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Abstract Rett syndrome (RTT) is a progressive neurodevelopmental disorder that affects mainly

females comprising one of the most common causes of mental retardation in females. Mutations in

the X-linked MECP2 gene have been identified to be the major cause for RTT. This study repre-

sents one of the limited MECP2 molecular analyses done on Egyptian patients with RTT, in which

direct sequencing of MECP2 coding region in 10 female Egyptian patients provisionally diagnosed

to have RTT was carried out. Four different pathogenic mutations were identified in four patients;

three missense (C380T, C397T and C916T) and one nonsense (C382T). The four mutations, C fi T

transitions, were located in exon four. Patients with MECP2 mutation showed the clinical course of
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typical RTT. Analysis of X chromosome inactivation (XCI) pattern of genomic DNA in patients

proved to be positive for MECP2 mutations identifying one patient with skewed inactivation pat-

tern.

� 2012 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Rett syndrome (RTT) (MIM 312750) is an X-linked dominant
[1] neurodevelopmental disorder that affects mainly females [2]

with a prevalence estimated to be 1 in each 10,000–15,000 fe-
male births [3,4]. RTT was first described by the Austrian pedi-
atrician Andreas Rett in 1966 [5], however his article attracted

little attention because it appeared in a German language jour-
nal that was not widely read out in Europe. In 1983, the Swed-
ish researcher Bengt Hagberg published a report of 35 cases

from Sweden, France and Portugal in Annals of Neurology
which led to the worldwide recognition of RTT [2].

Girls with typical RTT are essentially characterized by nor-
mal birth and apparently normal psychomotor development

during the first 6–18 months of life. The affected females then
enter a short period of developmental stagnation followed by a
period of rapid regression, during which they lose acquired

speech and purposeful hand use, and showed acquired micro-
cephaly, autistic features, and walking problems. The hallmark
of the disease is the loss of purposeful hand use and its replace-

ment with repetitive stereotyped hand movements. Secondary
characteristics may include seizures, breathing abnormalities,
vasomotor disturbances, skeletal deformities and abnormal
muscle tone. By puberty, most patients stabilize and some

may recover some skills [6]. In addition to the classic form of
RTT, five atypical variants have been delineated on the basis
of clinical criteria. Each variant lacks some of the necessary

criteria of the classic form and can be milder or more severe.
The milder variants are the preserved speech, the forme fruste
and the late regression variants. The more severe forms are the

early-seizure-onset and the congenital variants [7]. Most fe-
males with RTT survive to the middle age [8].

Approximately 99.5% of RTT cases are sporadic. In the

few familial cases, the mutation is either present in the asymp-
tomatic mother or due to germline mosacisim in one of the
parents. The lack of phenotypic expression in the asymptom-
atic carrier mothers was shown to correlate with skewed X

chromosome inactivation (XCI) pattern [9].
Numerous reports indicated that mutations in the coding se-

quence of MECP2 gene (the gene that encodes methyl-CpG-

binding protein2, MeCP2) (MIM 300005) are the major cause
of most typical cases of RTT. MECP2 mutations were also
found, but less frequently, in girls with atypical forms [10].

MECP2 mutations were identified throughout the coding re-
gion of the gene including missense mutations, nonsense muta-
tions, small insertions or deletions, splicing mutations, and

large rearrangements (duplications or complex deletions) [11].
MECP2 is a four-exon gene located at the terminal end of

the long arm of X chromosome (Xq28) [12]. It is ubiquitously
expressed [13], however its high levels have been detected in the

brain [14] where it is involved in the maturation of neurons
[15]. Loss of MeCP2 functions in the brain leads to reduction
in neuronal size and in the length and number of dendrites [16]

and subsequently causing deficits in synaptic formation and/or
transmission [17]. The assumption that MeCP2 is mainly re-

quired for the maturation of existing neurons rather than the
development of new neurons from precursor cells may explain
the delayed onset of RTT [18].

MeCP2 was thought to be a transcriptional repressor that
prevents unscheduled transcription of other genes by binding
to methylated CG dinucleotides in some gene promoters and
recruiting histone deacetylases (HDACs), ultimately causing

chromatin compaction and gene silencing [19]. MECP2 muta-
tions result in apparent expression of other genes leading to
RTT progression [20]. So far several genes associated with

brain development were reported as MeCP2 targets such as
brain-derived neurotrophic factor (BDNF) [21], DLX5 [22],
glucocorticoid-regulated genes [23], the four ID genes [24], a

transmembrane modulator of Na+, K+-ATPase activity
(FXYD1) [25], and protocadherins PCDHB1 and PCDH7
[26]. MeCP2 role may be more complex than it was thought,

MeCP2 was suggested to be implicated in the formation of
chromatin loop at the repressed loci [22], regulation of RNA
splicing [27] and transcriptional activation of some genes [28].

MeCP2 contains two major functional domains; methyl-

CpG-binding domain (MBD) [29] and transcriptional repres-
sion domain (TRD) [19,30]. Within the TRD, there is a nuclear
localization signal (NLS) that mediates the transport of the

protein into the nucleus [31].
This study has been carried out at the Human Stem Cell

Lab, CEAS, and core genomic lab - NRC. PCR and direct

sequencing were used to analyze the coding sequence of
MECP2 in Egyptian patients with RTT.

2. Materials and methods

2.1. Subjects

Ten female patients, included in this study, were provisionally
diagnosed to have RTT. They were identified at the Out-pa-

tients Clinic of the Clinical Human Genetics Department, Na-
tional Research Centre.

2.2. Mutation analysis

DNA of RTT patients was extracted from peripheral blood

leukocytes using the salting out protocol [32]. The three coding
exons (exons 1, 3 and 4) and the flanking intronic sequences of
MECP2 were amplified in overlapping fragments. Primers
used for exons 3 and 4 were previously reported by Bienvenu

et al. [33]. We have designed other set of primers to generate
shorter fragments for sequencing.

PCR was performed in a total volume of 30 ll containing
100 ng of genomic DNA, 30 pmol of each primer, 200 lM of
dATP, dCTP, dTTp and dGTP, 1.5 lMMgCl2, 1X Taq buffer
and 2.5 U Taq polymerase (Fermentas, EU). The PCR prod-

ucts were purified using the PCR purification kit (Qiagen, Hil-
den, Germany) and sequenced with Big dye Terminator V3.1
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cycle sequencing Kit (Applied Biosystems, California, USA)

and ABI prism 310 Genetic Analyzer (Applied Biosystems,
California, USA).

2.3. X-chromosome inactivation analysis

Patients with MECP2 mutation were tested for X chromosome
inactivation pattern using the same protocol described previ-

ously by Calvo et al. [34].

3. Results

All patients were, basically, autistic, microcephalic and showed
repetitive stereotypic hand movements. Therefore, they were

referred with a provestional diagnosis of Rett syndrome and
requesting MECP2 molecular analysis. The Clinical criteria of
the studied patients are summarized in Table 1 and the score

achieved by each patient according to RTT checklist described
by Huppke et al. [35] is showed in Table 2. Molecular analysis
of MECP2 gene in those patients revealed four different disease
causingmutations in four unrelated patients (Table 3). The iden-

tified mutations located in exon 4; three were within the MBD
and one in the TRD (Fig. 1). One novel silent mutation in exon
3 (C210T) was also reported in patient 1, in whom a pathogenic

mutation (P127L)was detected (Fig. 2). Analysis ofXCI pattern
in patients with MECP2 mutations was informative in all of
them and revealed random pattern in three patients and skewed

pattern in only one patient (Fig. 3). Sequence analysis of
MECP2 mutations in mothers of female patients with positive
MECP2mutation showed that they were negative for the muta-
tion detected in their daughters.

4. Discussion

RTT is one of the most common causes of mental retardation
in females with a prevalence estimated to be 1 in each
10,000:15,000 female births [3,4]. MECP2 gene mutations were

identified to be the major cause of RTT. They are found in 80–
90% of classic RTT patients and in 20–40% of patients with
RTT variants [37]. Detection of the underlying cause in RTT

patients will confirm the diagnosis, helping clinicians to man-
age their patients better and to offer precise counseling.
Furthermore, it may provide insight regarding genotype-phe-

notype correlation.
This study represents one of the limited molecular analyses

of MECP2 gene in Egyptian patients with RTT. A previous re-
port from our group was published in 2007 [38]. Direct

sequencing of the MECP2 coding sequence of 10 female pa-
tients that included in this study revealed four different patho-
genic mutations in four unrelated patients; three missense and

one non sense. Generally, MECP2 mutations were detected in
about 80% of RTT patients [39,40]. However, some previous
studies showed relatively low rate of mutation detection and

this mainly might depend on the clinical selection of the stud-
ied patients. Xiang et al. [41] screened the MECP2 gene for
mutations by direct sequencing in 68 RTT cases and only a to-

tal of 27 patients (40%) were found to have mutations in the
MECP2 gene. Raizis et al. [42] analyzed the MECP2 coding re-
gion by both direct automated DNA sequencing and MLPA in
74 patients with global developmental delay and mental retar-

dation from New Zealand. The MeCP2 mutations among this
selected group were only 20%.
The checklist for RTT described by Huppke et al. [35] seems

to be effective in giving a better screening tool. According to this
checklist, molecular analysis should be carried out only in pa-
tients achieving a score of 8 or more out of 12. In this study, pa-
tients with detectedMECP2mutations had a score of 10 at least.

The studied patients were under continuous clinical follow
up and it has been reported that the consanguineous parents of
P7 have got recently another affected microcephalic daughter.

In association with that, our index case P7 may be a case of
autosomal recessive microcephalic disorder rather than RTT.

As RTT is an X-linked disorder, the X chromosome inacti-

vation (XCI) pattern will have a significant impact on the
clinical phenotype in patients with skewed XCI pattern where
the disease severity decreases if the X chromosome with the

normal gene is activated in majority of cells and vice versa.
Analysis of the XCI pattern in our patients with positive
MECP2 mutation revealed skewed pattern of inactivation in
only one patient (P4) that couldn’t walk, speak and use hand.

Other studies reported that R306C, the same mutation de-
tected in this patient, might be generally associated with a rel-
atively milder phenotype [43–46]. Therefore it can be

postulated that in this patient, the XCI pattern favored activa-
tion of the X chromosome carrying the mutant allele in a large
number of cells.

Generally, it was indicated that random XCI was the main
pattern reported in RTT cases [47] denoting that XCI pattern
is not a main modification factor on clinical phenotypes of
RTT.

The three missense mutations identified in this study were
P127L, R133C and R306C. P127L and R133C are located in
the MBD, but R306C in the TRD. In previous reports,

P127L showed low recurrence rate. To the best of our knowl-
edge it was reported only 4 times before, the first report in 2001
in a patient with PSV [48]. Then, it was later identified in only 3

patients; 2 patients in a French study [49] and one patient in
another study in China [9]. In contrast, R133C and R306C
are of the most commonly occurring MECP2 mutations

accounting for about 5.4% and 6.4% of RTT patients respec-
tively [11]. Generally, it has been shown that the missense
mutations were associated with milder phenotypes than trun-
cating mutations [43,50]. Ham et al. [51] revised the mutations

detected in 45 patients reported in 4 studies [52–55] with the
milder RTT variants (PSV and forme fruste). They found that
those patients mainly had carboxyl-terminal truncations and

eight missense mutations. Of these missense mutations were
P127L, R133C and R306C. The other five missense mutations
identified were E10Q, T158 M, T158A, R168X and P302A.

Hence, they inferred that a patient with a mild phenotype is
likely to disclose either a carboxyl-terminal truncation or one
of these missense mutations [51]. In our study, the mutations

P127L, R133C and R306C were associated with classical
course of RTT rather than a milder variant (Patients 1, 3
and 4).

Leonard et al., 2003 studied 24 patients having R133C to

examine the phenotype associated with this mutation specifi-
cally and they found that the phenotype of a patient with
R133C mutation is overall milder with better ambulation,

hand use and a greater likelihood of being able to use speech
[56]. Subsequently, Neul et al. [57] studied a large cohort of
245 patients with typical RTT. They identified R133C in 12 pa-

tients and reported that it was associated with relatively mild
phenotype. Most patients with R133C preserved some hand



Table 1 The clinical phenotypes of studied female patients.

Patient

number

and initial

Age at

regression

Ability to

walk

Ability to

speak

Ability to

use hand

Stereotypical

hand movements

Postnatal

microcephaly

Seizures Behavioral

abnormality

Muscle tone and

reflexes

P1-WA At 1 year Walked with

gait ataxia

Lost No hand use Clapping

movements

47 cm (SD �2.7) at 4.5 years Mild generalized

epilepsy

Autistic features,

swinging of moods,

grinding

Hypotonia, brisk

reflexes

P2-NW At 1.5 years Never walked No speech No hand use Washing

movements

47 cm (SD �3.6) at 8 years Not reported

in her file

Autistic features,

pulls her clothes,

grinding

Hypotonia, brisk

reflexes

P3-NE At 1.5 years Weak walking Lost Impaired

hand use

Abnormal hand

movements

48.5 cm (SD �2.6) at 9 years Frequent

seizures

Autistic features Hypotonia,

hyperreflexia

P4-AH At 9 months No walking Lost Lost Clapping &

wringing

movements

44 cm (SD �3.8) at 2.5 years Generalized

epilepsy

Autistic features,

bruxism

Hypotonia,

hyporeflexia,

spasticity

P5- SW Not reported Started walking

late (at 3 years)

No speech No hand use Flapping

movements

44.7 cm (SD �4.7) at 4 years, Not reported

in her file

Autistic features

Laughing spells,

babbling, grinding

Hypotonia,

hyperreflexia

P6- SR At 14 months Started walking

late (at 2 years)

No speech Lost Clapping

movements

45.8 cm (SD �2.5) at 3 years No seizures Autistic features,

babbling, spitting

Not reported

P7- SA At early life No walking No speech No hand use Abnormal

hand movements

43.5 cm (SD �4) at 4 years Not reported

in her file

Autistic features Hypotonia,

brisk reflexes

P8- NM At 8 months Impaired walking Impaired

speech

Impaired

hand use

Abnormal

hand movements

45 cm (SD �3.5) at 6 years Generalized and

tonic-clonic, epilepsy

Autistic features, Not reported

P9- WS At 7 months Impaired walking No speech Impaired

hand use

Abnormal

hand movements

46 cm (SD �2) at 3 years Epileptic fits Autistic features,

babbling

Hypotonia,

brisk reflexes

P10- MS At 9 months Walked with aid No speech No hand use Clapping &

wringing movements

45 cm at 3.5 years Not reported in

her file

Autistic features Hypotonia, reflexes

impaired walking, speech, hand use: skill ability is affected in a certain way.
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Table 2 RTT checklist for studied female patients (the checklist is quoted from Huppke et al. [35]).

Clinical criterion Patient

Patients with MECP2 mutation Patients without MECP2 mutation

P1-

WA

P2-

NW

P3-

NE

P4-

AH

P5-

SW

P6-

SR

P7-

SA

P8-

NM

P9-

WS

P10-

MS

Normal prenatal and perinatal

period

1 1 1 1 1 1 1 1 1 1

Normal psychomotor

development during the first

6 months

1 1 1 1 n.d. 1 0 1 1 1

Normal head circumference at

birth

Not measured at birth, however the parents didn’t notice relatively small head circumference at

birth

Deceleration of head growth 1 1 1 1 1 1 1 1 1 1

Hand skills (1 if never, 2 if lost) 1 1 1 1 n.d. 2 n.d. n.d. n.d. 1

Stereotypic hand movements 1 1 1 1 1 1 1 1 1 1

Communication dysfunction and

social withdraw

1 1 1 1 1 1 1 1 1 1

Acquired language (1 if never, 2 if

lost)

2 1 2 1 n.d. 1 n.d. n.d. 1 1

Severe psychomotor retardation 1 1 1 1 n.d. 1 0 1 1 1

Impaired or absent locomotion 1 1 1 1 n.d. n.d. n.d. n.d. n.d. 1

Score P11 P10 P11 P10 P4 P9 P4 P9 P7 P10

n.d.: Not documented.

                  C380T  

 C397T                            C916T 

                   C382T 

TRD MBD 
                   1     26                              235      377    485                              625             930                                1461 

ex 4 ex 3 

Figure 1 Distribution of the identified pathogenic mutations along the coding sequence of MECP2 gene. Diagramatic illustration of

MECP2 gene and its function domains (this figure was adapted from Dragich et al. [36]). Nucleotides are numbered from the first

nucleotide of the start ATG codon of the b isoform. The coding sequences for the MBD and TRD are indicated in yellow and red

respectively. The NLS is hatched. Missense mutations are shown above and nonsense mutation below the sequence.

Table 3 Mutations of the MECP2 gene detected in the studied RTT patients.

Patient Nucleotide change Amino acid change Mutation type Domain Exon X inactivation pattern

P1-WA C380T P127L Missense MBD Exon 4 Random
*C210T S70 Silent – Exon 2

P2-NW C382T Q128X Nonsense MBD Exon 4 Random

P3-NE C397T R133C Missense MBD Exon 4 Random

P4-AH C916T R306C Missense TRD Exon 4 Non-random

* this sequence variation has not been reported before.
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use (92%), a large percentage was able to walk alone (75%)
and a significant proportion spoke words (50%). On the other
hand, R306C was identified in another 21 patients and it was
shown that a large set of patients with R306C could walk

(67%) and retained some hand use (52%), but very few were
able to use words. In our study, both patients with R133C
and R306C showed lack of their ability to walk and use their

hands, however, they showed different ambulation ability.
While the patient with R133C could walk alone, the one with
R306C didn’t walk. In the latter, this may be attributed to the
skewed X chromosomes inactivation identified in this patient.
Furthermore, it has been demonstrated that patients with
R133C and R306C tend be associated with heightened anxiety

and fear [58]. Several studies demonstrated that R133C
strongly impaired MeCP2 binding to methylated DNA [59–
61]. On the other hand, R306C probably affects the ability

of MeCP2 to recruit corepressor complexes impairing its func-
tion in the process of transcriptional repression [62].



Figure 2 Electropherograms of DNA sequencing for MECP2

mutations identified in RTT patients in this study. Substituted

nucleotides are indicated by arrows and substituted amino acids

are underlined. All sequences are in the sense orientation.

Figure 2 (continued)
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As P127L shows low recurrence rate, little information was
reported about its associated clinical phenotype and its func-
tional consequences on MeCP2. Our patient with this muta-
tion is similar to that having R133C. She was also able to

walk, but couldn’t speak or use hands.
Q128X, the nonsense mutation identified in our study is

located in the MBD and presenting one of the few nonsense
mutations identified in this domain. Most mutations reported
in this domain were missense, however the nonsense muta-
tions were clustered in the TRD domain and the region
between the MBD and the TRD (the inter-domain (ID)

region) [49,63]. Q128X has very low recurrence rate. To our
knowledge, it was reported in only one patient in the study
of Philippe et al., 2006, in which no clinical data were

documented for the affected individual [49]. Previous reports
documenting that truncating (nonsense and frameshift) muta-
tions, in general, are associated with a more severe disease

phenotype than missense mutations [43,50]. However, a
milder disease was noted in patients with truncating muta-
tions within or downstream of the TRD as compared with
those who have truncating mutations upstream of the

TRD. Dragich et al. [36] explained this difference in truncat-
ing mutations outcome as a consequence of their gene
location. Huppke et al. [52] found that mutations lead to

either a complete or partial truncation of the region coding
for the nuclear localization signal (NLS) is associated with
a more severe phenotype than other truncating mutations.

They suggested that mutations leading to a truncation of
the NLS produce proteins that will remain in the cytoplasm
with more loss of protein function. However missense muta-



Figure 3 Analysis of X chromosome inactivation (XCI) pattern

using the androgen receptor methylation assay. Ethidium bromide

stained agarose gel electrophoresis for PCR products of patients

with identified MECP2 mutations. Aliquot of DNA of peripheral

blood leukocyte from each patient was used directly as a template

(- lanes) and another aliquot was digested with HpaII prior to

PCR amplification (+ lanes). All analyzed patients are informa-

tive i.e, have alleles with different size repeats. Patient 4 is the only

one that had non random. R: random - NR: non random.
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tions and truncating ones downstream of the NLS retain
residual protein function. Our patient with Q128X showed
a classical phenotype with normal development at the first
months of life and no seizures in early life denoting that

she is not a case of congenital or early onset seizures RTT
variant. However, she assessed a relatively high combined
severity score for the abilities of hand use, speech and walk-

ing. She was unable to walk, speak or use hand. In accor-
dance with Amir et al. [64] who found that patients with
truncating mutations have a higher incidence of the awake

respiratory dysfunction, this girl showed abnormal breathing.
Additionally, this patient exhibited other minor criteria of
RTT such as vasomotor instability, constipation, hypotonia
and brisk reflexes.

All detected mutations including the silent one are C fi T
transitions. However in P127L and Q128X, the transitioned
cytosines are not at CpG dinucleotides. Hence, these 2 muta-

tions may be resulted from transitions of unmethylated cyto-
sines which are less amenable for chemical modification and
this may explain the relatively low recurrence rate of both of

them.
Although Approximately 99.5% of RTT mutations arise

de novo, mothers may rarely carry the mutation without

manifesting the phenotypic expression due to skewed XCI.
We investigated the mutation presence in mothers of patients
with positive MECP2 from whom DNA could be obtained
indicating that no mutation was present in the maternal

DNA.
RTT occurs in all ethnic groups across the world [65]. How-

ever, no discrimination in the spectrum and the frequency of

MECP2 mutations could be revealed among the different pop-
ulations. This can be explained as most MECP2 mutations
originate de novo [66]. Molecular analysis of MECP2 gene in

7 Tunisian patients with RTT identified T158M mutation in
4 patients (more than 50%) [62], however this mutation was
not detected in our studied patients.
5. Conclusion and recommendations

This is one of the limited genetic studies of Rett syndrome

in Egypt. The relatively low observed frequency of MECP2
mutations may reflect a wide spectrum of mental disability
disorders. However, analysis of large rearrangements
should be carried out in patients without MECP2 mutation

to reduce the risk of false negatives and to increase the
sensitivity.
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