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Abstract Background: Studies showed that lipid metabolism disorders are significant risk factors

for myocardial infarction and coronary artery disease (CAD). Therefore, genes involved in lipid and

lipoprotein metabolism pathways such as lipoprotein lipase (LPL), are proper candidates for sus-

ceptibility to CAD.

Aim: To investigate the possible association between LPL gene variants (HindIII (rs320) and

PvuII (rs285)), acute myocardial infarction (AMI) and serum lipid levels.

Subjects and methods: The study population consisted of 211 patients with a diagnosis of prema-

ture AMI, and 203 age-matched individuals with normal coronary angiograms as controls.

Genotyping of HindIII and PvuII polymorphisms was done by the PCR-RFLP technique.
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Results: Although the H+ and P+ alleles were more observed among the patients, there were no

significant differences in genotype distributions and allele frequencies of HindIII and PvuII poly-

morphisms between patient and control subjects (P > 0.05). Triglyceride levels were found to be

significantly elevated in H+H+ and P+P+ genotypes compared to others (P < 0.05). However,

there was no association between HindIII and PvuII genotypes and HDL-C, LDL-C and choles-

terol levels.

Conclusion: Our findings indicate that LPL-HindIII and PvuII polymorphisms are not associ-

ated with acute myocardial infarction but with triglyceride levels.

� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epidemiological and clinical studies showed that lipid metabo-
lism disorders such as elevated levels of total cholesterol (TC),

triglycerides (TGs), low density lipoprotein cholesterol (LDL-
C) and low levels of high-density lipoprotein cholesterol
(HDL-C) are significant risk factors for myocardial infarction

and coronary artery disease [1,2]. Therefore, genes involved in
lipid and lipoprotein metabolism pathways including lipopro-
tein lipase (LPL), are proper candidates for susceptibility to
CAD [3].

The human LPL (EC 3.1.1.34) is a 448 amino acid
glycoprotein that is synthesized and secreted by many tissues
and then transported to the luminal surface of vascular

endothelial cells. LPL hydrolyzes triglyceride-rich lipoproteins
including chylomicrons and very-low-density lipoprotein
(VLDL) and hence plays a central role in lipid metabolism

[4,5]. Accordingly, any deficiency in LPL activity could lead
to disturbance in lipid metabolism associated with clinical
hyperlipidemia and coronary artery diseases [6].

LPL gene spans over 30 Kb on chromosome 8p22 and com-
posed of 10 exons and 9 introns [7]. The association between
several polymorphic sites of LPL gene including the T-93G
(rs1800590), D9N (rs1801177), G188E, N291S (rs268), PvuII

(rs285), HindIII (rs320), and S447X (rs328) and CAD risk
was investigated in several studies [8–10]. The HindIII poly-
morphism (rs320) is located in position 495 of LPL gene’s

intron 8th. In this single nucleotide polymorphism (SNP) the
ancestral allele (T) is substituted by (G) allele [11]. This nucleo-
tide substitution abolished a restriction site for HindIII. There

are supporting evidences which suggest that the common allele
(H+) is significantly associated with high TG and low HDL
levels compared to the H� allele [12,13]. The PvuII polymor-

phism (rs285) is the result of C into T transition in the LPL gene
intron 6th [11]. Previous studies showed that The P+ allele is
associated with high TG and low HDL-C levels [14,15].
However, the association of HindIII and PvuII variants with

CAD and serum lipid levels remained to be controversial.
We aimed here to investigate the possible association

between LPL gene variants (HindIII (rs320) and PvuII

(rs285)), acute myocardial infarction (AMI) and serum lipid
levels in an Iranian population through a case-control study.

2. Subjects and methods

2.1. Subjects

The study population consisted of 211 patients with a diagno-
sis of premature AMI and the age of 650 years who were
hospitalized at the Shaheed Rajaei Cardiovascular Center,
Tehran, Iran between September 2011 and August 2013. As
a control group, 203 age-matched individuals with normal

coronary angiograms were recruited from the same demo-
graphic area. Two cardiologists confirmed diagnosis of AMI
according to the new criteria of the American College of
Cardiology and the European Society of Cardiology definition

[16]. To obtain clinical information including MI type (STEMI
or NSTEMI) and cardiac markers (troponin and creatine
kinase-MB) we inspected the medical records. Diabetic

patients were excluded from the study. The study adhered to
the principles of the Declaration of Helsinki in 1995 (as revised
in Edinburgh 2000) and has been approved by Tehran

University of medical sciences Ethics Committee and all
subjects gave their written informed consent.

2.2. Biochemical analysis

We took blood samples after fasting for 12 h. Serum levels of
lipid parameters including TC, TG and HDL-cholesterol were
measured enzymatically. We calculated LDL-cholesterol levels

by Friedewald equation.
2.3. DNA analysis

We extracted total genomic DNA from EDTA anticoagulated
whole blood by Miller’s method [17]. Genotyping of HindIII
and PvuII polymorphisms was done by the PCR-RFLP tech-

nique. For HindIII variant, PCR amplification was performed
by following primers: 50-ACATAAGCACTGAATCGCTC
AC-30 (forward primer) and 50-CTTCAGCTAGACATTGC
TAGTGT-30 (reverse primer). The cycling condition was as fol-

lows: 94 �C for 5 min followed by 30 cycles comprising of 95 �C
for 45�s, annealing time at 62 �C for 40 s and extension at 72 �C
for 35 s with final extension time of 7 min at 70 �C. For

determination of HindIII genotypes, the PCR products
(476 bp) were digested by 10 U of HindIII restriction enzyme
at 37 �C for 16 h. The resulting fragments separated on a

SYBR Green stained 2.5% agarose gel included 476 bp frag-
ment for H�H� (GG), 476, 259 and 217 bp fragments for
H+H� (GT) and 259 and 217 bp fragments for H+H+ (TG).

Amplification of the PvuII polymorphism carried out by
the forward 50-AAACCTGAGGGAAGGGATGATA-30 and
reverse 50-TGCTGCTTTAGACTCTTGTCCA-30 primers.
The cycling condition was as follows: 94 �C for 5 min followed

by 30 cycles comprising of 95 �C for 45 s, annealing time at
62 �C for 40 s and extension at 72 �C for 40 s with final exten-
sion time of 7 min at 70 �C. The PCR product (529 bp) was

http://creativecommons.org/licenses/by-nc-nd/4.0/
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digested with 10 units of PvuII restriction enzyme and prod-
ucts separated on a SYBR Green stained 2.5% agarose gel.
For the P�P� (TT), P+P� (TC) and P+P+ (CC) genotypes,

529 bp band, 529, 374 and 155 bp bands, and 374 and
155 bp bands were observed, respectively.

2.4. Statistical analysis

Statistical analysis was carried out by Statistical Software
Package for the Social Science (SPSS 18.0, Chicago). The

quantitative parameters were expressed as mean ± SD and
compared by Student’s t-tests. Genotype distributions and
compatibility of which with Hardy–Weinberg equilibrium

expectations were checked by chi-square test. Analysis of vari-
ance (ANOVA) and Post Hoc tests were performed for the
relationship between LDL, HDL, cholesterol and TG levels
with LPL genotypes. The odds ratios (ORs) and 95% confi-

dence intervals (CIs) were calculated as a measure of the
association of HindIII (rs320) and PvuII (rs285) polymor-
phisms with acute myocardial infarction. P values less than

0.05, were considered to be significant.

3. Results

A summary of the baseline characteristics of patients and
control subjects (211 patients and 203 controls) is presented
in Table 1. MI patients showed higher total cholesterol

(P = 0.002), triglycerides (P = 0.014) and LDL-C
(P = 0.001) compared to the control group. There were no
significant differences in BMI and HDL-C level between the
Table 1 Demographic and clinical characteristics of the study

population.

Parameter Control group

(n = 203)

Case group

(n= 211)

P

Sex (male/female) 90/113 125/86 0.002**

Age (years) 44.7 ± 6.8 46.32 ± 5.2 >0.05

Body Mass Index

(kg/m2)

25.6 ± 4.23 26.5 ± 6.39 0.195

Systolic blood

pressure (mmHg)

12.81 13.32 0.055

Diastolic blood

pressure (mmHg)

7.86 8.31 0.024*

Smoking (yes/no) 58/145 80/131 0.044*

Hypertension

(yes/no)

68/135 97/114 0.010**

Hyperlipidemia

(yes/no)

73/130 103/108 0.008**

Family history of

CAD (yes/no)

41/162 58/153 0.082

LDL-C (mg/dl) 98.76 ± 22.75 106.55 ± 28.41 0.002**

HDL-C (mg/dl) 41.24 ± 9.1 39.55 ± 9.45 0.066

TG (mg/dl) 156.18 ± 57.38 173.04 ± 79.42 0.014*

TC (mg/dl) 167.17 ± 35.16 179.23 ± 40.76 0.001**

Data are expressed as mean ± standard deviation.

Abbreviations: CAD, coronary artery disease; LDL-C, low density

lipoprotein-cholesterol; HDL-C, high density lipoprotein-choles-

terol; TG, triglycerides; TC, total cholesterol.
* Statistically significant at 60.05.

** Statistically significant at 60.01.
two groups (P > 0.05). Moreover, the prevalence of hyperten-
sion, hyperlipidemia and smoking was significantly higher in
patients group than in the control group (P < 0.05). The dis-

tributions of the LPL genotypes were compatible with Hardy–
Weinberg equilibrium (P > 0.05). As shown in Table 2,
although the H+ and P+ alleles were more observed among

the patients, there were no significant differences in the geno-
type distributions and allele frequencies of HindIII and
PvuII polymorphisms between patient and control subjects

(P> 0.05). As well as, we did not find significant differences
between rs285 P�P+ + P+P+ versus P�P� and rs320 H
�H+ + H+H+ versus H�H� genotype ratios and AMI
(P> 0.5). The association between LPL genotypes and lipid

levels is summarized in Table 3. As shown in this table, sub-
jects with P+P+ genotypes have a high triglyceride level com-
pared to P�P� and P+P� (P = 0.05). For rs320, triglyceride

levels were found to be significantly elevated in H+H+ geno-
types in comparison with others (P = 0.04). These results were
confirmed by Post-hoc analysis. However, there was no signifi-

cant association between HindIII and PvuII genotypes and
HDL, LDL and cholesterol levels.

4. Discussion

LPL plays a critical role in lipid metabolism via chylomicrons
and VLDL hydrolysis [4]. Genetic polymorphisms could alter

the LPL activity and hence modulate individual’s susceptibility
to lipid metabolism disorders. It has been shown that LPL
variants are associated with clinical hyperlipidemia which con-
tributes to different pathogenic conditions including MI [18].

In the present study, we examined the association of the
LPL-HindIII and LPL-PvuII variants with MI in an Iranian
population through a case-control study. It should be noted

that although all the participants in this study were Iranians,
they belonged to different Iranian ethnic groups and therefore,
our results should be interpreted carefully.

Although the H+ and P+ alleles were more observed
among the patients, we could not find a statistically significant
difference. Moreover the genotype distribution between the
Table 2 Genotype distribution and relative allele frequencies

of HindIII (rs320) and PvuII (rs285) polymorphisms.

Genotypes Control group

(n= 203)

Case group

(n = 211)

P

HindIII (rs320)

H�H� 19 (9.36%) 14 (6.63%)

H+H� 83 (40.89%) 81 (38.39%)

H+H+ 101 (49.75%) 116 (54.98%) 0.435

Allele frequency

H� 121 (29.8%) 109 (25.83%)

H+ 285 (70.2%) 313 (74.17%) 0.202

PvuII (rs285)

P�P� 38 (18.72%) 32 (15.17%)

P�P+ 93 (45.81%) 101 (47.86%)

P+P+ 72 (35.47%) 78 (36.97%) 0.628

Allele frequency

P� 169 (41.62%) 165 (39.1%)

P+ 237 (58.37%) 257 (60.9%) 0.459



Table 3 Association of HindIII (rs320) and PvuII (rs285) polymorphisms with lipid profile.

TC (mg/dl) TG (mg/dl) LDL-C (mg/dl) HDL-C (mg/dl)

H�H� 175.28 ± 34.33 111.85 ± 25.08 94.00 ± 17.78 44.42 ± 7.54

H�H+ 198.76 ± 39.54 137.93 ± 44.74 102.35 ± 28.74 41.05 ± 9.16

H+H+ 169.00 ± 41.84 164.63 ± 57.93 85.65 ± 27.90 39.76 ± 10.06

P 0.06 0.04* 0. 15 0.51

P�P� 159.54 ± 44.70 107.75 ± 29.17 83.09 ± 32.94 40.09 ± 10.53

P�P+ 181.76 ± 46.79 144.62 ± 61.5 95.15 ± 29.05 38.79 ± 8.68

P+P+ 198.94 ± 39.13 170.13 ± 60.78 102.36 ± 27.14 43.36 ± 9.80

P 0.07 0.05* 0.22 0.22

P�P+/P+P+ 187.39 ± 44.82 153.31 ± 61.77 97.51 ± 28.41 40.29 ± 9.23

P�P� 159.54 ± 44.70 107.75 ± 29.17 83.09 ± 32.94 40.09 ± 10.53

P 0.06 0.04* 0.13 0.94

Data are expressed as mean ± standard deviation.

Abbreviations: TC, total cholesterol; TG, triglycerides; LDL-C, low density lipoprotein-cholesterol; HDL-C, high density lipoprotein-

cholesterol.
* Statistically significant at 60.05.
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two groups was not significant. The association of PvuII and
CAD/MI has been studied in a number of studies.

Researchers failed to detect significant association of PvuII
with CAD/MI in Saudi Arabian [19], Turkish [20], French
[21], Welsh [22], Japanese [23] and Tunisian [9], however,

Duman et al. showed the association with MI in Turkish pop-
ulation [10]. LPL-HindIII has been shown to be associated
with CAD/MI in Japanese [23], Toulouse [21], South Indian

[13] and Tunisian [9], however some other studies failed to
show significant association in the studied populations
[9,19,24,25].

In spite of controversies on the association of LPL variants

with CAD, a growing body of evidence revealed that LPL-
HindIII and PvuII are associated with TG levels [9,12,25–
27]. Our results showed that individuals with H+ or P+ allele

have higher TG level than H� or P�. Since both LPL-HindIII
and PvuII are intronic variants, their possible contribution to
modulating TG levels might be interpreted in the context of

haplotypes harboring them. However rs285 did not reside in
an extended haplotype, rs320 resided in 54 kb haplotype in
EUR population. rs320 is in strong linkage disequilibrium with
a number of other variants including rs330 (r2 = 0.98,
Figure 1 Position weight matrix for Ascl2 and NHLH1 transcriptio

Canonical motif for NHLH1 binding. The red rectangular in the sequ
D0 = 1). rs330 is a conserved SNP (confirmed by SiPy algo-
rithm) and located in active chromatin as resided in DNase

sensitive domain [28]. Genomic functional studies indicated
that rs285 is located in the canonical sequences which formed
motifs for Ascl2 and NHLH1 transcription factor binding sites

(Fig 1) [29]. Phenotypic consequences would be expected by
allelic substitutions in rs285 position.

Selection pressures shaped the human genome and pheno-

typic consequences would be expected from loci under positive
selection. There are studies that suggest that genes involved in
nutrient metabolism are under positive selections [30]. The
rationale for this assumption is based on the fact that nutrient

consumption habits of humans have changed through time as
humans accommodate to new environment. In this regard, the
LPL variants could be analyzed to measure the extent of the

positive selection. Taking advantage of db PSHP [31] we ana-
lyzed rs320 and rs285 in 14 different populations from 1000
genomes project to determine positive section pressure on

them. We found rs320 does not subject to positive selection
(�2 6 iHS score 6 2) but rs285 does (2 6 iHS score) in YRI
population (Fig 1). Such evidences could partially explain
the phenotypic differences among human populations. Since
n factor binding site. (a) Canonical motif for Ascl2 binding. (b)

ence logo represents rs285 position in the relevant motif.



Figure 2 Positive selection extent on rs285. The figure represents flanking variants (blue circle) of rs285 (shaded in red) on the iHS score

scale. Cut of positive selection is iHS score equal or more than 2. Y axis represents iHS score and x axis shows the chromosomal

coordinates of SNPs.
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iHS score is positive in this case, haplotypes harboring ances-
tral allele (T), are more favored and consequently alternate

allele (C) would be selected against. TT individuals have lower
level of TG and T substitutions for C looks a deleterious varia-
tion (see Fig. 2).

In conclusion, our findings indicate that LPL-HindIII and
PvuII polymorphisms are not associated with MI but with
TG levels. The association might be explained by haplotype

structures and selection pressure on the human genome.
Studies with large sample size or meta-analysis should be car-
ried out to shed light on the possible association of LPL and

MI and TG levels.
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