Role of Polymerase Chain Reaction (PCR) in the detection of antibiotic-resistant Staphylococcus aureus

Rajeh Ali a,*, Kamal Al-Achkar a,1, Ayman Al-Mariri b,1, Mazen Safi b,1

a Plant Biology Department, Faculty of Science, Damascus University. Syria
b Department of Biotechnology and Molecular Biology, Atomic Energy Commission of Syria, Syria

Received 24 March 2014; accepted 15 May 2014
Available online 20 June 2014

Abstract Background: Staphylococcus aureus is mainly acquired from hospital infections and demonstrated the ability of developing resistance to many antibiotics. Polymerase Chain Reaction (PCR) was used to identify antibiotic-resistant isolates. This study was conducted in Al-Mujtahed, Al-Mouwasat and the Children Hospitals in Damascus during the period between January and June in 2013.

Objectives: This study aimed to investigate S. aureus in some clinical samples by PCR and study the bacterial resistance to some antibiotics.

Materials and methods: DNA fragments were amplified from isolated DNA. PCR was used to amplify the sequences of 16S rRNA, gap gene and nuc gene depending on six specific primers. The PCR products were detected by agarose gel electrophoresis. The antibiotics susceptibility tests were conducted on all isolates using the Kirby-Bauer disk diffusion method on Mueller Hinton agar and Luria Bertani (LB) Agar.

Results: Eighty one isolates of S. aureus were collected from blood samples, urine samples and bronchial secretions. The results showed that the DNA fragments of 16S rRNA, gap gene and nuc gene were approximately equal to 479 bp, 933 bp and 270 bp, respectively and the results of antibiotics resistance for the 10 tested antibiotics were as following: Chloramphenicol (97.5%), Tetracycline (50.6%), Cefuroxime (37.0%), Oxacillin (33.3%), Levofloxacin (37.0%), Erythromycin (35.8%), Ciprofloxacin (32.1%), Rifampicin (7.4%), Vancomycin (3.7%), Imipenem (0%).

* Corresponding author. Tel.: +963 999198105.
E-mail addresses: rajali@yahoo.com (R. Ali), ascientific1@aec.org.sy (A. Al-Mariri), ascientific@aec.org.sy (M. Safi).
1 Tel.: +963 11 2132580.

Peer review under responsibility of Ain Shams University.
1. Introduction

S. aureus is considered an important factor of infection either acquired from community or hospital infections. It may also leads to serious complications, such as pneumonia, septicemia, arthritis and osteomyelitis [1]. During the previous five decades, *S. aureus* was cloned as methicillin-resistant (MRSA) resulting in medical and public health problems worldwide [2]. It is responsible for diseases caused by exotoxin production (toxic shock and staphylococcal scalded-skin syndromes). It was isolated from direct invasion, such as urinary tract infection (UTI) and it is isolated from Intensive Care Units [3,4]. Furthermore, *S. aureus* is responsible for many suppurative lesions and demonstrated the ability of developing resistance to many antibiotics especially among the patients residing in hospitals [5]. Methicillin-resistant *S. aureus* is conferred by the staphylococcal cassette chromosome mec (SCCmec) elements, which carry the mecA gene encoding a penicillin-binding protein homologue (PBP2a), with reduced affinity for β-lactams antibiotics [6]. Some reports revealed that *S. aureus* evolves resistance to many classes of antibiotics [7]. The emergence of antibiotic-resistance *S. aureus* strains resulted in significant treatment difficulties which imposed burden on health care systems and simultaneously intensifying the need for new antibiotics [8]. Recently many PCR based molecular methods were developed as an alternative ways for accurate identification [9]. Amplification of 16S rRNA gene sequences (~479 bp) is the most commonly used method for identifying and classifying bacteria, including staphylococci [10,11]. The reports indicated that the sequences of the gap gene (~933 bp) are composed of 12 species relevant for human. The gap gene encodes a 42-kDa transferring-binding protein (Tpn) located within the cell wall of the Staphylococci [12]. The gap gene also encodes cell wall enzyme (Glyceraldehyde-3-Phosphate Dehydrogenase) and it has been commonly considered a constitutive housekeeping gene [12,13]. Identification of *S. aureus* using PCR amplification of the nuc gene (~270 bp) is considered as a gold standard method [14]. A nuc gene encodes the thermonuclease enzyme where experiments suggested a major role for nuc1 in terms of the thermonuclease activity in *S. aureus* [15]. The nuc gene in *S. aureus* encodes the thermonuclease enzyme and amplification of nuc gene is potential for rapid diagnosis of *S. aureus* infection [16].

2. Materials and methods

2.1. Bacterial identification

In this study 81 isolates of *S. aureus* were investigated from different sources, such as blood samples, urine samples, bronchial secretions. This study was conducted at Al-Mujahed, Al-Mouwasat and The Children Hospitals in Damascus. The isolates were cultured on Luria Bertani Agar (LB Agar) and Mannitol Salt Agar (MSA). Gram stain was performed for all isolates which were then examined under the microscope.

2.2. DNA isolation

S. aureus was cultured on 5 ml Luria Bertani broth and incubated at 37 °C for 24 h. Afterwards, 1.5 ml of the culture was centrifuged for 2 min at a velocity of (14,000 rpm). Pellet was re-suspended in 567 μl Tris-EDTA buffer by repeated pipetting or vortexing. 3 μl of 10% SDS and 3 μl of 20 mg/ml proteinase K were added, mixed and incubated for 1 h at 37 °C with shaking (1000 rpm) in a theromixer machine. After that, 80 μl of Cetyl trimethyl ammonium bromide (CTAB)/NaCl solution was added, mixed and incubated for 10 min at 65 °C with shaking (1000 rpm). A volume of chloroform/isoamyl-alcohol equal to (~700 μl) was added, mixed, centrifuged for 5 min at speeding (14,000 rpm) and the supernatant was transferred to fresh tube. Afterwards, a volume of phenol/chloroform/isoamyl-alcohol equal to (~600 μl) was mixed for 5 min, centrifuged and the supernatant transferred to a fresh tube, then 0.6 vol of isopropanol (~300 μl) was added and mixed gently until DNA precipitated, then centrifuged for 5 min and the supernatant was discarded. The supernatant was washed with 1 ml of 70% ethanol, mixed, centrifuged for 5 min, and the supernatant was discarded, then it was dried for 10 min at a velocity vac/45°C. Finally it was re-suspended in 100 μl TE buffer. DNA concentration was read using 2 μl in Nanodrop machine using TE buffer as blank and the concentration was made up to 100 ng/μl in each sample.

2.3. DNA amplification by PCR

The 16S rRNA was amplified with a pair of specific primers, a 25 nucleotide forward primer: 16SF1(5'-GGATTTCAAGG AATTGACG GGGGC-3') and a 29-nucleotide reverse primer: 16SR2(5'-CGGGATCC CACAGCCGGGAAACGTATT CAC-3') [10]. The primers of 16S rRNA gave PCR products equal to (~479 bp). The gap gene was amplified with a pair of specific primers, a 26-nucleotide forward primer: GF1(5'- ATG TTCTTGTAGAAATTGCTGTTA-3') and a 25-nucleotide reverse primer: GR2(5'-GACATTTCGTTATCATCACAAAGCTG-3') [12]. The primers of gap gene gave a PCR product equal to (~933 bp). Finally the nuc gene was amplified with specific primers, a 21-nucleotide forward primer: NF1(5'-GGGATTTCAAGG AATTGACG GGGGC-3') and a 25-nucleotide reverse primer: NR2(5'-AGCCAGCCTGGTCAGAAC GAATCAAGC-3') [14]. The primer of nuc gene gave a PCR product equal to (~270 bp). The following reaction mixture was added to each sample: 2 μl DNA (100 ng), 2 μl primer (100 pmol), PCR mixture (1.5 μl MgSO4, 2.5 μl 10x PCR buffer, 0.5 μl dNTPs, 0.2 μl Taq polymerase) and completed to 25 μl volume by H2O. Initial denaturation at 95 °C for 5 min was followed by 37 cycles of amplification (denaturation at
95 °C for 30 s, annealing at 55 °C for 30 s and extension at 72 °C for 60 s) and ending with final extension at 72 °C for 10 min. For the visualization of the product, 10 μl of the each PCR reaction was mixed with 5 μl 5x loading dye and loaded on 1.5% agarose gel for electrophoresis and visualization of the amplified PCR products. A 100 bp molecular weight DNA ladder was used for the validation of length of the amplified products (Vivantis Technologies).

3. Antibiotic Susceptibility Tests

Antibiotic susceptibility tests were performed on the all isolates of S. aureus by a disc diffusion method. After the broth culture, the isolates of S. aureus were incubated at 37 °C for 18–24 h, the fresh cultures were prepared to apply antibiotics susceptibility tests. 100 μl from each isolate suspension was cultured on LB agar or Mueller Hinton agar by cotton swab. Antibiotic Susceptibility tests of the isolates were studied against a group of ten different antibiotic discs. The plates were incubated at 37 °C for 18–24 h. Inhibition zone diameters were measured and studied using norms of the National Committee on Clinical Laboratory Standards (NCCLS).

4. Results

4.1. Bacterial identification

Isolates of S. aureus were cultured on LB agar and MSA mediums. Isolates showed yellow-colonies on LB agar medium (Fig 1). They fermented mannitol in MSA medium and produced yellow-colored colonies surrounded by yellow (Fig 2). S. aureus was identified as gram-positive cocci in grape like clusters under microscope.

4.2. DNA amplification by PCR

PCR amplification of the 16S rRNA, gap gene and nuc gene were done for all isolates to detect the species of S. aureus. In this study six of the specific primers were used to detect 16S rRNA region, gap gene and nuc gene. The detection and identification of the bacteria based on their 16S rRNA have many advantages. For example, each bacterial cell contains multiple copies of 16S rRNA in its ribosomes. In this study the PCR product appeared as a single band DNA with a size equal to 479 bp fragment corresponding to the 16S rRNA (Fig 3). The gap gene encoded to enzyme glyceraldehyde-3-phosphate dehydrogenase was discovered in the cell walls of S. aureus and other coagulase negative staphylococci. This study showed the PCR product of gap gene as a single band DNA with a size equal to 933 bp fragment (Fig 4). The nuc gene encoded to enzyme thermonuclease was used for detection of S. aureus causing bacteremia. Finally the PCR product appeared a single DNA band with a size equal to 270 bp fragment corresponding to the nuc gene (Fig 5). All isolates of S. aureus gave the corresponding PCR bands equivalent to the 16S rRNA region, gap gene and nuc gene.

4.3. Antibiotic susceptibility tests

Antibiotic susceptibility tests were evaluated by the disk diffusion method for all isolates of S. aureus (Fig 6). Isolates of S. aureus showed different level of resistance against some antibiotics. Inhibition zone diameters were measured depending on NCCLS (Fig 7). The results of Antibiotic susceptibility tests for 10 different antibiotics were as the following: Chloramphenicol (97.5%), Tetracycline (50.6%), Cefuroxime (37.0%), Levofloxacin (37.0), Erythromycin (35.8%), Ciprofloxacin (32.1%), Rifampicin (7.4%), Oxacillin (33.3%), Vancomycin (3.7%) and Imipenem (0%), (Table 1 & Fig 8).

5. Discussion

S. aureus causes a lot of problems in many hospitals worldwide and it shows increasing resistance against many of the antibiotics. In this study the results of bacterial culture for a total of 81 isolates on LB agar and MSA revealed S. aureus with all isolates appeared as gram-positive. Some reports indicated that several laboratories in developing countries perform screening for presumptive S. aureus based on growth on (MSA) and/or DNase test [17]. In the present study S. aureus was identified and classified by PCR using specific primers for housekeeping genes in these bacteria, such as 16S rRNA region, gap gene and nuc gene. The PCR depending on a diagnostic protocol was used to detect the different genes [18]. It has been also found that fragments of the 16S rRNA region of all isolates were equal to 479 bp (Fig 1A). The 16S rRNA
and 21 protein made up the 30S subunit [19]. The 16S rRNA was used to detect isolates of \textit{S. aureus} in patients with brain abscess and the reports indicate that the 16S rRNA fragment was equal to 479 bp [10,20]. The gap gene was used in this study to detect \textit{Staphylococcus} sp., and the PCR product for gap gene fragment in \textit{S. aureus} was equal to 933 bp (Fig 1B). The gap gene encodes to enzyme (glyceraldehyde-3-phosphate dehydrogenase) and analysis of the enzyme represented a high-throughput reproducible method that allows the identification of distinct \textit{Staphylococcus} species [21]. The nuc gene is baseline in identification and classification of \textit{S. aureus} and in the present study the nuc gene fragment was equal to 270 bp (Fig 1C). Some reports indicated that the nuc gene was encoded to enzyme thermonuclease and the length fragment of nuc gene was equal to 270 pb [22]. In our study the isolates of \textit{S. aureus} revealed increasing resistance against many antibiotics, such as Chloramphenicol while they appeared sensitive to other antibiotic like Vancomycin. 97.5% isolates of \textit{S. aureus} were Chloramphenicol-resistant, 50.6% were Tetracycline-resistant and 3.7% were Vancomycin-resistant. In other reports the percentage of Tetracycline-resistant \textit{S. aureus} isolates was equal to 47.4% or 60.4% [23,24]. Most isolates of \textit{S. aureus} were sensitive to Vancomycin and all isolates were sensitive to Rifampicin. The reports indicated that all clinical samples of \textit{S. aureus} were resistant to Vancomycin [22,24], while the 3.85% of
against many antibiotics. Isolates of S. aureus were sensitive, while they were sensitive against other antibiotics, such as Chloramphenicol, Levofloxacin and Erythromycin, but showed increasing resistance against many antibiotics. Vancomycin was still the most credible drug for treating infection as described permanently by doctors at hospitals in Damascus. Vancomycin as a credible drug for treating Staphylococcus aureus infection and tuberculosis [25,26]. Most of the reports suggested Vancomycin as a credible drug for treating S. aureus infection [27,28]. Accordingly, the results in this study proved that PCR was a specific and effective method for classifying and identifying isolates of S. aureus and that they showed increasing resistance against many antibiotics.

6. Conclusion

In present study the results showed that identifying and classifying S. aureus by PCR was a golden standard. The isolates of S. aureus showed increasing resistance against many antibiotics as Chloramphenicol, Levofloxacin and Erythromycin, while they were sensitive against other antibiotics, such as Vancomycin and Imipenem. Vancomycin was still the most effective drug against S. aureus infection as described permanently by doctors at hospitals in Damascus.

Conflict of interest

The authors declare no conflict of interest.

Table 1 Percentage of antibiotic-resistant isolates of S. aureus.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Number of isolates (%)</th>
<th>R</th>
<th>I</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloramphenicol</td>
<td>79 (97.5)</td>
<td>2 (2.5)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>41 (50.6)</td>
<td>4 (5.0)</td>
<td>36 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>30 (37.0)</td>
<td>5 (6.2)</td>
<td>46 (56.8)</td>
<td></td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>30 (37.0)</td>
<td>36 (44.4)</td>
<td>15 (19.0)</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>29 (35.8)</td>
<td>39 (48.1)</td>
<td>13 (16.1)</td>
<td></td>
</tr>
<tr>
<td>Oxacillin</td>
<td>27 (33.3)</td>
<td>0 (0)</td>
<td>54 (66.7)</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>26 (32.1)</td>
<td>0 (0)</td>
<td>55 (67.9)</td>
<td></td>
</tr>
<tr>
<td>Rifampicin</td>
<td>6 (7.4)</td>
<td>5 (6.2)</td>
<td>70 (86.4)</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>3 (3.7)</td>
<td>14 (17.3)</td>
<td>64 (79.0)</td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td>0 (0)</td>
<td>2 (2.5)</td>
<td>79 (97.5)</td>
<td></td>
</tr>
</tbody>
</table>

R, resistant; I, intermediate; S, sensitive.

References

