Phenotypic variability in patients with isodicentric Y(p11.3). A clinical, cytogenetic and molecular study

Nahla A. Nazmy, Soha F. Kholeif and Amal K. Behery

Human Genetics Department, Medical Research Institute, University of Alexandria

ABSTRACT

Introduction: Isodicentric (idic) chromosomes are the most common Y structural abnormalities and their influence on gonadal and somatic development is extremely variable. The prediction of their phenotypic consequences is often difficult because of the variety of genomic sequences concerned by duplications and deletions, and the variable degrees of mosaicism, 45, X cell line in particular, in various tissues.

The Aim: This study was conducted to provide more information on patients with idic (Yq) allowing a better phenotype-karyotype correlation and understanding the sexual differentiation in these patients.

Patients and Methods: The study included 14 patients referred to the out patient clinic of the Human Genetics Department, Medical Research Institute, University of Alexandria. The reason for referral was genital ambiguity [8 patients], short stature with variable Turner stigmata [4 patients] and primary amenorrhea with normal height [2 patients]. All patients were subjected to clinical examination and chromosome analysis by GTG and CTG-banding techniques. Fluorescence in situ hybridization (FISH) and polymerase chain reaction (PCR) were done to determine the structure of the marker chromosomes detected by conventional methods.

Results: Chromosome analysis revealed a 45, X/46, X,idic (Y) (p11.3) in ten patients with variable degree of mosaicism, non mosaics 46, X, idic (Y) (p11.3) in two patients and a predominant 46, XX cell line along with 47, XX, idic (Y) (p11.3) cell line in two other patients. While the patients with an idic (Yq) described in this report were phenotypically different, all are considered as being at increased risk for gonadoblastoma.

The great phenotypic variations seen in patients with an isodicentric Y chromosome greatly limit the genotype – phenotype correlation.

Key Words:
Isodicentric Y, mosaicism, FISH, SRY, phenotype genotype correlation

Corresponding Author:
Dr: Nahla A. Nazmy
E-mail: nahlaan@hotmail.com
INTRODUCTION

Isodicentric chromosomes are the most commonly reported aberrations of the human Y chromosome. As they are unstable during cell division, and can generate various types of cell lines, most reported patients are chromosomal mosaics, generally including a 45, X cell line. Phenotypes depend on the localization of the break points as well as on the proportion of each cell line and vary from male to female or individual with ambiguous genitalia. Phenotypic variability is known also to depend on the degree of mosaicism in various tissues. However, clinical expression seems to be related to the genomic capital of the Y chromosome, mainly the Y genes involved in the control of the process of the determination of gonads (Yp) and spermatogenesis (Yq) as well as control of growth and skeletal development (Yp). The clinical features are therefore very variable: 75-80% of patients have short stature and 65-75% have an abnormal or ambiguous sexual development. The most likely mechanism of formation of the isodicentric chromosome is by an isochromatid break, followed by a U-type exchange. Breakpoints in the short arm will lead to a duplication of the entire long arm and a part of the short arm (idic(Yq)), while breakpoints in the long arm lead to the duplication of the entire short arm and part of the long arm (idic(Yp)).

The presence of the pericentromeric Y sequences in patients with gonadal dysgenesis is clinically crucial, since they have an increased risk of developing gonadoblastoma. The purpose of the present study is to provide more information on patients with isodicentric Yq chromosome, allowing a better phenotype-karyotype correlation and understanding the sexual differentiation in these patients. An accurate diagnosis in these patients is essential not only to their follow up, but also to provide appropriate genetic counseling.

PATIENTS AND METHODS

The study included 14 patients referred to the outpatient clinic of the Human Genetics Department, Medical Research Institute, University of Alexandria. The reason for referral was genital ambiguity [8 patients], short stature [4 patients] and primary amenorrhea [2 patients]. They were identified during cytogenetic analysis of 612 patients with abnormal sexual differentiation.

Patients were subjected to pedigree construction, clinical genetic examination with special emphasis on examination of the external genitalia, and chromosome analysis on cultured lymphocytes following trypsin G-banding technique. At least 50-80 metaphases were scored for each patient to determine the propor-
tion of cell line mosaicism, and 6-10 cells were karyotyped. C-banding was performed to all patients to confirm the presence of the heterochromatic region on the distal end of the long arm of the Y chromosome.

Fluorescence in situ hybridization [FISH] was performed to ensure finer characterization of marker chromosomes detected by routine methods and also to extend the number of cells investigated allowing more precise evaluation of the mosaicism. FISH was performed using CEPX /CEPY dual color DNA probe [Vysis, CEPX/Y consists of alpha satellite DNA specific to the centromere region Xp11.1- q11.1 (DXZ1) directly labeled with spectrum green and mixed with probe specific to alpha satellite DNA sequences contained within the centromere region Yp11.1-q11.1 (DYZ3) directly labeled with spectrum orange]. The protocol followed was that provided by the manufacturer. At least 200 interphases were scored as well as metaphases showing good quality signals.

DNA analysis by PCR was done to all patients. DNA samples were analysed for the presence of Y chromosome sequences using the Y specific PCR primers DYZ3 at the centromere and SRY at Yp11.32. Genomic DNA was then isolated from peripheral blood leucocytes by standard methods. The highly repetitive sequence in the Y centromere (DYZ3) was amplified by using a primer set 5’-TGAAAAACTGCACAGAAGCTG - 3’/5’ - ACA-CATCACAAGAAGAATG-3’. The whole coding region of the SRY gene was amplified as two overlapping fragments using two primer sets (5’-TTGAGAATGAAATACAT TGT-CAGGG - 3’/5’ - GGGTCGCTTCACCTATCCTG-3’ and 5’-CAGTGTCGAAACGGAGAAAACAGT-3’ /5’ - CTTTGCATGT TAATCGTGTTGACAC-3’).

Patients were referred for ultrasound examination, laparotomy and gonadal biopsy when feasible.

RESULTS

Clinical data of the 14 patients included in this study demonstrated that 8 patients had ambiguous genitalia, 4 were phenotypic females with short stature and some Turner stigmata, and two were phenotypic females with primary amenorrhea (Table 1).

As regards the eight patients (8/14) presenting with ambiguous genitalia, the assigned sex was male in 5 cases and female in 3 cases. All cases assigned as males had micropenis, perineoscrotal hypospadius, and undescended testes. Cases assigned as females had enlarged clitoris and abnormalities of labia majora.

Four patients (4/14) were phenotypic females with short stature. They showed variable degrees of Turner stigmata, poorly developed secondary sexual characters (4/4), low posterior hair line (3/4), webbing (2/4), cubitus vulgus (2/4), widely spaced nipple and shield shaped chest in one case.

Two phenotypic female patients (2/14) presented with primary amenorrhea and normal height. One had enlarged clitoris, blind vaginal pouch, bilateral testes in the labia and no uterus. The other one had normal female external genitalia.
The final karyotypes for all cases are summarized in (Table 1). Standard G-banding on blood lymphocytes, and FISH analysis showed that 10 patients had a 45,X cell line along with the idic (Y) (Figure 1). Two female patients were found to have a non mosaic idic(Y), one with ambiguous genitalia and one with primary amenorrhea. Two other female patients had a predominant 46,XX cell line along with 47, XX, idic (Y) cell line. C–banding confirmed the presence of the heterochromatic region on the long arm of Y chromosome, the abnormal Y chromosome showed a darkly stained band at the end of both arms, indicating the presence of two distal heterochromatic regions (Figure 2). With GTG and CBG banding, only one primary constriction was visible in all cells analyzed, probably meaning that the Y chromosome possessed only one active centromere, the other being inactivated. FISH confirmed the origin of Y chromosome. In all patients, a double–hybridization signal was observed in the derivative chromosome for probe DYZ3, corresponding to double centromeric region (Figure 3). PCR analysis confirmed the presence of the Y centromere and the SRY gene in all patients. The presence of testis determining gene (SRY) indicated a breakpoint close to the distal end of Yp at Yp11.3.

Fig. 1: G-banded karyotype 46, X,+marker.
Fig. 2: C-banded metaphase showing the presence of two heterochromatic regions on the long arm of isodicentric Y chromosome.

Fig. 3: FISH probes for centromeric X (CEPX, spectrum green hybridizes to the centromere of human X chromosome) and for centromeric Y sequence DYZ3 (CEPY, spectrum orange hybridizes to the centromere of human chromosome Y):

a- Interphase cell showing one green signal of the X chromosome and no red signals of the Y chromosome.

b- Metaphase showing one green signal of the X chromosome and no red signals of the Y chromosome (45, X).

c- Interphase cell one green signal of the X chromosome and two red signals of the Y chromosome.

d- Metaphase showing one green signal of the X chromosome and two red signals of the Y chromosome (46, X, idicY).
Phenotypic variability in patients with isodicentric.

<table>
<thead>
<tr>
<th>Pat. No.</th>
<th>Age in years</th>
<th>Assigned sex</th>
<th>Presenting symptom</th>
<th>External genitalia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>Female</td>
<td>Primary Amenorrhea</td>
<td>N.female</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>Female</td>
<td>AG</td>
<td>Enlarged clitoris, hypoplastic labia</td>
</tr>
<tr>
<td>3</td>
<td>1/12</td>
<td>Female</td>
<td>AG</td>
<td>Enlarged clitoris, fused labia</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>Female</td>
<td>SS (153cm) Primary amenorrhea</td>
<td>N.female</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>Male</td>
<td>AG</td>
<td>Micopenis, perineoscrotal hypospadias, undesc testis</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>Female</td>
<td>SS (119cm)</td>
<td>N.female</td>
</tr>
<tr>
<td>7</td>
<td>7/12</td>
<td>Male</td>
<td>AG</td>
<td>Micopenis, perineoscrotal hypospadias, undesc testis</td>
</tr>
<tr>
<td>8</td>
<td>7/12</td>
<td>Male</td>
<td>AG</td>
<td>Micopenis, perineoscrotal hypospadias, undesc testis</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>Male</td>
<td>AG</td>
<td>Micopenis, perineoscrotal hypospadias, undesc testis[rt]</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>Female</td>
<td>SS (120cm) Primary amenorrhea</td>
<td>N female</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Male</td>
<td>AG</td>
<td>Empty scrotum, perineoscrotal hypospadias, enlarged phallus</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>Female</td>
<td>SS (139cm) Primary amenorrhea</td>
<td>N. female</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>Female</td>
<td>AG</td>
<td>Enlarged phallus, hypertrophied labia, no vaginal opening</td>
</tr>
<tr>
<td>14</td>
<td>19</td>
<td>Female</td>
<td>Primary Amenorrhea</td>
<td>Enlarged clitoris, blind vagina</td>
</tr>
</tbody>
</table>

AG: ambiguous genitalia; SS: short stature; N: normal; rt : right; abd testis: abdominal testis; low HL: low
<table>
<thead>
<tr>
<th>Internal genitalia</th>
<th>Gonads</th>
<th>Turner stigmata</th>
<th>karyotype [G-banding&FISH]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. uterus</td>
<td>Small ovaries</td>
<td>-</td>
<td>46,XX[64%]/47,XX,idic(Y)[36%]</td>
</tr>
<tr>
<td>N. uterus</td>
<td>Small ovaries</td>
<td>-</td>
<td>46,XX[80%]/47,XX,idic(Y)[20%]</td>
</tr>
<tr>
<td>N. uterus</td>
<td>Small ovaries</td>
<td>-</td>
<td>45,X[54%]/46,XX[24%]/46,X,idic(Y)[22%]</td>
</tr>
<tr>
<td>Hypoplastic uterus</td>
<td>Streak gonads</td>
<td>Poor 2ry sexual characters, cubitus vulgus</td>
<td>45,X[12%]/46,X,idic(Y)[88%]</td>
</tr>
<tr>
<td>Hypoplastic uterus</td>
<td>Streak gonads</td>
<td>-</td>
<td>45,X[62%]/46,X,idic(Y)[38%]</td>
</tr>
<tr>
<td>Hypoplastic uterus</td>
<td>Streak gonads</td>
<td>Low HL, poor 2ry sexual characters, cubitus vulgus</td>
<td>45,X[73%]/46,X,idic(Y)[27%]</td>
</tr>
<tr>
<td></td>
<td>Abd. testis</td>
<td>-</td>
<td>45,X[68%]/46,X,idic(Y)[30%]/47,XY,idic(Y)[2%]</td>
</tr>
<tr>
<td></td>
<td>Abd. testis</td>
<td>-</td>
<td>45,X[55%]/46,X,idic(Y)[45%]</td>
</tr>
<tr>
<td></td>
<td>Testis at the pubic tubercle[rt]</td>
<td>-</td>
<td>45,X[64%]/46,X,idic(Y)[26%]</td>
</tr>
<tr>
<td>hypoplastic uterus</td>
<td>Streak gonads</td>
<td>Webbing, low HL, widely spaced nipple, no development of 2ry sex characters</td>
<td>45,X[58%]/46,X,idic(Y)[42%]</td>
</tr>
<tr>
<td></td>
<td>Abd. testis</td>
<td>-</td>
<td>45,X[30%]/46,X,idic(Y)[70%]</td>
</tr>
<tr>
<td>Hypoplastic uterus</td>
<td>Streak gonads</td>
<td>Webbing, low HL, poor 2ry sex characters</td>
<td>45,X[82%]/46,X,idic(Y)[18%]</td>
</tr>
<tr>
<td>No uterus</td>
<td>Bilateral testes in labia</td>
<td>-</td>
<td>46,X,idic(Y)</td>
</tr>
<tr>
<td>No uterus</td>
<td>Bilateral testes in labia</td>
<td>-</td>
<td>46,X,idic(Y)</td>
</tr>
</tbody>
</table>

hair line; undesc testis: undescended testis.
DISCUSSION

Due to instability of isodicentric chromosomes during cell division, several types of cell lines are found in the great majority of patients with an idic (Y), all presumably descendants of a progenitor and unstable idic (Y) chromosome12. Such mosaic patients exhibit a phenotype ranging from female with features of Turner syndrome and streak gonads (~50%), males with azoospermia, hypospadias and small/abnormal testes (~30%), to individuals with sexual ambiguity and gonadal dysgenesis (~20%)2,4,13. Short stature is also a common finding, with no regard to the sexual differentiation of the patient15. Predicting the phenotypic consequences of different duplications and deletions of dicentric Y chromosomes is usually complicated by varying degrees of mosaicism (45, X cell line), which may, in some cases, remain undetected14.

Mosaicism as well as phenotypic variability were features present in our patients. Ten of the patients (10/14) in the present study had a 45, X cell line along with the idic (Yq). Six presented with ambiguous genitalia and 4 with short stature and some Turner stigmata. Similarly Tuck-Muller et al.13, Bergendi et al.15, and Robinson et al.16 showed the presence of virtually all euchromatin, including SRY in patients with features of Turner syndrome and an isodicentric (Yq) chromosome. Nonomura et al.17 reported monochorionic monozygotic twins with discordant sexual phenotype due to different ratios of mosaicism 47, X, idic (Y), idic (Y) /46, X, idic (Y) /45, X. Two other female patients (2/14) in the present study had 46, XX cell line along with 47, XX, idic (Y) (one had normal female phenotype and primary amenorrhea, and the other had clitoral enlargement). Similar types of mosaicism was previously reported18-20. As pointed out by Hsu4, Tuck-Muller et al.13 and Bouayed Abdelmoula and Amouri14 in their respective reviews of idic (Y) cases, the sexual differentiation of patients probably depends on the distribution of the 45, X cell line in various tissues, including the gonads. It has been proposed that the predominance of XO or XY cells determines gonadal differentiation into a streak gonad or a testis3,21. However, studies on gonadal tissue are hindered by the fact that it is rarely available for analysis, and a more easily-accessible tissue is usually studied22.

The absence or mutation of SRY on the isodicentric Y chromosome is another factor that adds diversity to the phenotype23. Six cases presented here have cells containing SRY but exhibit a female phenotype. Previous cytogenetic studies demonstrated that about 4–6.2% of patients with Y chromosome mosaicism are phenotypically females regardless of the presence of SRY16,24,25. It is thought that the development of a male phenotype is initiated early in development by action of the SRY gene product in the cells of the developing gonadal ridge. It appears that in patients exhibit a female habitus, absent or insufficient SRY transcript to specify a male phenotype was present in this tissue at the appropriate time during development26, Robinson et al.16 concluded that the majority of structurally abnormal Y chromosomes found in Turner syndrome patients contain two copies of virtually all the Y euchromatin, but although all patients with a Y isodicentric carried the testis determining factor gene SRY, the mosaic nature of their karyotypes rendered this insufficient to induce a male phenotype. The
degree and distribution of the 45, X cell line seem to be decisive factors in phenotype determination.

Two patients (2/14) in the present study had a non-mosaic karyotype in blood lymphocytes with idic (Yq) chromosome containing SRY, but still had female phenotype with bilateral testes in the labia majora DesGroseilliers et al.1 reported similar non mosaic cases. In such cases, it is possible that the isodicentric Y chromosome was stabilized early on during gametogenesis in the father, through inactivation or synergic action of the centromeres4,27. Ulder et al.28 concluded that they must be cryptic mosaics with an unidentified 45, X or other cell line lacking SRY. It is also possible that they carry a point mutation in SRY inhibiting its action29. The various degrees of mosaicism seen in patients could thus reflect the instability of the idic (Y) and the variable moment of its stabilization during embryogenesis.27

Some indication as to the origin of Y isodicentrics can be deduced from the fact that a normal 46, XY cell line was absent from all cases. However, the absence of a detectable 46, XY cell line in all 13 isodicentric cases described by Robinson et al.16 and in 99 of the 102 described by Hsu et al.4 strongly suggests that such errors are more likely to occur during gametogenesis before the spermatid stage, or during the first division after fertilization. This suggests that the abnormal Y chromosome was either (1) present in the sperm before fertilisation and resulted from an error during gametogenesis before the spermatid stage because two chromatids are required to generate these rearrangements, or (2) arose from an error in the first zygotic division. Errors occurring after the first zygotic division would result in mosaicism including a normal cell line. It can be argued that if the error occurred at a very early stage in development such mosaicism would be in many cases undetectable.

Because women with gonadal dysgenesis and Y material are at higher risk (15-20\%) of developing gonadoblastoma30, all our female patients were referred for surgical removal of their gonads. The putative gonadoblastoma locus (GBY) hypothesized by Page is thought to correspond to the TSPY gene (testis-specific protein Y-encoded)31, which has clusters in several loci on both the short and the long arm of the Y chromosome32,33. The fact that there may be multiple GBY loci on the Y chromosome could explain why such tumors have been reported in both idicY with breakpoints in the long and short arms.3,4

CONCLUSION

The great phenotypic variations seen in patients with an isodicentric Yq chromosome greatly limit the genotype – phenotype correlation. This variability is explained by the degree of mosaicism in different tissues. To improve the genotype-phenotype correlation, it is useful to analyze more than one tissue, as significantly different proportions of various cell lines can be found and to perform histological studies of the gonads. Molecular definition of the breakpoints will also provide more information, allowing for a better genetic counseling.

FISH analysis is a powerful tool in defining the Y rearrangement, and extending the number of cells investigated allowing a more precise evaluation of the
Phenotypic variability in patients with isodicentric mosaicism. Molecular study by PCR technique is also needed to better characterize the chromosomal breakpoints and the deletion intervals.

Our findings and an extensive review of the literature emphasize the importance of detailed molecular analysis of abnormal Y chromosomes before any general conclusions can be reached concerning the relative effects of the Y chromosome abnormality and mosaicism on sexual differentiation.

REFERENCES

20. Fernandez R, Pasaro E. Molecular analysis of an idic (Y) (qter -->p11.32: p11.32-->qter) chromosome from a fe-

27. Kohler MR, Vogt PH. Interstitial dele-
Phenotypic variability in patients with isodicentric.

