
The Egyptian Journal of Medical Human Genetics 19 (2018) 207–213
Contents lists available at ScienceDirect

The Egyptian Journal of Medical Human Genetics

journal homepage: www.sciencedirect .com
Original article
Copy number variation in VEGF gene as a biomarker of susceptibility to
age-related macular degeneration
https://doi.org/10.1016/j.ejmhg.2017.09.003
1110-8630/� 2017 Ain Shams University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Ain Shams University.
⇑ Corresponding authors.

E-mail addresses: vasuphd@gmail.com (V. Ramachandran), yokemun_chan@
yahoo.com (Y.M. Chan).

1 These authors equally shared correspondence to this manuscript.
Norshakimah Md Bakri a, Vasudevan Ramachandran a,1,⇑, Hoo Fan Kee b, Visvaraja Subrayan c, Hazlita Isa d,
Nor Fariza Ngah e, Nur Afiqah Mohamad a, Ching Siew Mooi b, Chan Yoke Mun f,1,⇑, Patimah Ismail g,
Fazliana Ismail c, Erma Suryana Sukiman b, Wan Alia Wan Sulaiman b

aMalaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang 43400, Selangor DE, Malaysia
bDepartment of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor DE, Malaysia
cDepartment of Ophthalmology, Pusat Perubatan Universiti Malaya, Lembah Pantai, 59100 Kuala Lumpur, Malaysia
dDepartment of Ophthalmology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
eDepartment of Ophthalmology, Hospital Selayang, Lebuhraya Selayang – Kepong, 68100 Batu Caves, Malaysia
fDepartment of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor DE, Malaysia
gDepartment of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor DE, Malaysia

a r t i c l e i n f o
Article history:
Received 14 July 2017
Accepted 11 September 2017
Available online 28 September 2017

Keywords:
Age-related macular degeneration
Copy number variations
VEGF
HTRA1
VLDR genes and Malaysia
a b s t r a c t

Background: Several studies in various populations have been conducted to determine candidate genes
that could contribute to age-related macular degeneration (AMD) pathogenesis.
Objective: The present study was undertaken to determine the association of high temperature require-
ment A-1 (HTRA1), vascular endothelial growth factor (VEGF) and very-low-density receptor (VLDR) genes
with wet AMD subjects in Malaysia.
Methods: A total of 125 subjects with wet AMD and 120 subjects without AMD from the Malaysian pop-
ulation were selected for this study. Genomic DNA was extracted and copy number variations (CNVs)
were determined using quantitative real-time Polymerase Chain Reaction (qPCR) and comparison
between the two groups was done. The demographic characteristics were also recorded. Statistical anal-
ysis was carried out using software where a level of P < 0.05 was considered to be statistically significant.
Result: Statistically significant associations of the VEGF gene were observed in mean copy differences
between case and control subjects (P < 0.05). The consistency of both unadjusted and age-adjusted data
at Copy Number CN gain (CN = 3 and CN = 4) suggested that VEGF could increase the risk of wet AMD dis-
ease (P < 0.05). None of CNVs of HTRA1 and VLDR genes showed associations with the wet AMD disease
based on comparisons of the frequencies of mean (P > 0.05).
Conclusion: Observations of an association between CNVs of VEGF gene and wet AMD have revealed that
the CNVs of VEGF gene appears to be a possible contributor to wet AMD subjects in Malaysia.
� 2017 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Age-related macular degeneration (AMD) is a common form of
irreversible vision loss and a leading cause of blindness among the
elderly [1]. The prevalence of AMD among Japanese (0.87%) [2],
Chinese (0.2%) [3], Taiwanese (1.9%) [4], Singaporean Malays
(0.34%) [5] and Indians (1.9%) [6] are expected to increase with
the increasing aging population.
Neovascular or wet AMD is a complex multifactorial disease
associated with environmental and genetic risk-factors in many
populations. Wet AMD is characterized by abnormal blood vessel
(choroidal neovascular membrane) growth and leakage in the
choroid that results in subretinal bleeding and scar formation [7].
Despite intensive research efforts, the genetic factors for the devel-
opment of nAMD remain unclear. Genetic variants found in inter-
leukin, the chemokine (C-C motif) ligand 2 (CCL2) and the
chemokine (C-X3-C motif) ligand 1 (CX3CL1) genes are likely to
be responsible for the development of AMD among various ethnic-
ities. CCL2 and CX3CL1 genes appear to be crucial in monocyte and
microglial cell recruitment to the sub-retinal space in AMD [8,9].
Most of the studies revealed highly significant associations of
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various Single Nucleotide Polymorphism (SNPs) and wet AMD [10].
However, recently copy number variations (CNVs) are also linked
to various diseases such as systemic lupus erythematosus [11],
hypertension-left ventricular hypertrophy [12], and rheumatoid
arthritis [13]. CNVs may account for a significant proportion for
the development of various eye diseases in many population stud-
ies with conflicting results (Table 1).

PCR-based arrays are commonly used to detect CNVs, in partic-
ular quantitative PCR (Q-PCR) are used to determine CNVs pre-
cisely for specific candidate genes. Q-PCR is considered as a most
reliable and cost effective method compared to conventional PCR
and Multiplex ligation dependent probe (MLPA) [12]. The occur-
rences of CNVs in genes are tending to be highly influential for
the individuals predicted to be at high risk for the development
of wet AMD. Candidate genes such as Complement Factor H
(CFH), vascular endothelial growth factor (VEGF), high temperature
requirement A-1 (HTRA1) and very-low-density receptor (VLDR)
with their putative functions are known to be responsible for the
development of wet AMD [14].

In the present study, we analysed the polymorphisms of the
three candidate genes; VEGF, HTRA1 and VLDR genes which are
identified to be associated with both risk of, and protection
against, AMD [15,16]. To our knowledge, there are lacks of report
on CNVs among wet AMD subjects particularly in Malaysia. This
led us to determine whether the CNVs in VEGF, HTRA1 and VLDR
genes could be possible contributor for the development of wet
AMD or not.
2. Subjects and methods

2.1. Study subjects

Based on clinical findings in this study, we recruited 245 sub-
jects [125 wet AMD and 120 without AMD cases] using an inclu-
sion and exclusion criteria as a basis for selection. Sample size
was adequate for the present study, which is a minimum sample
of 110 in each group was calculated based on the ratio of 1:1 for
case and control groups, was at significance level of P < 0.05 at
power 80% on the basis of prevalence of minor alleles referred from
previous studies [5,17].

Subjects who undergone comprehensive ophthalmic examina-
tions and diagnosed as wet AMD and presence of choroidal neovas-
cularization (CNV) in either or both eyes, were included in this
study [18]. The three main ethnicities (Malay, Chinese and Indi-
ans), both male and female subjects, were also included in this
study. Polypoidal choroidal vasculopathy and the other retinal dis-
orders were excluded by indocyanine green angiography (ICG)
method. Control subjects were free of any eye disorders at the time
of ascertainment. They were screened for a complete eye examina-
tion by the ophthalmologist and/or review of eye clinic charts.
Those with significant signs of retinal diseases such as central ser-
ous retinopathy, myopia, retinal dystrophies, diabetic retinopathy,
vein occlusion, uveitis and dry AMD were excluded from the con-
trol group. A questionnaire was prepared in both Malay and Eng-
lish languages and were distributed to all the subjects to assess
their demographic data, relevant medical history and smoking his-
tory. Both male and female subjects were recruited from the three
main ethnic groups: Malay, Chinese and Indian under this study. A
total of 5 ml of peripheral blood were drawn by phlebotomists into
an EDTA tubes for further analysis. Genomic DNA from peripheral
blood was isolated with QIAamp Blood DNA Mini Kit (QIAGEN,
Germany). The purity of extracted DNA was quantified by Nan-
odrop ND-1000 spectrophotometer (Nano-drop Technologies,
Wilmington, DE) and qualified using gel electrophoresis. Amplifi-
cation and annealing temperatures of the PCR products were opti-
mized using thermal cyclers (Thermo Fisher Scientific, Finland) as
in Table 2.

In this study, the qPCR method was used to determine the
genetic CNVs in VEGF, HTRA1 and VLDR genes. QPCR was per-
formed with the MiniOpticon Real-Time PCR System (Bio-rad Hun-
gary Ltd) based on the following thermal cycling conditions:
holding at 95 �C for 1.0 min, 40 cycles for 5 s at 95 �C for denatura-
tion and 20–30 s at 60–65 �C for the amplification of all genes. Indi-
vidual real-time PCR reactions were carried out in 20 ml volumes in
a 48-well plate containing 1.0 uL of genomic DNA, 10.0 uL 2X qPCR
BIO SyGreen Mix L0-Rox Master Mix, 0.8 uL of each primer and run
simultaneously with a Type-it CNV Reference Primer Assay accord-
ing to manufacturer’s instructions.

TERT (telomerase reverse transcriptase) is a single copy gene
that is used as endogenous reference genes for qPCR-based CNVs
validation [12]. However, in our study 10% of samples were
selected randomly and the assay was carried out on two separate
occasions and the results were consistent and identical. CNVs gain
is defined as CN higher than 2 (>2 copies), and CN lower than 2 (<2
copies) would be regarded as CNVs loss [19]. In the qPCR assay, the
cycle threshold (CT) value is defined as the number of cycles
required for the fluorescent signal to cross the threshold exceeds
background level. The CT values was generated from equivalent
standard curve mass points (target versus reference) which used
in the DCT calculation (CT target – CT reference, normalized by rel-
ative quantitative PCR (DDCT) then followed by CNVs ratio for-
mula calculation (2 � DDCt) with their sensitivity is commonly
used to validate the CNVs in association studies [20,21].

2.2. Statistical method

All statistical and analysis data were secured using statistical
software (IBM SPSS Statistics version 22, US). Logistic regressions,
t-tests and age-adjusted analysis of covariance were performed
to compare the frequencies of each copy number category
(CN = 0, 1, 2, or 3+) and the mean number of copies of each gene,
respectively, between the AMD subjects and controls. All numeri-
cal variables that were evaluated show normally distributed after
the Kolmogorov-Smirnov test analysis.

Logistic regression was used to compare the odds of wet AMD
among the various copy number levels. Analysis of covariance
was performed to compare the mean copy numbers for both cate-
gorical and continuous covariates. Statistical significance was
deemed to have been attained for all analysis when the p-value
was lower than 0.05 (P < 0.05).

Ethical approval

Ethical approval was obtained from the Ethics Committee of
Universiti Kebangsaan Malaysia (Reference: FF-2014-206) and
the University Ethics Committee for Research Involving Human
Subjects (Reference: MREC15, P008) under the Putra Grant, UPM
Project (No. 9409800) followed by the National Medical Research
Register (Reference: NMRR-14-1176-21475). This work also has
been carried out in accordance with The Code of Ethics of the
World Medical Association (Declaration of Helsinki) for experi-
ments in human. An informed consent was obtained from all the
subjects.
3. Results

3.1. Analysis of CNVS

Fig. 1 shows the amplification plots for quantitative copy num-
bers which were determined using differences in the amplification



Table 1
CNVs in AMD on various population studies.

Gene Disease Population CNV Methodology Reference

HTRA1 AMD Korea loss of 1 copy;<2 Q- PCR (SYBR) [14]
HTRA1 AMD Caucasian gain of 1 copy;>2 Duplex Real time PCR [20]
VLDR AMD Korea loss of 1 copy;<2 Q- PCR (SYBR) [14]
VEGF AMD Korea loss of 1 copy;<2 Q- PCR (SYBR) [14]
VEGF AMD Caucasian gain of 1 copy;>2 Duplex Real time PCR [20]

Table 2
Primer for the Quantization of the target Gene Copy Number Real Time PCR.

Gene PCR Primer Assay Cytoband Chromosome Amplicon Size (bp) Annealing temperature (�C)

HTRA 1 Forward primer
50-TGTCGAATAAGCACGTTTTCATAA-30

Reverse primer
50-CTCCAGCCACAACAATATGC-30

10q26.3 10 122 61.2

VEGF Forward primer
50-CGCACTGAAACTTTTCGTCCAA-30

Reverse primer
50-CTCTCCTCTTCCTTCTCTTCTTCC-30

6p12 6 43 61.7

VLDR Forward primer
50-CCTTCCCGGTGACGTTTCC-30

Reverse primer
50-GCCCTTCCCAACAAGACAGG-30

9p24 9 84 57.7

Fig. 1. The amplification plot for quantitative copy number were determined using
differences in the amplification of the gene of in interest (VEGF) relative to the
Reference primer Essay (RPA) Representative data show amplification plots for
participants of CN = 1, CN = 2, CN = 3 and CN = 4 for VEGF.
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of VEGF gene relative to the Reference primer assay (RPA). The con-
sistent amplification observed assured that equal amounts of geno-
mic DNA were used in each assay and amplification efficiencies
were similar to VEGF gene and the internal control TERT gene [22].

Table 3 shows the copy number frequencies in wet AMD sub-
jects and controls along with odds ratio and 95% confidence inter-
val. Quantitative copy numbers (CN = 0, 1, 2, 3 or 4) were
determined for the three AMD associated genes in each sample.
CNVs existed in both wet AMD and control groups. CN = 2 was
the predominant copy number genotype [20]. The unadjusted
and the age adjusted logistic regressions were performed to com-
pare CNVs frequencies between wet AMD and control subjects.
There was no significant differences observed in HTRA1 and VLDR
genes between the wet AMD subjects and the controls (P > 0.05).

For VEGF gene, both the unadjusted and age-adjusted data
showed associations with AMD. CN gain, CN = 3 (OR = 1.26; 95%
CI, 1.15–2.44: P = 0.036) and CN = 4 (OR = 0.39; 95% CI, 0.29–
1.87: P = 0.028) (P < 0.05). This showed CN gain, CN = 3 and
CN = 4 was a risk factor for wet AMD. The patient with CN gain
of the VEGF gene had wet AMD in the right eye (Fig. 2A–F).

The mean number of copies of each gene was calculated to
determine the trend towards increased or decreased copy numbers
among the subjects (Table 4). Comparisons between wet AMD and
controls were performed using two tail t-tests and age-adjusted
analysis of covariance. Both the unadjusted and age-adjusted data
showed that there was no association with wet AMD subjects for
HTRA1 and VLDR genes (P > 0.05). In contrast, a significant associa-
tion was observed between wet AMD subjects and controls
(P < 0.05) for the VEGF gene.

A total of 245 subjects of cases and controls (in Tables 5 and 6)
were divided into a higher age group (>60 years) and a lower age
group (<60 years) and the relationship between age and gender
was evaluated by conventional chi-square tests. All genes did not
show any significant association in age and gender except for the
VEGF case in terms of age (P < 0.05).

Clinical characteristics of all subjects: Table 7 summarizes the
demographic and the clinical parameters of all the subjects. Signif-
icant differences were observed within ethnic groups with 61.0%
for Chinese, 5.5% for Indians and 33.5% for Malays in case subjects
as compared to 36.0% for Chinese, 19.9% for Indians and 44.1% for
Malays which were observed for controls. There were significant
differences observed for ethnicity, hypertension, hypercholes-
terolemia, smoking and others between wet AMD subjects and
controls (P < 0.05). However, gender and diabetes mellitus did
not differ significantly (P > 0.05).

4. Discussion

Unravelling the genetics of AMD has been difficult. However,
recently a study showed that the innate immunity proved that
activation of the complement cascade plays a pivotal role in
AMD pathogenesis [23]. Moreover, extensive genetic studies of



Table 3
Copy number frequencies in AMD patients and controls.

Gene CNV AMD n (%) Control n (%) Unadjusted
OR (95% CI)

p-value Age-Adjusted
OR (95% CI)

p-value

HTRA1 0 6(4.8) 2(1.7) 0.34(0.28–1.73) 0.19 0.36(0.71–1.88) 0.22
1 4(3.2) 5(4.2) 1.28(0.33–4.90) 0.71 1.18(0.29–4.69) 0.81
2 113(90.4) 110(91.6) 1.0 – 1.0 –
3 2(1.6) 1(0.8) 1.94(0.24–2.78) 0.58 1.64(0.14–3.56) 0.68
4 0(0) 2(1.7) – – – –
Total 125(1 0 0) 120(1 0 0) – – – –

VEGF 0 2(1.6) 5(4.2) 1.42(0.46–2.80) 0.29 2.55(0.47–3.74) 0.27
1 2(1.6) 8(6.7) 2.12(0.80–6.73) 0.091 2.79(0.55–9.19) 0.21
2 102(81.6) 105(87.5) 1.0 – 1.0 –
3 9(7.2) 1(0.8) 1.26(1.15–2.44) 0.036* 1.86(1.08–2.65) 0.042*

4 10(8.0) 1(0.8) 0.39(0.29–1.87) 0.028* 0.89(0.22–2.29) 0.032*

Total 125(1 0 0) 120(1 0 0) – – – –

VLDR 0 10(8.0) 7(5.8) 0.68(0.25–1.87) 0.46 0.70(0.25–1.96) 0.5
1 8(6.4) 6(5.0) 0.73(0.24–2.19) 0.58 0.78(0.25–2.38) 0.66
2 102(81.6) 104(86.7) 1.0 – 1.0 –
3 3(2.4) 2(1.7) 1.52(0.25–9.34) 0.64 1.26(0.20–7.80) 0.8
4 2(1.6) 1(0.8) 2.03(0.18–4.84) 0.56 3.03(0.23–5.93) 0.39
Total 125(100) 120(100) – – – –

The frequencies of all CNV categories were compared using unadjusted and age-adjusted logistic regression, with CN = 2 as CN reference.
* P < 0.05.
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AMD have identified several DNA variants that alter AMD risk. It is
estimated that known genetic variants account for more than half
of the heritability of AMD [24].

In addition, several genome-wide association studies (GWAS)
and meta-analysis studies showed a strong relationship between
underlying genetic variants for AMD and their risk factors [1,19].
Meanwhile, CNVs are quite common in the human genome
although it is less abundant than SNP, which can have dramatic
phenotypic consequences as a result of altering gene dosage, dis-
rupting coding sequences or perturbing long-range gene regulation
[25].

Association studies on CNVs of genes involved in a specific func-
tion might contribute to AMD, has resulted in conflicting results.
Even though the association studies approach is widespread and
the lists of CNVs are increasing, still the complexity of AMD is
unclear. In this study, we examined the relationship between CNVs
of HTRA1, VEGF and VLDR genes and wet AMD subjects in Malaysia.

VEGF gene has been linked as a key mediator and involved in
angiogenesis and experimental choroidal neovascularization in
the retina that has consistently demonstrated as risk factor in
AMD disease [26]. Eyetech Study reported that VEGF gene plays
an important role in vascular growth as it is considered as a target
for inhibition therapy for AMD [27]. HTRA1 located at chromosome
10q26 and one of major locus that is associated with AMD. Irregu-
lation of HTRA1 gene may contribute to disturbance in the Bruch’s
membrane and retinal pigment epithelium (RPE) thus will lead to
AMD pathogenesis [28,29]. In addition, VLDR gene is a member of
the LDL receptor gene family and has a widespread expression in
many tissues. VLDR also involved in lipid transportation and
chronic inflammation through the Wnt pathway that lead to chor-
oidal neovascularization [30,31].

Recent work suggests that VEGF expression levels are signifi-
cantly increased in carriers of the risk haplotype associated with
AMD [32]. An association was found in this study between the
CN gain (CN = 3 and CN = 4) in the VEGF gene. This concurs well
with a study conducted in Korea [14]. However, there was no sig-
nificant association (P > 0.05) between HTRA1 and the VLDR gene
with the development of wet AMD in Malaysia. Similarly, a study
among the Caucasians of Anglo-Celtic ethnicity reported that there
was no significant association (P > 0.05) of HTRA1 gene in the
development of wet AMD [33]. The contradictory findings of HTRA1
and VLDR genes could be due to regional complexity in the human
genome. In addition, sampling bias, environmental factors, other
gene interactions and ethnic differences could be possible explana-
tions for the contradictory findings.

In this study, CN gain; CN = 3 and CN = 4 of the VEGF gene was a
risk for the development of wet AMD among Malaysian subjects.
These findings are well in accordance with the study conducted
among Korean population [14]. The deletion or CN loss (CN = 0 &
1) of CNVs in genes could protect against wet AMD and the dupli-
cation; CN gain (CN = 3 & 4) could be a risk for AMD [34,35]. We
demonstrated the results of HTRA1, VEGF and the VLDR gene with
age using logistic regression analysis (Table 3), analysis of covari-
ance to determine mean copy numbers for all subjects (Table 4)
and chi-square tests (Tables 5 and 6). For gender, the trend tended
to increase with age between 40 and 70 years in both males and
females. However, the frequency of all genes in the highest age
group showed a decrease in both genders (Table 6).

We have developed a simple and reliable real-time qPCR assay
for determining CNVs for VEGF, HTRA1 and VLDR genes. This
method is designed to detect all larger deletions and duplications
affecting candidate genes and the regulatory region [36]. SYBR
Green real-time qPCR has been used for analysis of copy number
variation. SYBR Green emits strong fluorescence on excitation
when binding double stranded DNA. Compared to TaqMan, the
SYBR Green labelling is inexpensive although its detection is prone
to lack of specificity [37].

AMD is the most common diagnosis for subjects aged between
50–80 years and this is reflected in other population studies such
as America [20] and Taiwan [4]. Prevalence increases substantially
with increasing age [35]. Age plays an important role in the devel-
opment of AMD which is common in adults [38]. The majority of
the wet AMD subjects in this study were Chinese followed by
Malays and Indians (Table 7). This scenario was similar in another
study where the study population consisted of 60.2% Chinese com-
pared to 20.3% Malays and 19.5% Indians [39]. The smoking factor
was highly associated with AMD as reported by Spencer et al. [40]
and this finding was consistent with the present study where
smoking interacted significantly with wet AMD compared to the
control subjects (P < 0.01). Smoking could increase oxidative stress
to tissues which could in turn increase the susceptibility of AMD
[41]. According to Donaldson et al. [42], high cholesterol has also
been associated with wet AMD. In the present study, hypercholes-
terolemia showed an association among wet AMD subjects



Table 4
Mean copy numbers in AMD patients and controls.

GENES Unadjusted Age-adjusted

AMD Control P AMD Control P

HTRA1 2.0 ± 0.0 2.03 ± 0.266 0.15 2.0 ± 0.0 2.03 ± 0.266 0.13
VEGF 2.17 ± 0.57 2.01 ± 0.19 0.007* 2.17 ± 0.57 2.01 ± 0.19 0.026*

VLDR 2.03 ± 0.27 2.01 ± 0.19 0.55 2.03 ± 0.27 2.01 ± 0.19 0.49

Data presented as mean ± SD in both unadjusted and age-adjusted results and calculated by using analysis of covariance.
* P < 0.05.

Fig. 2. Fundus photographs in patient with CNV duplication. (A) A 59 year old woman with duplication at VEGF gene showed wet AMD with marked leakage at level of the
retina in the right eye. (B) The left eye shows no abnormality. (C) Fluorescein angiography (FFA) shows confluent intraretinal fibrosis and retinal oedema of the macula area
together with abnormal vascular network in the right eye. (D) The left eye have normal vascular network arrangement. (E) Optical Coherence Tomography (OCT) shows the
photoreceptor cell atrophy and focal elevations of retinal pigment epithelial layer in the right eye. (F) For left eye, the image shows junction of photoreceptor looks normal
and in a good arrangement.
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(P < 0.05). Hypertension was associated with AMD in India [6] and
Maryland [43] and these finding were consistent with our study
where hypertension was highly associated with wet AMD com-
pared to the control subjects (P < 0.01). Although relatively few
studies reported that diabetes [44] is one of the risk factors for
AMD, this study failed to show an association with diabetes among
wet AMD subjects (P > 0.05).
5. Limitations of the study

Although our study determined the evidence of the association
between CNVs of VEGF gene and wet AMD, the present study has
to be interpreted within the context of its limitations. First, the cur-
rent sample sizes might have offered insufficient power because of
stratification of three ethnicities. Second, the subjects were not



Table 7
Demographic and clinical features of study participants.

AMD
(n = 125)

CONTROL
(n = 120)

p-value

Age 69.05 ± 8.64 64.45 ± 11.19 <0.01*

Gender Male 81 (64.8) 87 (71.6) 0.11
Female 44(35.2) 33(28.4)

Ethnic Chinese 77 (61.0) 42(36.0) <0.01*

Indian 7(5.5) 25(19.9)
Malay 41(33.5) 53(44.1)

Diabetes mellitus Yes 37(29.7) 44(36.4) 0.117
No 88(70.3) 76(63.6)

Hypertension Yes 76(59.7) 49(40.7) <0.01*

No 49(40.3) 71(59.3)

Hypercholesterolemia Yes 18(13.1) 1(1.7) <0.01*

No 107(86.9) 119(98.3)

Smoking Yes 23(17.8) 47(39.8) <0.01*

No 102(82.2) 73(60.2)

Others (Ischemic heart disease, Stroke) Yes 28(19.5) 10(7.6) <0.01*

No 97(80.5) 110(92.4)

Data presented as mean ± SD for age and as n (%) for all other type.
* P < 0.05.

Table 5
Effect of Age on CNVs of AMD.

Gene Case Distributiont Control Distributiont

CNV <60 Years >60 Years P-Value <60 Years >60 Years P-Value

HTRA1 <2 2(5.2) 8(8.6) 0.794 2(3.0) 5(6.5) 0.777
2 17(94.8) 96(89.7) 34(94.0) 76(91.3)
>2 0(0) 2(1.7) 1(3.0) 2(2.2)
TOTAL 19(100) 106(100) 37(100) 83(100)

VEGF <2 1(4.9) 3(1.8) 0.007* 5(15.4) 8(9.9) 0.597
2 15(82.6) 87(95.1) 32(84.6) 73(87.4)
>2 3(12.5) 16(3.1) 0(0) 2(2.7)
TOTAL 19(100) 106(100) 37(100) 83(100)

VLDR <2 5(15.5) 13(11.9) 0.413 4(13.3) 9(10.0) 0.274
2 13(78.8) 89(85.5) 31(83.3) 73(87.8)
>2 1(5.7) 4(2.6) 2(3.4) 1(2.2)
TOTAL 19(100) 106(100) 37(100) 83(100)

t Values are n (%).
* P < 0.05.

Table 6
Effect of Gender on CNVs of AMD.

Gene Case Distributiont Control Distributiont

CNV Male Female P-Value Male Female P-Value

HTRA1 <2 7(10.6) 3(6.8) 0.721 6(6.6) 1(2.9) 0.773
2 72(88.9) 41(93.2) 79(91.2) 31(94.2)
>2 2(0.5) 0(0) 2(2.2) 1(2.9)
TOTAL 81(100) 44(100) 87(100) 33(100)

VEGF <2 3(3.8) 1(2.2) 0.818 7(7.8) 6(20) 0.061
2 64(80) 38(84.4) 78(90.0) 27(80)
>2 14(16.2) 5(13.4) 2(2.2) 0(0)
TOTAL 81(100) 44(100) 87(100) 33(100)

VLDR <2 10(10.0) 8(8.9) 0.061 7(10.9) 6(10.7) 0.851
2 68(86.3) 34(89.0) 78(86.9) 26(85.7)
>2 3(3.7) 2(2.1) 2(2.2) 1(3.6)
TOTAL 81(100) 44(100) 87(100) 33(100)

*P < 0.05.
t Values are n (%).
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age-matched and it is possible that populationswith specific genetic
backgrounds could affect the resultswhen compared to thewestern
populations. Besides, discrepancies may also be related to study
designs andmethodologies used. Consequently, there couldbeother
candidate geneswere not included as our target genes thatmay con-
tribute well to the pathogenesis of wet AMD.
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6. Conclusion

The duplication or CN gain (CN = 3 and CN = 4) of the VEGF gene
was associated with the development of wet AMD among Malay-
sian subjects. In conclusion, CNVs of VEGF gene might be a possible
genetic marker for the development of wet AMD among
Malaysians.
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