Prevalence of congenital heart defects among 54 Egyptian children with Maple syrup urine disease

Alyaa A. Kotby a,1, Marwa M. Al-Fahham a,*,1,2, Heba Salah A. Elabd b,1, Osama K. Zaki b,1

a Pediatric Cardiology Unit, Pediatric Department, Faculty of Medicine, Ain Shams University, Egypt
b Genetic Unit, Pediatric Department, Faculty of Medicine, Ain Shams University, Egypt

1 Faculty of Medicine, Ain Shams University, Ramsis Street, Abbasia 11566, Cairo, Egypt.
2 ORCID ID: 0000-0002-0001-082X.

Article info
Article history:
Received 24 August 2017
Accepted 2 October 2017
Available online 19 October 2017

Keywords:
Maple syrup urine disease
MSUD
Echocardiography
Congenital heart defects

1. Introduction

Maple syrup urine disease (MSUD) is an autosomal recessive disorder caused by a defect in any of the subunits of the mitochondrial branched-chain alfa ketoacid dehydrogenase (BCKAD). The metabolic defect results in accumulation of branched-chain amino acids (BCAAs) (leucine, isoleucine and valine) and their keto acids [1].

Amino acids are key nutrient molecules essential for cell growth, survival, and normal function. In addition to providing building blocks for protein synthesis, many amino acids are essential ingredients for biosynthesis of other molecules as the source of nitrogen and carbon [2]. Some amino acids, including branched-chain amino acids, also have been shown to possess a potent signaling function to regulate global growth and metabolism [3]. Therefore, the impact of amino acid metabolism on embryonic development and human congenital diseases has long been recognized [4].

The clinical manifestations of classical MSUD are mostly neuro-pathic, including seizures and mental retardation [5]. However, recent studies from animal models of MSUD raise concerns about the potential adverse impact of branched-chain amino acid metabolic defects on cardiac development and function [4].

2. Subjects and methods

This cross-sectional descriptive study involved 54 children with MSUD who were recruited from the Genetics clinic, Pediatric Hospital, Ain Shams University. Their ages ranged from 1 month to 7.5 years with a mean of (26.7 months ± 21.5). Informed consent was obtained from guardians of all examined cases before participation in the study which was approved by the Institutional Ethical Review Board.

The diagnosis of MSUD was confirmed in all patients by high serum levels of leucine, isoleucine, valine, elevated leucine/alanine ratio and leucine/phenylalanine ratio by Tandem mass spectrometry (LC-MS/MS). All patients were subjected to history taking and clinical evaluation for cardiac symptoms and signs. The work has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments in humans.

A standard two-dimensional (2D), M-mode, color flow (CF), continuous wave (CW) and pulsed wave (PW) Doppler echocardiography was performed for patients using the segmental sequential approach [6]. Views included subcostal view (short axis, four chamber and coronal), parasternal view (long axis and short axis),...
apical view (four chambers and five chambers) and suprasternal view (short axis and long axis). Echocardiography was done using the Vivid E9 machine (GE Vingmed Ultrasound, Horton, Norway) and pediatric multiplane ultrasound probe with a frequency ranging from 1.5 to 4.5 MHz and a 120-degree field of view (M5S-D5/N 000002891, Portugal).

The anatomy was described in details including the situs of the heart, atrio-ventricular concordance, and relation of the great vessels, interatrial and interventricular septae, pulmonary and systemic venous drainage, morphology and excursion of cardiac valves, cardiac chamber sizes and ventricular function. The study included the description of the aortic arch anatomy, anatomy of the great vessels, the presence of PDA and measurement of the pulmonary artery pressure. The presence of patent foramen ovale (PFO) was considered normal finding.

Table 1
Echocardiographic findings in MSUD patients.

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>29</td>
<td>53.7</td>
</tr>
<tr>
<td>Abnormal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickened fenestrated interatrial septum</td>
<td>17</td>
<td>31.4</td>
</tr>
<tr>
<td>Secundum atrial septal defect</td>
<td>4</td>
<td>7.4</td>
</tr>
<tr>
<td>Mitral valve prolapsed and regurgitation</td>
<td>2</td>
<td>3.7</td>
</tr>
<tr>
<td>Pulmonary valve stenosis</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>Bilateral branch pulmonary stenosis</td>
<td>1</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>46.3</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 1. 2D and color flow Doppler echocardiography showing thickened prolapsed regurgitating mitral valve in patient No. 41.
3. Statistical analysis

Statistical analysis was done using SPSS program version 17. Qualitative data is presented as number and percentage and quantitative data is presented as mean ± standard deviation.

4. Results

Twenty-five (46.3%) MSUD patients had cardiac affection. Twenty-one of the affected patients (84%) had defects related to the interatrial septum in the form of fenestrated thickened interatrial septum (17.68%) and secundum type atrial septal defect (ASD) (4, 16%). Abnormal echocardiographic findings among MSUD patients are shown in Table 1 and Figs. 1 and 2.

5. Discussion

Due to the overwhelming neurological manifestations of MSUD, little emphasis has been given to the prenatal or postnatal involvement of other organs that are involved in the metabolism of BCAA.
Atrial septal defects constitute 8–13% of all CHDs. These types of defects probably occur as a result of programmed cell death in particular areas of the septum primum during embryogenesis [19]. Pathologically, there is deficiency of the septal tissue in the region of fossa ovalis. Most of the time, these are single defects, although, occasionally multiple defects and fenestrated defects can also be seen in a frequency around 7% [19,20]. In this study, defects related to the interatrial septum were the commonest encountered cardiac abnormality as they were detected in 84% of the affected children. This is in contrast to an Egyptian study done by Bassili et al., 2000 [18] who detected ASDs in 13.6% of 881 school children in Alexandria with a prevalence of (1.4/10,000). This difference could be attributed to the differences in the ages and the nature of the studied population in both studies as they included older aged school children who were not suffering from any underlying genetic diseases. We believe that it would be more accurate to compare our results with other studies that include children belonging to the same or closer geographical distribution as the relative frequencies of CHD categories differ significantly among different regions [21].

Up to our knowledge there were no previous studies done to screen CHD among MSUD patients of any nationality, so we were not able to compare our results with similar studies and this supports the novelty of our study.

Although none of our patients show any signs of cardiac decompensation, those defects may worsen the outcome during the frequent metabolic crises that occur in the course of the disease. We suggest that echocardiographic screening of neonates and patients with MSUD should be done to detect possible CHD and anticipate cardiac complications during severe illness.

6. Study limitations

This study is a pilot study that only highlights the importance of screening patients with MSUD for cardiac defects; yet whether the presence of cardiac involvement is a sequela of the genetic disease or only a concomitant association still needs to be thoroughly investigated by studying the risk factors known to increase the incidence of CHD and by comparing findings among different types of MSUD.

7. Conclusion

Interrafial defects among other congenital heart defects have been found to be a frequent finding in patients with MSUD. Therefore, routine screening of MSUD patients by echocardiography is recommended in all cases with MSUD to detect silent cardiac anomalies that may worsen the clinical outcome.

Contributions

A- Alyaa Amal Kotby: Conceived of the presented idea, supervised the findings and revised the work.
B- Marwa Mostapha Al-Fahham: Designed the model of the study, performed the echocardiographic examinations, wrote the paper in addition of being the corresponding author.
C- Heba Salah A Elabd: Conceived the presented idea, designed the model of the study, collected and analyzed the data.
D- Osama Kamal Zaki: Conceived the presented idea, helped Author B in writing the manuscript.

Conflict of interest

All authors declare that there was no conflict of interest in this study.
References