension toward homozygotes for the wild type alleles
[9]. There are some discrepancies in the literature regarding
the relative importance of homozygosity and heterozygosity

for variant alleles. Only homozygosity for MBL mutant alleles
predisposes to recurrent infections. However, heterozygosity as
well as homozygosity increased susceptibility to meningococcal

disease [45]. Heterogeneity for exon 1 mutations was signifi-
cantly more prevalent in children (age 0–18 years) hospitalized
for various infective diseases than in patients admitted with
other diagnoses, but homozygotes presented as well [42]. Het-

erozygosity for MBL2 alleles confers a protective effect
whereas homozygosity is associated with the worst outcome
soon after discharge from ICU. This may be an example of

heterosis. Similarly, heterozygosity for the MBL2 structural
genotypes (A/O) was significantly associated with improved
survival compared with the normal A/A genotype and the

homozygous variant O/O genotype after follow-up period fol-
lowing admittance to the ICU [46]. Due to selective pressure
promoting heterozygosity, a heterozygous advantage (hetero-
sis) of the MBL2-variant alleles has been proposed [47]. Thus,

the normal A allele may confer disadvantages to the host un-
der some circumstances, such as sepsis. Although heterozygos-
ity associated with a low MBL level showed an advantage for

severity in the sepsis, there was no demonstrable influence on
outcome [21]. Summerfield et al. [42] stated that increased sus-
ceptibility to infections was found in both heterozygotic and

homozygotic children, but homozygotic children had more se-
vere infections (including recurrent URTI). In the present
study, the appearance of the wild type alleles in 72% while

the heterozygote genotypes in an incidence of 18% is compa-
rable with other studies [23,42] where children aged less than
2 years who were heterozygous or homozygous for variant al-
leles had an increased risk for acute respiratory infections.



Genotyping of mannose-binding lectin (MBL2) codon 54 and promoter alleles 37
5. Conclusion

In this study, we detected an increased incidence of LX pro-
moter which codes for low serum MBL concentrations among

the patients with acute respiratory tract infections. However,
the prevalence of both YA/XA heterozygote promoter geno-
type together with the heterozygosity for codon 54 A/B geno-

type among patients over the homozygosity for the mutant
genotypes may be an example of heterosis and heterozygote
advantage which may support the concept of a balanced
polymorphism.
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