REVIEW

Null association of maternal MTHFR A1298C polymorphism with Down syndrome pregnancy: An updated meta-analysis

Vandana Rai*, Upendra Yadav, Pradeep Kumar

Human Molecular Genetics Laboratory, Department of Biotechnology, VBS Purvanchal University, Jaunpur 222003, India

Received 20 February 2016; accepted 10 April 2016
Available online 14 May 2016

KEYWORDS
Down syndrome; Methylene-tetrahydrofolate reductase; MTHFR; A1298C; Homocysteine; Meta-analysis; Folate

Abstract Background: Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme of folate/homocysteine pathway and is essential for DNA synthesis and methylation. MTHFR gene polymorphisms have been reported as risk factors for congenital defects and several metabolic and neurological disorders. Several studies have investigated an association between maternal MTHFR A1298C polymorphism and Down syndrome (DS) child. However, results have been inconclusive.

Aim: A meta-analysis of published case–control studies up to December, 2015 was performed to investigate this association.

Methods: Electronic databases were searched for case–control studies and odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Total twenty-one case–control studies with 2004 cases and 2523 controls were included in the present meta-analysis.

Results: Results of meta-analysis showed a significant association between maternal A1298C polymorphism and DS pregnancy with homozygote model (CC vs. AA: OR = 1.26, 95% CI = 1.01–1.58, \(p = 0.04 \)), but no such association was found in any other genetic models (C vs. A: OR = 1.07, 95% CI = 0.93–1.23, \(p = 0.32 \); CC + AC vs. AA: OR = 1.08, 95% CI = 0.96–1.23, \(p = 0.18 \); CC vs. AC + AA: OR = 1.11, 95% CI = 0.90–1.36, \(p = 0.30 \); AC vs. AA: OR = 1.06, 95% CI = 0.93–1.21, \(p = 0.34 \)).

Conclusion: Subgroup and sensitivity analysis results showed that this polymorphism is a risk factor for DS pregnancy in Asian populations but not in Caucasian population as well as in overall meta-analysis.

© 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author. Fax: +91 05452 252244, +91 05452 252344.
E-mail address: raivandana@rediffmail.com (V. Rai).

Peer review under responsibility of Ain Shams University.

http://dx.doi.org/10.1016/j.ejmhg.2016.04.003
1110-8630 © 2016 Ain Shams University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Down syndrome (DS) is the commonest chromosome abnormality in humans, characterized by trisomy 21. It is a major cause of abortion and fetal mental retardation, with an incidence of 1–2/1000 live birth [1]. Advanced maternal age is the only well-reported risk factor for maternal nondisjunction [2], while the underlying mechanism remains unexplained. Numerous studies have suggested an association between DS and maternal folate pathway gene polymorphism. In 1999, James et al. [3] were the first to propose the hypothesis that abnormal DNA methylation patterns resulting from aberrant folate metabolism may increase DNA hypomethylation in centromeric regions, increasing the risk of trisomy 21 [4]. Folate plays an important role in genetic material distribution during cell division, because of its part in the cellular methylation reactions, which, epigenetically regulate chromosome segregation [5,6]. The second polymorphism A1298C involving alanine to cytosine nucleotide substitution in MTHFR gene has also been reported to reduce enzyme activity [17]. Mutant allele (C) frequency differs greatly in various ethnic groups of the world. The prevalence of the A1298C homozygote variant (CC) ranges from 7% to 12% in the White populations of North America and Europe. Lower frequencies have been reported in Hispanics (4–5%), and Asian populations (1–4%) [20,21]. Several studies have been conducted and demonstrated MTHFR polymorphism as a risk factor for congenital defects like NTD [22], oral clefts [23], congenital heart defects [24], adult disease conditions like cardiovascular and cerebrovascular diseases [20]. The present meta-analysis was carried out to assess the association of maternal MTHFR A1298C polymorphism with Down syndrome pregnancy.

2. Method

2.1. Selection of studies

Studies were identified by a search of PubMed, Google Scholar, Elsevier, and Springer Link databases up to July, 2015. The following terms were used: ‘methylenetetrahydrofolate reductase’, ‘MTHFR’, ‘A1298C’, and ‘Down syndrome’ to identify eligible articles for meta-analysis. The distribution of the genotypes in the control group was tested for the Hardy-Weinberg equilibrium (HWE).

2.2. Inclusion and exclusion criteria

Included studies had to meet the following criteria (i) study should be a case-control association study, (ii) study should have reported the genotypes of MTHFR A1298C
Table 1 Distributions of MTHFR A1298C genotypes and allele number for cases and controls.

<table>
<thead>
<tr>
<th>Study</th>
<th>Ethnicity</th>
<th>Total number of cases</th>
<th>Total number of controls</th>
<th>Genotype</th>
<th>Allele</th>
<th>HWE (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AA</td>
<td>AC</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Case Control</td>
<td>Case Control</td>
<td>Case Control</td>
</tr>
<tr>
<td>Bosco et al. (2003)</td>
<td>Caucasian</td>
<td>63</td>
<td>72</td>
<td>44</td>
<td>21</td>
<td>97</td>
</tr>
<tr>
<td>Boduroglu et al. (2004)</td>
<td>Caucasian</td>
<td>152</td>
<td>91</td>
<td>2</td>
<td>6</td>
<td>37</td>
</tr>
<tr>
<td>Acacio et al. (2005)</td>
<td>Caucasian</td>
<td>70</td>
<td>88</td>
<td>59</td>
<td>52</td>
<td>49</td>
</tr>
<tr>
<td>da Silva et al. (2005)</td>
<td>Caucasian</td>
<td>154</td>
<td>158</td>
<td>99</td>
<td>101</td>
<td>49</td>
</tr>
<tr>
<td>Rai et al. (2006)</td>
<td>Asian</td>
<td>89</td>
<td>70</td>
<td>28</td>
<td>28</td>
<td>39</td>
</tr>
<tr>
<td>Scala et al. (2006)</td>
<td>Caucasian</td>
<td>94</td>
<td>264</td>
<td>38</td>
<td>128</td>
<td>39</td>
</tr>
<tr>
<td>Biselli et al. (2008)</td>
<td>Caucasian</td>
<td>72</td>
<td>194</td>
<td>40</td>
<td>108</td>
<td>27</td>
</tr>
<tr>
<td>Martinez-Frias et al.</td>
<td>Caucasian</td>
<td>146</td>
<td>188</td>
<td>76</td>
<td>91</td>
<td>57</td>
</tr>
<tr>
<td>Meguid et al. (2008)</td>
<td>Caucasian</td>
<td>42</td>
<td>48</td>
<td>8</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Santos-Rebooucas et al.</td>
<td>Caucasian</td>
<td>103</td>
<td>108</td>
<td>58</td>
<td>57</td>
<td>40</td>
</tr>
<tr>
<td>Brandalize et al. (2009)</td>
<td>Caucasian</td>
<td>239</td>
<td>197</td>
<td>143</td>
<td>113</td>
<td>84</td>
</tr>
<tr>
<td>Cyrill et al. (2009)</td>
<td>Asian</td>
<td>36</td>
<td>60</td>
<td>14</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>Coppede et al. (2010)</td>
<td>Caucasian</td>
<td>29</td>
<td>32</td>
<td>14</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Vranekovic et al. (2010)</td>
<td>Caucasian</td>
<td>111</td>
<td>141</td>
<td>48</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>Bozovic et al. (2011)</td>
<td>Caucasian</td>
<td>107</td>
<td>221</td>
<td>55</td>
<td>101</td>
<td>52</td>
</tr>
<tr>
<td>Sadiq et al. (2011)</td>
<td>Asian</td>
<td>53</td>
<td>29</td>
<td>24</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>Zampieri et al. (2012)</td>
<td>Caucasian</td>
<td>105</td>
<td>183</td>
<td>51</td>
<td>101</td>
<td>48</td>
</tr>
<tr>
<td>Pandey et al. (2013)</td>
<td>Asian</td>
<td>80</td>
<td>100</td>
<td>27</td>
<td>60</td>
<td>31</td>
</tr>
<tr>
<td>Izci Ay et al. (2015)</td>
<td>Caucasian</td>
<td>47</td>
<td>49</td>
<td>16</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Sukla et al. (2015)</td>
<td>Asian</td>
<td>151</td>
<td>186</td>
<td>69</td>
<td>104</td>
<td>68</td>
</tr>
</tbody>
</table>

HWE (p) p value for the Hardy–Weinberg equilibrium in control group.
NA = not applicable.
* p values < 0.05 in the exact test for the Hardy–Weinberg equilibrium.
Table 2 Summary estimates for the odds ratio (OR) of **MTHFR** A1298C in various allele/genotype contrasts, the significance level (p value) of heterogeneity test (Q test), and the I^2 metric: overall analysis, subgroup analyses.

<table>
<thead>
<tr>
<th>Genetic contrast</th>
<th>Fixed effects OR (95% CI), p</th>
<th>Random effects OR (95% CI), p</th>
<th>Heterogeneity p-value (Q test)</th>
<th>I^2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Allele contrast (C vs. A)</td>
<td>1.06 (0.97–1.17), 0.15</td>
<td>1.07 (0.93–1.23), 0.32</td>
<td>0.002</td>
<td>52</td>
</tr>
<tr>
<td>Dominant (CC + AC vs. AA)</td>
<td>1.08 (0.96–1.23), 0.18</td>
<td>1.09 (0.93–1.28), 0.26</td>
<td>0.06</td>
<td>34</td>
</tr>
<tr>
<td>Homozygote (CC vs. AA)</td>
<td>1.26 (1.01–1.58), 0.04</td>
<td>1.20 (0.85–1.71), 0.28</td>
<td>0.009</td>
<td>48.29</td>
</tr>
<tr>
<td>Co-dominant (AC vs. AA)</td>
<td>1.06 (0.93–1.21), 0.34</td>
<td>1.06 (0.92–1.23), 0.38</td>
<td>0.24</td>
<td>16.97</td>
</tr>
<tr>
<td>Recessive (AA + AC vs. CC)</td>
<td>1.11 (0.90–1.36), 0.30</td>
<td>1.07 (0.78–1.47), 0.64</td>
<td>0.008</td>
<td>48.44</td>
</tr>
<tr>
<td>Asian Allele contrast (C vs. A)</td>
<td>1.40 (1.14–1.71), 0.001</td>
<td>1.31 (0.89–1.92), 0.15</td>
<td>0.01</td>
<td>68</td>
</tr>
<tr>
<td>Dominant (CC + AC vs. AA)</td>
<td>1.56 (1.19-2.06), 0.001</td>
<td>1.49 (0.96–2.31), 0.07</td>
<td>0.07</td>
<td>53.87</td>
</tr>
<tr>
<td>Homozygote (CC vs. AA)</td>
<td>1.78 (1.15-2.76), 0.009</td>
<td>1.52 (0.64–3.61), 0.34</td>
<td>0.02</td>
<td>64.77</td>
</tr>
<tr>
<td>Co-dominant (AC vs. AA)</td>
<td>1.52 (1.13–2.04), 0.005</td>
<td>1.48 (0.94–2.32), 0.08</td>
<td>0.09</td>
<td>50</td>
</tr>
<tr>
<td>Recessive (AA + AC vs. CC)</td>
<td>1.42 (0.95–2.13), 0.08</td>
<td>1.22 (0.52-2.84), 0.63</td>
<td>0.01</td>
<td>66.87</td>
</tr>
<tr>
<td>Caucasian Allele contrast (C vs. A)</td>
<td>0.99 (0.90–1.10), 0.96</td>
<td>1.00 (0.88–1.13), 0.97</td>
<td>0.12</td>
<td>30</td>
</tr>
<tr>
<td>Dominant (CC + AC vs. AA)</td>
<td>0.99 (0.86–1.13), 0.96</td>
<td>0.98 (0.85–1.13), 0.96</td>
<td>0.63</td>
<td>0</td>
</tr>
<tr>
<td>Homozygote (CC vs. AA)</td>
<td>1.11 (0.85–1.45), 0.42</td>
<td>1.08 (0.75–1.54), 0.67</td>
<td>0.08</td>
<td>35.37</td>
</tr>
<tr>
<td>Co-dominant (AC vs. AA)</td>
<td>0.97 (0.84–1.12), 0.74</td>
<td>0.97 (0.84–1.12), 0.72</td>
<td>0.89</td>
<td>0</td>
</tr>
<tr>
<td>Recessive (AA + AC vs. CC)</td>
<td>1.02 (0.80–1.29), 0.86</td>
<td>0.99 (0.71–1.38), 0.99</td>
<td>0.68</td>
<td>37.93</td>
</tr>
</tbody>
</table>

Figure 1 Forest plots (random effects) show insignificant association between **MTHFR** A1298C polymorphism (C vs. A) and maternal risk of Down syndrome. Results of individual and summary OR estimates, 95% CI, and weights of each study are shown. Horizontal lines represent 95% CI, and dotted vertical lines represent the value of the summary OR.
polymorphism in cases and controls and other information essential for estimation of odds ratio with 95% confidence interval (CI), and (iii) study should be published. Following criteria were used for exclusion of studies (i) only cases studied, (ii) review articles, case reports and editorials and (iii) studies that contained duplicate data.

2.3. Data extraction

From each study, the following information was extracted: first author's family name, journal name, country name, year of publication, and the number of A1298C genotypes in cases and controls. The allele numbers were calculated from the corresponding genotype distributions.

2.4. Meta-analysis

The meta-analysis examined the overall association of maternal C allele as a risk for DS relative to allele A. The association was measured as odds ratios (OR) with 95% confidence interval (CI). Heterogeneity between studies was tested using the Q-statistic [25,26] and was quantified with the I^2 metric. I^2 takes values between 0% and 100% with higher values denoting greater heterogeneity [27,28]. The pooled OR was estimated using fixed effects (FE) [29] and random effects [30] models. When there is higher heterogeneity, then the random effects model is preferably adopted [31]. All analyses were performed using the computer program open meta-analyst [32]. A p value less than 0.05 was considered statistically significant, and all the p values were two sided.

2.5. Sub-group analysis

The subgroup analysis was performed on the basis of ethnicity i.e. Asian and Caucasian. The sub-group meta-analysis cannot be performed by the genotyping method because out of twenty-one studies, nineteen studies were performed on the basis of PCR-RFLP and one study each on the basis of sequencing and Taq Man probe.

2.6. Publication bias

Publication bias was assessed by Egger's test and visual observation of funnel plot [33]. $p < 0.05$ was considered statistically significant publication bias.

3. Results

3.1. Characteristics of included studies

Twenty-one studies were found suitable for inclusion in the present meta-analysis [9,10,13,19,34–50]. The studies were car-
ried out in India [36,42,48,50], Brazil [9,35,37,40,41,47], Italy [10,34,43], France [19], Croatia [44,45], Egypt [39], Jordan [46], Spain [38] and Turkey [13,49]. Details of included twenty-one studies are summarized in Table 1.

3.2. Statistical details

In all twenty-one studies, total cases were 2004 with AA (913), AC (880) and CC (211), and controls were 2523 with AA (1217), AC (1056), and CC (250). In controls genotype percentage of AA, AC and CC was 48.24%, 41.85% and 9.91% respectively. In total cases genotype percentage of AA, AC, and CC was 45.56%, 43.91% and 10.53% respectively. Frequencies of AA genotype were the highest in both cases and controls. Genotypes in control samples of seven studies were not in the Hardy–Weinberg equilibrium [13,39,40,42,43,46,48] (Table 1).

3.3. Meta-analysis

In allele contrast meta-analysis, maternal mutant C allele did not show significant association with DS in both fixed effects (OR = 1.06, 95% CI = 0.97–1.17, \(p = 0.15 \), \(P_{\text{hetero}} = 0.002, I^2 = 52\% \)) and random effects (OR = 1.07, 95% CI = 0.93–1.23, \(p = 0.32 \)) models (Table 2, Fig. 1).

Homoyzgote (CC vs. AA) meta-analysis showed significant association with DS adopting fixed effects model (OR = 1.26, 95% CI = 1.01–1.58, \(p = 0.04 \), \(P_{\text{hetero}} = 0.009, I^2 = 48.29\% \)) (Fig. 2). Association of mutant heterozygous genotype (AC vs. AA; co-dominant model) was observed insignificant with both fixed (OR = 1.06; 95% CI = 0.93–1.12; \(p = 0.34 \), \(I^2 = 16.97\% \); \(P_{\text{hetero}} = 0.24 \)) and random (OR = 1.06; 95% CI = 0.92–1.23; \(p = 0.38 \)) effects models. Similarly combined maternal mutant genotypes (CC + AC vs. AA; dominant model) also did not show any association with DS using both fixed (OR = 1.08; 95% CI = 0.96–1.23; \(p = 0.18 \), \(I^2 = 34\% \); \(P_{\text{hetero}} = 0.06 \)) and random (OR = 1.09; 95% CI = 0.93–1.18; \(p = 0.26 \)) effects models (Fig. 3; Table 2).

3.4. Subgroup analysis

We also performed sub-group analysis which is based on ethnicity. Out of 21 studies included in this meta-analysis, five studies were on Asian and 16 were on Caucasian. In Asian populations, allele contrast meta-analysis showed statistically insignificant association with random effects model (OR = 1.31, 95% CI = 0.89–1.92, \(p = 0.15 \)) with high heterogeneity (\(I^2 = 68\% \)), whereas combined mutant genotypes showed significant association adopting random effects model (OR = 1.49, 95% CI = 0.96–2.31, \(p = 0.07 \), \(I^2 = 53.87\% \)). In this group heterogeneity between studies was high with the absence of publication bias (Table 2; Fig. 1).

In Caucasian population, allele contrast meta-analysis showed no association with fixed effects model (OR = 0.99, 95% CI = 0.90–1.10, \(p = 0.96 \), \(P_{\text{hetero}} = 0.12, I^2 = 30\% \)) (Fig. 3). Forest plots (fixed effects) show no association between MTHFR A1298C polymorphism (CC + AC vs. AA) and maternal risk of Down syndrome. Results of individual and summary OR estimates, 95% CI, and weights of each study are shown. Horizontal lines represent 95% CI, and dotted vertical lines represent the value of the summary OR.
and combined mutant genotypes also showed no association with fixed (OR = 0.99, 95% CI = 0.86–1.13, \(p = 0.89, P_{	ext{hetero}} = 0.63, I^2 = 0\%\)) effects models (Table 2; Fig. 1).

3.5. Sensitivity analysis

In allele contrast meta-analysis, sensitivity analysis performed by exclusion of the studies in which control population was not in the Hardy–Weinberg equilibrium. In overall analysis, after exclusion of seven studies [13,39,40,42,43,46,48], heterogeneity was decreased (\(I^2 = 20.58\%, p = 0.23\)) but odds ratio remained non-significant (OR = 1.04, 95% CI = 0.93–1.15, \(p = 0.46\)). Similar effect was also seen in Caucasian subgroup meta-analysis, after elimination of studies in which control population was not in HWE [13,39,40,43] heterogeneity was decreased (\(I^2 = 0\%\)) OR remains non-significant (OR = 0.98, 95% CI = 0.87–1.10, \(p = 0.77\)). In Asian studies, control population of three studies [42,46,48] was not in HWE. After elimination of these three studies heterogeneity was decreased and OR was increased (OR = 1.42, 95% CI = 1.08–1.86, \(p = 0.01\); \(P_{	ext{hetero}} = 0.30; I^2 = 4.92\%\)).

3.6. Publication bias

Funnel plots were symmetrical and did not show any evidence of publication bias. Results of Egger’s test also suggested the absence of publication bias (\(p = 0.83\)) for C vs. A (Fig. 4).

Figure 4 Funnel plot of allele contrast model.
4. Discussion

The present meta-analysis was designated to evaluate the role of MTHFR A1298C gene polymorphism in the Down syndrome pregnancy. A total of twenty-one studies (with 2004 cases and 2523 controls) were incorporated in this study. In overall analysis the homozygote model (CC vs. AA) showed a significant association (OR = 1.26; 95% CI: 1.01–1.58; $p = 0.04$) while no such association was observed in any other genetic model. Similarly, when sub-group analysis based on ethnicity was performed no significant association was found in any genetic model.

Several in vitro and in vivo studies have reported that folate deficiency in culture media, or inadequate folate dietary intake, results in DNA hypomethylation, and abnormal chromosome segregation [47]. For this reason it has been postulated that impaired folate/homocysteine metabolism due to genetic polymorphisms of folate pathway genes could predispose an individual to chromosome damage events and might act as a risk factor for a DS pregnancy [3]. Since 1999, several case–control studies have investigated maternal folate pathway gene polymorphism as a risk factor for DS offspring and positive association has been observed [3,7,8,10,34,35,51]. MTHFR variants due to less enzymatic activity lead to hypomethylation of centromeric DNA, which may be the major cause of missegregation of chromosomes during meiosis and results in trisomy 21. Hassold et al. [2] analyzed polymorphism of MTHFR and MTRR (methionine synthase reductase) maternal genes in trisomy of several chromosomess and compared the distribution of genotypes to those of control populations and observed a significant increase in the MTHFR polymorphisms in mothers of trisomy cases. Low or inadequate intake of folic acid is involved in the disruption of methionine metabolism, because methylenetetrahydrofolate, the primary form of folate in the circulation, acts as the carbon donor for homocysteine remethylation to yield methionine and tetrahydrofolic acid [52]. Several population-based studies and animal model based studies have shown that folic acid intake during fetal development has a protective effect, resulting in a significant reduction in the occurrence of developmental defects, including neural tube defects (NTD), congenital heart defects (CHD), limb defects, and orofacial clefts [20].

Meta-analysis is a powerful tool for analyzing cumulative data of studies where the sample sizes of individual studies are small and the statistical power is low. During past decade several meta-analyses were published assessing MTHFR as a risk factor to various diseases/disorders like NTD [53], cleft lip and palate [54], congenital heart defects [55], recurrent pregnancy loss [56], stroke [57], Down syndrome [58], bipolar disorder [59], depression [60] and cancer [61,62]. Four meta-analyses were published regarding maternal MTHFR polymorphism and DS risk [13,58,63,64], out of which only two meta-analyses investigated maternal MTHFR A1298C polymorphism as a risk factor for DS [13,63]. Zintzaras [13] carried out the first meta-analysis of MTHFR A1298C polymorphism and DS risk, and reported that the allele contrast C versus A showed significant heterogeneity among studies ($p = 0.04$, $F = 56$%) and the association was insignificant: FE OR = 1.02 (95% CI: 0.81–1.29). A meta-analysis of 10 retrospective studies (1007 case mothers and 1318 controls) was carried out by Medica et al. [63] and reported no association (1.06 (95% CI: 0.85–1.31)). There are several newly published studies available but not included in the previous meta-analyses. So we conducted a comprehensive meta-analysis with the largest number of studies to date to investigate the possible relationship between maternal MTHFR A1298C polymorphism and the risk of having DS child.

The present meta-analysis has some limitations also like (i) crude odds ratio was used, (ii) studies with small sample sizes [42,43] were included, (iii) meta-analysis was restricted to single polymorphism (A1298C), other gene polymorphism of folate pathway should also be considered, and (iv) except genetic polymorphism, other important factors such as maternal age, folate intake and homocysteine concentration should also be considered. The present meta-analysis also had some strength along with limitations. The main strengths of our meta-analysis were the absence of publication bias and pooled number of cases and controls from different studies significantly increased the power of the study.

In conclusion, the present study did not support any association between maternal MTHFR gene A1298C polymorphism and Down syndrome. However, the present meta-analysis was based on relatively a small number of studies and participants, and only one polymorphism was considered, hence case–control studies that investigate gene-gene and gene-environment interaction might well elucidate genetics of Down syndrome.

Compliance with ethical standards

Funding: The financial assistance provided by Department of Biotechnology, India as major research project No. BT/ PR98887/SPD/11/1028/2007 to Vandana Rai is gratefully acknowledged.

Conflict of interest: The authors Vandana Rai, Upendra Yadav, and Pradeep Kumar declare that they have no conflict of interest to declare.

Research involving human participants and/or animals: This is a systematic review, human participants are not involved.

Informed consent: Since this is a review article, there is no need for taking informed consent.

Acknowledgments

The authors are also highly grateful to Leon Bax (Chief Scientific Officer at BiostatXL, UMC Utrecht) for his valuable suggestions in statistical analysis.

References

Maternal MTHFR A1298C polymorphism and Down syndrome

