Holoprosencephaly is a common developmental defect of the forebrain and midface in humans. Clinical expression is variable, extending in unbroken sequence from a small brain with a single cerebral ventricle and cyclopia to clinically unaffected carriers in familial holoprosencephaly. Here, we describe two unrelated affected cases, with alobar, and semilobar holoprosencephaly with different presentations and clarified the associated phenotypic changes in form of microcephaly, hypotelorism, flat nose, a single nostril, a midline cleft lip and palate in the first case and solitary median maxillary central incisor, associated with prominent midline palatal ridge in the second case.

Key words: Holoprosencephaly, ocular hypotelorism, central incisor, microcephaly, cleft lip.

Corresponding Author:
Dr: Rabah M. Shawky
Email: shawkyrabah@yahoo.com

INTRODUCTION

Holoprosencephaly (HPE, MIM 236100) is a complex human brain malformation resulting from incomplete cleavage of the prosencephalon into right and left hemispheres, occurring between the 18th and the 28th day of gestation. Three levels of increasing severity are described: lobar HPE, where the right and left ventricles are separated, but with some continuity across the frontal cortex; semilobar HPE with a partial separation, and the most severe form, alobar HPE, with a single brain ventricle and no interhemispheric fissure. Holoprosencephaly is the most common forebrain developmental anomaly in humans with prevalence of 1/16,000 in live births, an incidence as high as 1:250 in conceptuses, and a worldwide distribution. The etiology of HPE is very heterogeneous. First, this pathology can be caused by environmental or metabolic factors. The only formally recognized environmental factor is insulin-dependent diabetes mellitus (1% risk of HPE) and maternal alcoholism with a risk that cumulates with smoking. HPE in humans has also been noted in association with prenatal exposure to drugs (retinoic acid, cholesterol biosynthesis inhibitors) or to infections (cytomegalovirus, toxoplasma, rubella). The OMIM classification shows that HPE can also be associated in about 25% of the cases with several
defined multiple malformation syndromes with a normal karyotype, like Smith-Lemli-Opitz, Pallister Hall or velo-cardio-facial syndrome. HPE can be due to chromosomal abnormalities, with a higher prevalence observed in trisomy 13 (70%), trisomy 18 and triploidy. Finally, HPE may be a solitary manifestation (neither chromosomal nor syndromic) and several genes are implicated in this isolated form of HPE. To date, seven genes have been positively implicated in HPE: Sonic hedgehog (SHH), ZIC2, SIX3, TGIF, PTCH, GLI2, and TDGF1. A molecular diagnosis can be performed by gene sequencing and allele quantification for the four main genes SHH, ZIC2, SIX3 and TGIF. In most of the cases of HPE, facial anomalies are observed, like cyclopia, proboscis, median or bilateral cleft lip/palate in severe forms, ocular hypotelorism or solitary median maxillary central incisor in minor forms. Children with HPE have many medical problems; developmental delay and feeding difficulties, epilepsy, instability of temperature, heart rate and respiration. Endocrine disorders like diabetes insipidus, adrenal hypoplasia, hypogonadism, thyroid hypoplasia and growth hormone deficiency are frequent.

Case report (1):
An infant girl 3 months old, 4th offspring of a consanguineous marriage between healthy parents. She was born at full term. The mother was not diabetic and she had history of rash, during the 3rd trimester, most probably drug rash. The birth weight was 3000 gms, and she was incubated for 6 days because of feeding problems. Pedigree analysis revealed one female sibling 1st offspring with talipes equinovarus, died at one day old, and another female sibling 3rd offspring with microcephaly died at age of 4 months without knowing the cause of death. There was also a maternal history of spontaneous abortion at 16 weeks gestation. Also there was history of a maternal cousin who had a gestation terminated at 6th month because of anencephaly. The examination revealed an infant with a microcephaly (below the 3rd centile), hypotelorism, blue sclera, macrocornea (Figure 1), flat nose, a single nostril (Figure 2), a midline cleft lip and small cleft palate and large ears (Figure 3). There were no clinical features suggestive of trisomy 13 or trisomy 18. With a clinical diagnosis of holoprosencephaly (HPE), a CT scan was done, which showed, alobar HPE, marked hydrocephalic changes involving the ventricular system with atrophy of bilateral frontal and tempoparietal regions (Figure 4). Echocardiography showed no cardiac lesion. Pelviabdominal ultrasound was normal. The result of chromosomal analysis of peripheral blood lymphocytes from this child was normal.

Fig. 1: Microcephaly, hypotelorism, midface hypoplasia, premaxillary agenesis, midline cleft lip, and small cleft palate.
Case report 2:

A one year old boy, the second in order of birth of a non consanguineous marriage. He presented to us with delayed mental and motor milestones of development and history of convulsions. There was no history suggestive of a teratogenic insult. The first pregnancy for the 24-year old mother, produced a female stillbirth (at 9 m. gestation). Pedigree analysis revealed a maternal cousin 2.5y old boy with sickle thalassemia and convulsions.

On examination, the weight was 7 kg (below the 5th centile) and length was 73.5cm (at the 25th centile). His skull circumference was 39.5 cm (below the 3rd centile). He had nystagmus. The most striking anomaly in his face was a solitary median maxillary central incisor (Figure 5), and prominent midline palatal ridge (Figure 6). The external ears were large. No cleft lip or cleft palate, but there was micrognathia. The anterior abdominal wall examination revealed paraumbilical hernia. Neurological examination revealed spasticity and hyperreflexia.

MRI examination of the brain was undertaken. Semilobar holoprosencephaly is shown by absent anterior falx cerebri, no differentiation of the anterior horns of the lateral ventricles with bifrontal fusion showing gray and white matter continuity. Partial thalamic fusion is noted. Hypoplastic corpus callosum.
Holoprosencephaly: A report of 2 cases with different presentations

DISCUSSION

HPE is a complex brain malformation resulting from incomplete cleavage of the prosencephalon, affecting the forebrain. Therefore, clinical manifestations involve the central nervous system with possible facial dysmorphism and various complications. A spectrum of craniofacial anomalies accompanies HPE in approximately 80% of affected individuals. In the majority of individuals with HPE, a correlation exists between the facial anomalies and the subtype of HPE; however, many examples exist in which this correlation cannot be made, particularly in individuals with milder forms of HPE. The first case reported here was, a girl with holoprosencephaly and cleft lip and palate, who had a female sibling with microcephaly and a maternal cousin who had a history of a stillbirth with anencephaly. Heussler et al. reported that microcephaly is microforms of HPE that can be observed in relatives of probands with HPE. The craniofacial anomalies of our 2 cases were extremely variable; severe in the first case with alobar HPE, and mild in the second case with semilobar HPE. DeMyer et al., suggested that the type of brain malformation can be predicted by the facial development; the closer it approaches to the normal, so does the brain. However, several other studies have implied that this is not necessarily so. Miller reported a case with severe degree of facial anomaly, while the brain revealed absence of olfactory bulbs as the only abnormality, contrary to the expected HPE. This suggests that other modulatory factors are involved in the stages of morphogenesis of embryonally related structures. As regards eye changes, the eyes of the first case showed severe hypotelorism, blue sclera, and macrocornea, and in the second case the eyes were normal. Arathi et al., reported that the eye changes in HPE may vary from gross to subtle. As regards palatal anomalies in the first case there was cleft palate and in the second case there was midline palatal ridge. Kjaer et al., reported that in HPE the palatal anomalies include various midline and lateral clefts, midline palatal ridge, bifid uvula, and absence of the superior labial frenulum. In the second case there was a single central incisor. Although a single central incisor is a nonspecific finding, it is a distinctive microform in autosomal dominant HPE. There was paraumbilical hernia in the second case. Jellingen et al. reported that systemic examination of the HPE cases may reveal varying degrees and
patterns of extracerebral abnormalities. They found associated anomalies in other organs in 53.5% cases, the commonest being in the gastrointestinal system. The authors stated that there is considerable heterogeneity of associated malformations in the CNS and even greater outside the CNS, due to widespread varied developmental disturbances. The etiology of HPE midline defects in man is not known. Association of the disorder with various recessively inherited syndromes suggests a genetic basis. In general, HPE with few or no extracerebral systemic anomalies have normal karyotype. Those who have extracephalic anomalies along with HPE are usually found to have trisomy 13 or 18 and triploidy. However, exceptions to these observations exist.

In our 2 cases there were neurological signs in the first case with hydrocephalus, which is of importance in neurosurgical practice, and in second case there was developmental delay, convulsions, and spasticity. Jellinger et al. reported associated hydrocephalus in 52% HPE cases. Interestingly, in a review of 100 cases of HPE it was noted that hydrocephalus was not prevalent in patients with apparent facial dysmorphias but common in cases without facial stigmata. Similarly, hydrocephalus is uncommon in alobar HPE, but common in the semilobar and lobar types.

As regards developmental delay. Dubourg et al. reported that it is present in all live born HPE patients, and seems in agreement with the severity of the brain malformation. Approximately half of the patients with HPE develop epilepsy. Many other signs like mental retardation, hypotonia, weakness, spasticity, dystonia and abnormal movements are described.

In the second case the MRI showed the continuity of the grey and white matter, partial thalamic fusion and hypoplastic corpus callosum. Abnormal separation of the deep gray nuclei has been found to be correlated with neurodevelopmental dysfunction, particularly in the areas of gross motor ability, upper extremity function, and language development.

Given the cognitive role of the caudate nuclei and the importance of the sensory pathways provided by the thalamic nuclei to the cerebral cortex, it is posited that there might be a clinically relevant association between abnormalities in deep gray structures and cognitive outcomes in children with holoprosencephaly. The caudate nuclei, in particular, receive all input to the basal ganglia and are intricately involved in the dorsolateral prefrontal circuit. This circuit has been implicated as a way-station for the processing of sensory and cognitive information during tasks such as organizing behavioral responses and verbal problem solving, as a consequence, malformation of the caudate nuclei would affect performance on those cognitive tasks. Likewise, the lentiform nuclei are important for their motoric role and the thalamic nuclei for their involvement in the relay of sensory information to the cerebral cortex; hence, these deep gray structures would also be likely to impact cognitive performance. In the present 2 cases, karyotype study was carried out, and it was normal. It is important to emphasize that the prognosis in holoprosencephaly is much poorer for those with cytogenetic abnormalities, with only 2% surviving beyond 1 year, compared with 30–54% for those without cytogenetic anomalies.
REFERENCES

Holoprosencephaly: A report of 2 cases with different presentations

