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To the Editor
Coronary Heart Disease (CHD) is the leading cause of mortality

and morbidity worldwide [1] and it is a result of coronary artery
disease (CAD). Coronary artery disease refers to the build-up of
atherosclerotic plaque in the blood vessels that supply oxygen
and nutrients to the heart. Progressive infiltration of the vessel wall
by lipoprotein particles carrying cholesterol propagates an inflam-
matory response by cholesterol-loaded macrophage ‘foam cells’.
Smooth muscle cells underlying the vessel wall proliferate and lead
to remodeling of the vessel that can ultimately lead to a narrowing
of the vessel that obstructs blood flow. A myocardial infarction is
typically caused when a blood clot is incited by a rupture in the
surface of the plaque; this process deprives the heart muscle
downstream of the blood clot of adequate blood flow and leads
to cell death [2].

The development of the CHD depends on a complex interaction
between environmental and genetic factors [3]. The heritability of
CAD has been estimated between 40% and 60%, on the basis of fam-
ily and twin studies, a method that yields high precision despite
potential bias [4].

Recent progress in understanding the genetics of CAD has been
driven by technological advances, including high-throughput DNA
microarray technology using chips containing up to a million DNA
markers consisting of single-nucleotide polymorphisms (SNPs).
Genome-wide association studies (GWAS) using hundreds of thou-
sands of markers and targeted gene-based resequencing have facil-
itated the gene discovery for CHD [5,6]. In genome-wide
association studies, a susceptibility locus for CHD has been mapped
to chromosome 9p21 [7]. The region of chromosome 9p21 con-
tained the coding sequences of a gene for 2 cyclin-dependent
kinase inhibitors, CDKN2A and CDKN2B, which played an impor-
tant role in the regulation of the cell cycle and would be impli-
cated, through their role in transforming growth factor (TGF)
induced growth inhibition, in the pathogenesis of atherosclerosis
[8]. Helgadottir et al., found that the variant rs2383207 was asso-
ciated with myocardial infarction (MI) [7]. McPherson et al., found
that the homozygotes of the risk alleles of rs2383206 were associ-
ated with an increased risk of CHD [9]. A recent report by Qi et al.,
genotyped 12 CHD susceptibility loci in 3 nested case – control
studies of CHD. As expected, the chromosome 9p21 CHD risk locus
showed a strong association with CHD risk, whereas 4 other loci
[PHACTR1 (phosphatase and actin regulator 1), HNF1A (HNF1 home-
obox A), PCSK9 (proprotein convertase subtilisin/kexin type 9), and
SORT1 (sortilin 1)] demonstrated associations consistent with
those seen in previous GWAS reports [10]. The authors then con-
structed a simple unweighted genetic risk score (GRS) based on
the number of risk alleles carried (each individual will carry 0, 1,
or 2 risk alleles at each locus) and assessed the performance of
the GRS in predicting CHD.

Progressively larger sample sizes have been used to interrogate
the genetic architecture of CAD, yielding �60 distinct genetic loci
for CAD [11]. The vast majority of these variants have a minor allele
frequency of >5% in the population, are associated with modest
increases in CAD risk and cumulatively explain 30–40% of CAD her-
itability [12]. By contrast, 15 low-frequency variants identified
using a false-discovery rate threshold explained only 2% of CAD
heritability [12].

Most of the variants identified to date are located outside pro-
tein-coding regions. 5–10% of the loci relate to blood pressure, a
known and modifiable causal risk factor for CAD. For example,
guanylate cyclase 1, soluble, alpha 3 (GUCY1A3) and nitric oxide
synthase 3 (NOS3) are key regulators of vascular tone and platelet
aggregation. Common DNA sequence variants at the GUCY1A3 and
NOS3 loci have been associated with both blood pressure and CAD
[13]. Approximately 20% of the loci are located near genes with
known roles in metabolism of low-density lipoprotein (LDL),
triglyceride-rich lipoproteins (TRLs) or lipoprotein (a), reinforcing
key roles for these pathways in the development of CAD and pro-
viding internal validation of common variant association studies
findings. Studies to date have identified at least nine genes for
which an aggregation of rare mutations alters the risk of CAD
[14]. The strongest signal was noted for damaging mutations in
low density lipoprotein receptor. A second finding was related to
inactivating mutations in PCSK9. Gene sequencing revealed two
damaging PCSK9 mutations with an aggregate frequency of 2% of
individuals with African ancestry [15]. Carriers of either of these
two mutations had substantially lower LDL cholesterol and risk
of CAD [15]. Most recently, a whole-genome sequencing study of
Icelandic individuals identified a 12 bp deletion that leads to inac-
tivation of ASGR1 (which encodes asialoglycoprotein receptor)
[16]. Heterozygous carriers of this mutation had decreased levels
of LDL cholesterol and triglycerides, translating into a decreased
risk of CAD.

Rare variant association studies have also provided evidence
linking genes related to the metabolism of TRLs, in particular those
in the lipoprotein lipase (LPL) pathway, with risk of CAD. Individu-
als harbouring a heterozygous damaging mutation in LPL have
increased levels of circulating triglycerides as well as risk of CAD

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejmhg.2017.11.001&domain=pdf
https://doi.org/10.1016/j.ejmhg.2017.11.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ejmhg.2017.11.001
http://www.sciencedirect.com/science/journal/11108630
http://www.sciencedirect.com


52 Editorial / The Egyptian Journal of Medical Human Genetics 19 (2018) 51–52
[17]. The activity of LPL is regulated by the protein products of
multiple additional genes, several of which have been similarly
associated with CAD. Damaging mutations in apolipoprotein
A5 (APOA5), which encodes a protein that enhances LPL activity,
are associated with increased CAD risk [18]. By contrast, rare muta-
tions in APOC3 and ANGPTL4, the protein products of which inhibit
LPL, are associated with decreased CAD risk [19].

The study of the genetic architecture of human CAD has led to
substantial progress in gene discovery, informing drug
development.

Rare genetic mutations in several genes have been noted to con-
fer lifelong resistance to the development of CAD without detect-
able toxicity. A gene editing-based therapeutic that introduced
such mutations via a one-time injection could extend these protec-
tive effects into the population [20]. This approach would leverage
one of the most significant scientific advances in recent decades,
namely use of a clustered regularly interspaced short palindromic
repeats (CRISPR) RNA-guided endonuclease system to cleave
sequences of the human genome in a highly specific fashion [21].
A single injection of a viral vector designed to target hepatic pro-
protein convertase subtilisin/kexin type 9 using CRISPR–Cas9 led
to mutations in �50% of hepatocytes and a 40% reduction in
cholesterol levels in a mouse model [22]. Similar therapeutics
could be designed to decrease circulating TRLs, lipoprotein (a) or
other causal risk factors for CAD identified in coming years. For
genes in which damaging mutations confer increased risk of CAD
(for example, low density lipoprotein receptor), future advances
may enable upregulation or potentiation of gene activity [23].

One new therapy targeting APOC3 is showing promise: an anti-
sense oligonucleotide, which is a small stretch of DNA that binds to
the APOC3 RNAs to block the protein from being made. This anti-
sense drug has shown substantial reductions in triglyceride levels
in humans.

Therapeutic antibodies are an established way to inhibit circu-
lating proteins to treat disease. The recently approved antibody to
the PCSK9 protein is one example of this approach for lowering LDL
and reducing heart disease [24].
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