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Abstract Background: Research in the genetic basis of coronary artery diseases (CAD) has

identified some genes and pathways associated with diseases that would not be considered to under-

lie conventional risk factors. Among these genes there are the EGFR (epidermal growth factor

receptor) receptor family genes and the regulation factor genes (such as thyroid hormone receptor

a (THRA) and estrogen receptor a (ESR1)).

Aim: In this study we investigated the relation between 4 polymorphisms within EGFR, HER2

(human epidermal growth factor receptor 2), ESR1 and THRA genes and CAD.

Subjects and methods: The association analysis was performed with 151 healthy individuals and

151 CAD patients documented by angiography.

Results: No significant difference was found in the allelic and genotypic frequency distribution

of the four variants studied between the control and patient groups. We have also investigated the

relationship of these polymorphic sites with clinical and biochemical parameters such as smoking

habit, diabetes mellitus, hypertension, dyslipidemia, CAD severity, glucose, triglyceride, total

cholesterol and urea levels. The EGFR and THRA variants were associated with glycemia and

triglyceride levels, respectively. Also a significant correlation was found between the ESR1

polymorphism and the levels of urea and triglyceride.

Conclusion: Our results suggest the absence of any significant association between the four

polymorphisms analyzed and CAD risk as well as disease severity.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Coronary artery disease (CAD) is a major cause of disability
and premature death worldwide [1]. CAD is a multifactorial

disease caused by genetic and environmental factors. Research
in the genetic basis of CAD has opened new perspectives in the
prevention and treatment of the common forms of this disease.

Even, it has radically changed the concepts of some diseases
origins. In fact, most of the genes that have been associated
with CAD have primarily been involved in biochemical path-
ways related to what are considered conventional risk factors.

However, recent genetic studies have begun to identify genes
and pathways associated with CAD that would not be consid-
ered to underlie conventional risk factors [2]. Among these

genes there are the EGFR receptor family genes and the regu-
lation factor genes (such as thyroid hormone receptor (TRa)
and estrogen receptor (ERa)).

The ErbB family (Erythroblastic leukemia viral oncogene
homolog) is composed of four plasma membrane bound recep-
tor tyrosine kinases, which are involved in molecular signaling

related to cell growth and survival in many tumor types [3].
The human epidermal growth factor receptor 1, known as
EGFR, is member of this receptor family. Previous studies
suggested that genetic polymorphisms in the EGFR gene had

been implicated in the susceptibility to some tumors [4] and
inflammatory diseases. More recently, EGFR has been impli-
cated in vascular pathophysiological processes associated with

excessive remodeling and atherosclerosis [5,6]. Thereafter,
polymorphisms of the EGFR gene have been associated with
acute coronary syndrome [7], dilated cardiomyopathy [8],

ischemic heart disease as well as arterial hypertension [9].
HER2 receptor is another member of EGFR family that has
long been associated with breast cancer development and pro-

gression. Targeting the HER2 receptor is a milestone in the
treatment of selected patients with early and advanced breast
cancer [10,11]. Anticancer efficacy is complicated by a new
type of heart failure [12–14]. There is evidence that trastuzu-

mab (or Herceptin is an anti-HER2 humanized monoclonal
antibody) [15,16], lapatinib (orally active drug for breast can-
cer which is a dual tyrosine kinase inhibitor interrupting the

HER2 and EGFR pathways) [17], and pertuzumab (mono-
clonal antibody that inhibits the HER2 dimerization) [18]
blocking the HER2-dependent signaling pathway may lead

to the deterioration of left ventricular cardiac function.
The receptors for thyroid hormone (TRa) and estrogen

(ERa) are prototypes of nuclear transcription factors that reg-
ulate the expression of target genes. These receptors are

encoded by THRA and ESR1 genes, respectively and were
found to be involved in CAD. In fact, thyroid receptors medi-
ate the action of thyroid hormones that play multiple biologi-

cal roles including effects on the cardiovascular system (lipid
profile, blood pressure and cardiac output). Moreover, the
expression of TRs is tissue-dependent and developmentally

regulated [19] and TRa is expressed predominantly in the
heart, bone, intestine, and brain. On the other hand, polymor-
phisms of the THRA gene have been associated with systolic

blood pressure and hypertension risk [20].
Estrogen receptor a is mainly expressed in endothelial cells,

vascular smooth muscle cells, and macrophages and plays an
important role in vascular wall physiology and function [21].
Many studies have suggested that common single nucleotide
polymorphisms (SNP) in the ESR1 gene have been associated

with an increased risk of vascular diseases, such as arterial
hypertension, cardiovascular diseases, alterations in serum
lipid levels, and cerebrovascular disease [22–24]. More

recently, it has been shown that genetic and epigenetic changes
in the ESR1 gene may enhance plasma cholesteryl ester forma-
tion and lead to its low levels and thereby have been associated

with cerebrovascular disease risk [25–27].
In this study, we report a case-control study in southern

Tunisia, investigating the association between CAD and four
genetic polymorphisms: R497K in the EGFR gene, I655V in

the HER2 gene, T594T in the ESR1 gene and CA repeat in
the THRA gene.
2. Subjects and methods

2.1. Subjects and DNA isolation

Genomic DNA was extracted from blood samples of 151
healthy individuals (74 women and 77 men, with mean age

of 37 ± 19.8 years) and 151 CAD patients by a standard phe-
nol–chloroform method [28]. All subjects were from southern
Tunisia (Sfax region).

2.2. Patients’ profile and clinical data

We recruited between 2007 and 2008, 151 unrelated coronary

patients (95 women, 56 men, with mean age of 64 years),
who had symptomatic CAD: acute coronary syndrome or
stable angina, hospitalized at Cardiology Service of the Hedi
Chaker University Hospital of Sfax, Tunisia. Acute coronary

syndrome was diagnosed if at least one of the following criteria
was met: unstable angina (Electrocardiogram changes without
evidence of myocardial necrosis and clinical symptoms), acute

myocardial infarction (positive markers of myocardial necro-
sis) including ST-segment elevation myocardial infarction.

These patients underwent coronary angiography following

a myocardial infarction, angina, chest pain or heart failure.
After angiography, the group of patients (n= 64) with a
stenosis more than 50% on at least one major coronary artery
was divided into 3 subgroups according to the number of

affected coronary arteries. The absence of significant coronary
stenosis (650%) was designated (V0, n = 66).

After a detailed explanation of the purpose of the study, a

written informed consent was obtained from all patients. The
study protocol was approved by the local committee of
Medical Ethics (Hedi Chaker Hospital Ethics Committee,

Sfax). The work has been carried out in accordance with The
Code of Ethics of the World medical Association (Declaration
of Helsinki) for experiments in humans.

2.3. Biochemical analysis

Serum concentrations of glucose, triglycerides (TG), total
cholesterol and urea were measured by the standard methods

used in the clinical laboratory of the hospital.



Table 1 Frequency of R497K, I655V and T594T in the Tunisian population.

Gene Controls CAD patients Chi square

Count (%) Count (%) (p-value)

rs11543848 (R497K) EGFR

Genotype

AA 12 (7.95) 14 (9.27) 1.64 (0.44)

AG 47 (31.12) 56 (37.09)

GG 92 (60.93) 81 (53.64)

Allele

A 71 (23.51) 84 (27.81) 1.47 (0.22)

G 231 (76.49) 218 (72.18)

rs1801200 (I655V) HER2

Genotype

AA 84 (83.17) 123 (82) 0.06 (0.8)

AG 17 (16.83) 27 (18)

GG 0 (0) 0 (0)

Allele

A 185 (91.6) 273 (91) 9.13 (0.82)

G 17 (8.4) 27 (9)

rs2228440 (T594T) ESR 1

Genotype

AA 14 (9.27) 3 (3.3) 4.12 (0.12)

AG 44 (29.14) 34 (37.36)

GG 93 (61.59) 54 (59.34)

Allele

A 72 (23.84) 40 (21.98) 0.22 (0.63)

G 230 (76.16) 142 (78.02)

EGFR: epidermal growth factor receptor gene, HER2: Human Epidermal growth factor Receptor 2 gene, ESR1: estrogen receptor a gene, I:

isoleucine, V: valine, R: arginine, K: lysine, T: threonine, CAD: coronary artery diseases.
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2.4. Genotyping

The single nucleotide polymorphisms: rs11543848 (R497K) of
the EGFR gene, rs1801200 (I655V) of the HER2 gene and
rs2228440 (T594T) of the ESR1 gene (Table 2) were typed

by polymerase chain reaction (PCR) amplification using the
conditions described by Zhang et al. [29], Kalemi et al. [30]
and Akisik and Dalay [31], respectively, followed by restriction

enzyme digestion. The AC repeat of the THRA gene (accession
number NG_008493) was typed by Applied Biosystems
Automated Genetic Analysers (ABI3100-Avant) with Genscan

software (V3.5). PCR products of the reference THRA
sequence were 270 bp in length and contain 15 AC repeats
(using the conditions given by Shearman et al. [32]). All

PCR reactions were performed by using a GenAmp PCR sys-
tem 9600 thermocycler (Perkin–Elmer).

2.5. Statistical analysis

The genotypic frequencies were calculated by simple counting
using Microsoft-Excel. The estimation of allele frequency and
exact test for Hardy–Weinberg equilibrium was performed

using the Genetic Data Analyses program (version 1.1) [33].
Genotypic and allelic frequencies were compared between con-
trols and patients using standard chi square test at a 5% level

of significance. For comparing microsatellite allelic frequencies
between controls and patients we also used the Clump pro-
gram [34]. This program proposes different tests and provides

p-values that are corrected for multiple testing. Odds ratio for
the case–control association study and their 95% confidence
intervals were estimated using programs from Linkage Utility
Package (http://linkage.rockefeller.edu). In patients with

CAD, correlation between the genotypes and clinicopatholog-
ical characteristics was carried out with the SPSS program
(version 21.0).

3. Results

3.1. Association between polymorphisms and CAD

3.1.1. Association analysis of the I655V, R497K and T594T
polymorphisms

Allelic and genotypic frequencies of the HER2 I655V, EGFR
R497K and ESR1 T594T polymorphisms in CAD patients and

healthy individuals are given in Table 1. No significant devia-
tion from Hardy–Weinberg equilibrium was found for any of
the SNPs studied (p = 0.137, p = 0.086 and p = 0.2 for the

R497K, I655V and T594T polymorphisms, respectively). The
allelic and genotypic frequencies of the 3 SNPs were similar
in the patient and control groups, and the difference between

the frequencies was not statistically significant (Table 1).
When the three polymorphisms are tested together by bin-

ary logistic regression, no association was found with any of

them.

3.2. Association analysis of the THRA repeat polymorphism

THRA repeat was successfully genotyped in 150 healthy unre-

lated individuals and 147 individuals with CAD. The level of
heterozygosity was estimated as 81.9%. Hardy–Weinberg

http://linkage.rockefeller.edu


Table 2 THRA microsatellite and cardiovascular disease risk in the Tunisian population.

Controls Patients Chi square OR (95% CI)

Count (%) Count (%) (p-value)

Alleles

S (620) 215 (71.67) 189 (64.3) 3.712 (0.053) 0.71 (0.5–1.01)

L (>20) 85 (28.33) 105 (35.7)

Genotypes

SS 78 (52) 65 (44.22) 1.8 (0.179) 0.73 (0.49–1.16)

SL 59 (39.3) 59 (40.14) 0.019 (0.95) 1.03 (0.65–1.65)

LL 13 (8.7) 23 (15.64) 3.39 (0.065) 1.95 (0.95–4.02)

THRA: thyroid hormone receptor a gene, OR: odd ratio, S: short alleles (620 repeats), L: long allele (>20 repeats).
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equilibrium was satisfied (exact p = 0.06). Forty-five geno-
types (14 alleles) were found in the Tunisian control group

against 42 genotypes (13 alleles) in patients. The most preva-
lent genotype was 18/20 (15.3% and 16.3% in controls and
CAD patients, respectively) whereas most of the genotypes

had a frequency less than 5%. The allelic frequencies were very
similar between patients and controls, and no significant differ-
ence was found when comparing all alleles by Clump

(p = 0.33) or each individual allele separately. Also, if we
define two classes of alleles, S (short) for alleles with 620
repeats and L (long) for >20, no significant association was
found (p = 0.053) (Table 2).

3.3. Association of polymorphisms with clinical and biochemical

parameters

The analysis of possible association of the genotype polymor-
phisms with the clinical and biochemical parameters of CAD
showed five significant associations (Table 3). The first is

between the SNP R497K of the EGFR gene and the glycemia
level (p= 0.008). A high level of glycemia is correlated with
the presence of AG genotype. The second is between the

THRA microsatellite and the TG serum level (p = 0.0024).
Subjects with LL genotypes have the lowest serum levels of
TG. The others, are between the SNP T594T of the ESR1 gene
and the smoking habit (p= 0.002) as well as urea (p = 0.037)

and TG (p = 0.019) levels. The genotypes AG and GG were
more prevalent among nonsmokers and were associated with
high TG and urea levels, respectively.

Also, multivariate analysis was performed using the clinical
or biochemical parameter as dependent variable and the mark-
ers’ genotypes as explanatory variables adjusted for other clin-

ical and biochemical variables. But, no significant association
was found for the four polymorphisms (p > 0.05).
4. Discussion

In the present study, we examined the possibility of association
between CAD and four polymorphisms in a southern Tunisian
sample: R497K polymorphism of the EGFR gene, I655V poly-

morphism of the HER2 gene, T594T polymorphism of the
ESR1 gene and the microsatellite D17S2189 of the THRA
gene with CAD. Distribution of allele or genotype frequencies

of the four polymorphisms in our case-control sample does not
reveal any significant association, and this finding persisted
after adjusting for several potential confounding factors.
However, analyzing the relationship between the 4 poly-
morphisms and the clinical and biochemical parameters of

our cohort, a significant association was found between the
SNP R497K and the glycemia level. A high level of glycemia
was correlated with the presence of AG genotype. The role

of this polymorphic site in CAD was established in many stud-
ies where it was associated with the risk of acute coronary syn-
drome [7] and dilated cardiomyopathy [8] in a Chinese

population. These authors suggested that genetic polymor-
phism of EGFR (Arginine ? Lysine) might be clinically
important in the development and progression of these dis-
eases but the exact mechanism by which the Lys allele may

act is unclear. In 1993, a variant EGFR of an arginine to lysine
substitution at codon 497 was identified [35]. Wild-type EGFR
(Arg allele) differs from mutant EGFR (Lys allele) with

respect to epithelial proliferation following the administration
of EGF and TGF-a in rodents [36]. Thus, it was suggested that
mutations which influence the function or expression of EGFR

(such as attenuating its ligand binding as well as subsequent
activation of its downstream effectors) might predispose to
development of some diseases and phenotypes.

Also, a significant association was observed between the

THRA microsatellite and the TG serum level. Subjects with
LL genotypes possess the lowest serum level of TG. This result
suggest that long allele of this microsatellite may have a pro-

tective effect against TG increases. To our knowledge, this is
the first time that this polymorphic site was investigated for
an association study with CAD. However, the relationship

between this genetic variant and thyroid cancer risk was inves-
tigated in many studies [37–39] and it was suggested in a study
performed on a Japanese population, that less aggressive thy-

roid cancer is correlated with increased THRA expression and
an expanded THRA microsatellite [37]. These authors have
suggested also that the size of this microsatellite can have an
influence on the splicing phenomenon and on the expression

of THRA isoforms based on the fact that the THRA repeat
polymorphism is located in exon 9, near a splice junction.

Likewise, our results showed a significant correlation

between the SNP T594T of the ESR1 gene and the smoking
habit as well as urea and TG levels. The genotypes AG and
GG were more prevalent among nonsmokers and were associ-

ated with high TG and urea levels, respectively. This result
suggests the importance of ER in CAD via its association with
some classical risk factors including smoking, high TG and

urea levels. The effects of estrogen on the cardiovascular sys-
tem, mediated mainly by ERa, have been well defined and
specific polymorphisms in the ESR1 gene have been associated



Table 3 Association results of polymorphisms genotypes with clinical and biochemical parameters.

Characteristic Number (Genotype frequency%)

R497K (EGFR) I655V (HER2) T594T (ESR1) D17S2189 (THRA)

AA AG GG AA AG GG AA AG GG SS SL LL

Clinical and anthropometric parameters

Sex

Female 9 (9.6) 32 (34) 53 (56.4) 74 (79.6) 19 (20.4) 0

(0)

1 (2) 23 (46) 26 (52) 38 (40.4) 44 (46.8) 12 (12.8)

Male 4 (7.1) 24 (42.8) 28 (50) 48 (87.3) 7 (12.7) 0

(0)

2 (5.1) 9 (23.07) 28 (71.8) 26 (49.05) 15 (28.3) 12 (22.64)

p-valueb 0.566 0.27 0.06 0.062

Age (years) 63.3 ± 2.57 61.56

± 1.75

65.26 ± 1.29 64.51 ± 0.93 62.35 ± 2.99 0 67.33

± 5.48

63.77

± 1.85

66.81

± 1.21

63.19

± 1.53

63.12 67.25

± 1.96

p-valuea 0.58 0.504 0.495 0.591 0.934 0.978 0.109

Smoking habit

Smoker 1 (3.44) 13 (44.83) 15 (51.72) 23 (79.3) 6 (20.7) 0

(0)

2 (8.69) 2 (8.69) 19 (82.6) 16 (57.14) 8 (28.57) 4 (14.28)

Not smoker 12 (11.21) 43 (40.18) 64 (59.81) 97 (82.9) 20 (17.1) 0

(0)

1 (1.53) 29 (44.61) 35 (53.84) 47 (40.51) 49 (42.24) 20 (17.24)

p-valueb 0.525 0.6 0.002 0.293

Diabete mellitus

Diabetic 4 (6.77) 25 (42.3) 30 (50.84) 46 (80.7) 11 (19.3) 0

(0)

2 (4.25) 18 (38.3) 27 (57.44) 27 (48.21) 19 (33.93) 10 (17.86)

Not diabetic 9 (10.23) 31 (35.23) 48 (54.54) 73 (83) 15 (17) 0

(0)

1 (2.43) 13 (31.7) 27 (65.85) 36 (41.38) 37 (42.53) 14 (16.09)

p-valueb 0.609 0.731 0.679 0.614

Hypertension

Hypertensive 7 (8.23) 37 (43.53) 41 (48.23) 70 (84.3) 13 (15.7) 0

(0)

2 (3.92) 20 (39.21) 29 (56.86) 31 (38.27) 33 (40.74) 17 (20.99)

Not hypertensive 1 (14.28) 3 (42.86) 4 (57.14) 8 (100) 0 (0) 0

(0)

0 (0) 1 (50) 1 (50) 6 (75) 2 (25) 0 (0)

p-valueb 0.748 0.596 1 0.156

DBP (mmHg) 139.09

± 5.79

143.9

± 3.98

149.48

± 3.38

140.56

± 2.79

147.05

± 7.01

0 150

± 15.27

142.63

± 5.18

146.1

± 3.65

151.76

± 3.68

142.1 ± 4 148.26

± 4.97

p-value 0.501 0.139 0.396 0.685 0.825 0.079 0.574

SBP (mmHg) 80.9 ± 3.92 81.11 ± 2.5 81.11 ± 1.93 87.1 ± 2.32 87.03 ± 3.98 0 76.66 ± 12 76.89

± 2.43

81.6 ± 2.65 83.83

± 2.25

78.9

± 2.34

81.95

± 2.96

p-valuea 0.966 0.962 0.989 0.987 0.724 0.133 0.616

Dyslipidemia

Positive 7 (16.28) 14 (32.56) 22 (51.16) 34 (82.9) 7 (17.1) 0

(0)

2 (5.88) 16 (47.06) 16 (47.06) 20 (48.78) 15 (36.58) 6 (14.63)

Negative 6 (5.77) 42 (40.38) 56 (53.84) 85 (81.7) 19 (18.3) 0

(0)

1 (1.85) 15 (17.78) 38 (70.37) 43 (42.57) 41 (40.19) 18 (17.64)

p-valueb 0.122 1 0.067 0.803

CAD severity*

v0 5 (7.57) 23 (34.84) 38 (57.57) 54 (80.6) 13 (19.4) 0

(0)

1 (4.34) 8 (34.8) 14 (60.86) 25 (37.31) 30 (44.77) 12 (17.91)

(continued on next page)
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Table 3 (continued)

Characteristic Number (Genotype frequency%)

R497K (EGFR) I655V (HER2) T594T (ESR1) D17S2189 (THRA)

AA AG GG AA AG GG AA AG GG SS SL LL

v1 5 (11.11) 17 (37.78) 23 (51.11) 38 (88.4) 5 (11.6) 0

(0)

1 (2.63) 12 (31.58) 25 (65.8) 23 (56.1) 11 (26.83) 7 (17.07)

v2 2 (25) 4 (50) 2 (25) 6 (75) 2 (25) 0

(0)

0 (0) 4 (50) 4 (50) 3 (42.85) 3 (42.85) 1 (14.28)

v3 1 (10) 4 (40) 6 (60) 9 (81.8) 2 (18.2) 0

(0)

1 (11.11) 1 (11.11) 7 (77.77) 5 (45.45) 5 (45.45) 1 (9.09)

p-valueb 0.566 0.626 0.539 0.555

Biochemical parameters

Fasting glucose (lmol/l) 5.83 ± 0.81 9.05 ± 0.76 12 ± 4.24 10.82 ± 2.32 6.52 ± 0.44 0 11.45

± 4.55

8.51 ± 1.09 13.98

± 5.41

8.4 ± 0.63 7.72

± 0.62

7.82 ± 1.09

p-valuea 0.008 0.16 0.073 0.634 0.733 0.447 0.652

Urea (lmol/l) 9.31 ± 2.69 8.47 ± 1.05 7.04 ± 0.49 7.79 ± 0.47 9.28 ± 1.87 0 5.72 ± 0.77 10.37

± 1.89

7.02 ± 0.52 8.35 ± 1.03 7.82

± 0.71

6.87 ± 0.94

p-valuea 0.778 0.436 0.451 0.037 0.293 0.525 0.3

Triglyceride (mmol/l) 2.02 ± 0.19 1.67 ± 0.14 2.06 ± 0.26 1.9 ± 0.14 1.83 ± 0.23 0 1.28 ± 0.03 1.61 ± 0.17 1.98 ± 0.27 1.76 ± 0.14 2.18

± 0.29

1.3 ± 0.12

p-valuea 0.175 0.907 0.802 0.09 0.019 0.218 0.024

Total cholesterol

(mmol/l)

4.85 ± 0.45 13.48

± 8.42

8.01 ± 2.23 9.72 ± 3.29 4.42 ± 0.84 0 5.11 ± 0.36 4.98 ± 0.46 8.17 ± 2.48 5.99 ± 0.58 15.02

± 10

4.99

± 0.676

p-valuea 0.3219 0.175 0.124 0.835 0.235 0.381 0.278

DBP: diastolic blood pressure, SBP: systolic blood pressure, EGFR: epidermal growth factor receptor gene, HER2: human epidermal growth factor receptor 2 gene, ESR1: estrogen receptor a gene,

THRA: thyroid hormone receptor a gene, I: isoleucine, V: valine, R: arginine, K: lysine, T: threonine.

Significant associations are in bold.
* Based on number of affected coronary arteries: stenosis <50% of one (V0), P50% of one (V1), two (V2), or three (V3) major coronary arteries.
a p-value of student’s t-test of mean comparison with AA genotype as a reference group.
b p-value of Fisher’s exact test.
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with several coronary heart diseases including CAD, hyperten-
sion and stroke in studies covering different populations
[24,40,41]. Although that the SNP T594T is synonymous and

yields no change in protein sequence, its importance has been
highlighted in many investigations where it has been suggested
that the mechanism of action may involve alternative gene reg-

ulation and transcript processing [39,42].
Regarding the SNP I655V of the HER 2 gene and despite

the absence of significant association in our study, the impor-

tance of this polymorphism has been highlighted in many stud-
ies and according to the secondary structure prediction of the
transmembrane domain, it has been suggested that the pres-
ence of the I residue at position 655 might destabilize the for-

mation of active HER2 dimers and reduce phosphotyrosine
kinase activity even in the presence of receptor overexpression
[43]. More recently, Pinto et al. [44] have suggested that the

genotype GG confers high heterodimerization capacities to
the receptor that can activate more powerfully the intracellular
signaling pathways of HER2 such as MAPK and PI3P/AKT.

The involvement of the HER2 receptor in CAD has been
revealed in many studies. In a recent study, the authors showed
an association between a decreased expression of ErbB2/

HER2 and the release of troponins and the need for inotropic
therapy in patients with acute heart failure and they conclude
that the molecular function of the HER2 receptor may be
essential for the prognosis and targeted therapy of heart dis-

eases [45]. Also, it has been shown that targeting the HER2
receptor in the anticancer therapy may lead to the deteriora-
tion of left ventricular cardiac function [11]. Later, the SNP

I655V has been associated with cardiac toxicity in breast can-
cer patients treated with Trastuzumab [46].
5. Conclusion

Our results suggest the absence of any significant association
between the four genetic variants analyzed and CAD risk as

well as disease severity. However, these polymorphic sites
may be involved in such diseases indirectly through the inter-
mediary of their association with some classic risk factors such

as smoking habit, glycemia, urea and TG levels. These results
are encouraging to conduct advanced studies evaluating with
precision the role of these genetic variants and their respective
genes in CAD.
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