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Abstract Parkinson’s disease is a neurodegenerative disease which is the result of the degradation

of the dopaminergic neurons in the substantia nigra pars compacta, leading to a disregulation of

thalamocortical circuits. Traditional treatment involves the use of levodopa which increases the

dopamine level in the striatum. There is a need for alternative non-dopamine therapy to prevent

the side effects of the conventional drugs used. Recently small molecule inhibitors of RGS have

become the prime candidates in studies related to regulating RGS by binding to its allosteric site

and thus changing its structure. Through the docking studies we observed that these small molecule

modulators of RGS4 make stable complexes with RGS4 when compared to native RGS4. The

Gq(alpha)–RGS4–drug complexes are less stable. The increase in flexibility of the RGS4–drug com-

plex could be the reason for the inability of the RGS4–drug complex to bind to the G protein. In
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our docking results, CCG63802 formed the most promising drug as a RGS4 inhibitor as it formed

the most stable complex with RGS4 and also formed the least stable complex, Gq(alpha)–RGS4–

CCG63802 complex. In our studies we evaluated the therapeutic potential of the small molecule

inhibitors to provide a prospective treatment for Parkinson’s disease.

� 2012 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Parkinson disease is a common nervous system disorder asso-

ciated with ageing. This is the result of the degeneration of
dopamine synthesizing neurons in the substantia nigra pars
compacta (SNpc) that innervate the striatum. The dopamine

in the brain is produced by the dopaminergic neurons. These
neurons are irreproducible therefore once lost cause a great
loss to the human brain. The main symptoms of the disease

are tremors, problems with balance and walking, jerky stiff
movements, bradykinesia and rigidity.

The basal ganglia are a network of subcortical brain nuclei
engaged in many aspects of motor function, this includes ac-

tion, selection and adaptive motor learning [1–4]. Striatal pro-
jection neurons(MSNs) regulates the motor functions through
the plasticity of excitatory synapses .The molecular mecha-

nisms underlying striatal plasticity which sets the gain on sig-
nals driving both direct and indirect-pathway basal ganglia
circuits is still not completely understood. The best-studied

form of striatal plasticity is endocannabinoid-dependent Long
Term Depression (eCB-LTD). This form of Long Term
Depression is induced following the production and release
of endocannabinoids (eCBs) from the postsynaptic neuron,

which then acts on presynaptic CB1 receptors to lower neuro-
transmitter release probability. Both direct and indirect path-
ways are regulated by the D2 and A2A receptors acting

through cAMP/PKA, which further regulates the production
of the endocannabinoids through mGluR [5].

The effect of the loss of dopamine receptors in the striatum

is still unknown, how it controls the function is especially
important in the context of Parkinson’s disease. The indirect-
pathway is more reliably reproduced in vitro therefore it is

widely used to express the working of the various proteins in-
volved in eCB-Ltd. The postsynaptic membrane proteins that
are required to elicit eCB release sufficient to induce indirect-
pathway eCB-LTD: group I (Gq-coupled) metabotropic

glutamate receptors (mGluRs), L-type voltage-gated calcium
channels (L-VGCCs), and dopamine D2 receptors [6–10].
Adenosine A2A receptors may modulate indirect-pathway

LTD also [11,12]. The actual process of the mobilization of
eCBs was still obscure until two main candidates for the eCBs
were found (1) anandamide (AEA), thought to be produced by

phospholipase D (PLD) activity, and (2) 2-arachidonoylglycer-
ol (2-AG), thought to be produced by PLCb and DAG lipase
[13,14]. Much of the available studies have supported the role
of AEA in indirect-pathway LTD [15–17].

It remains unclear why the activation of D2 receptors is re-
quired for eCB-LTD and how the blockade of A2A receptors
enhances it. In a study conducted to understand dopamine

(DA)-dependent corticostriatal plasticity showed that D2
receptors act via adenylyl cyclase 5 [18], it was also seen in an-
other study which utilized HFS-LTD, that the D2 receptors

also promotes the eCB-LTD through the reduction in cAMP
levels or PKA activation. It was concluded that increased
cAMP/PKA activity inhibits LTD[5]. It was understood that

as both D2 and A2A receptors, both Gs regulated, regulate
the eCB production therefore they must be acting on a com-
mon target. Through studies it was understood that the group
I mGluR and Gq form the primary candidates for sites which

can be used to manipulate this cellular process. The role of
mGluR was clarified and it was found that the inhibition of
mGluR-Gq signalling prevents the mobilization of both 2-

AG and AEA [5], thus inhibiting the eCB-Ltd.
The Regulator of G protein (RGS) is a group of protein

that regulates the life time of the active G alpha-GTP complex

by accelerating the GTP hydrolysis. RGS4 is expressed
strongly in MSNs in the dorsolateral striatum, where it regu-
lates the activity of mGluR5 and PLCb [19,20], its activity is
increased by PKA phosphorylation [21], and it strongly inhib-

its signalling through Gq [22]. RGS4 is expressed in both di-
rect-pathway MSNs and cholinergic interneurons [23] its loss
may also be contributing to the effects of dopamine depletion

[24]. We only consider the effect of RGS4 in the postsynaptic
neuron as it was observed that RGS4 protein production is
manipulated by the cAMP/PKA which itself is modulated by

the D2 and A2A receptors [5].
Dopamine depletion has profound effects on the expression

of RGS proteins in the striatum, in particular RGS4 [25,26].

The D2 receptor negatively regulates cAMP/PKA while A2A
positively regulates it. Dopamine provides a damping effect;
it makes sure that muscles work smoothly, under precise con-
trol, and without unwanted movement. Another transmitter,

acetylcholine, inhibits the damping effect. Parkinson’s disease
is a result when the effect of dopamine is less than that of ace-
tylcholine. Dopamine deficiency rather than acetylcholine ex-

cess is normally responsible for this occurring. In addition,
Mono Amine Oxidase-B breaks down the excess dopamine
in the synapse further diminishing the dopamine that is left

in the substantia nigra [27].
Most drug treatments increase the level of dopamine in the

brain or oppose the action of acetylcholine. Levodopa which is
a precursor for dopamine is widely used to compensate for the

dopamine loss in Parkinsonian patients. The drug is useful for

the initial stages of the disease but as the disease progresses the
drug becomes less effective. The patient may also experience

some side effects such as increase in involuntary actions and
dyskinesia which is one of the main problems. Therefore there
is a need for dopamine independent drugs. The reduced behav-

ioural deficits following dopamine depletion in RGS4 deficient
mice indicate that RGS4 inhibition may be an effective non-
dopamine dependent strategy for treating Parkinson’s disease.

Many small peptide inhibitors of RGS4 and its related fam-
ily members [28,29] are reported. These peptides have a se-
quence similar to the switch1 and switch 2 regions of the
RGS4 and bind to the G protein’s A site .The peptide inhibitors

are not preferred because of the physical properties of the
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peptides, they function in a cellular environment only when
they are administered intracellularly [e.g., by dialysis via a
patch pipette [28]. Genetic studies would bolster research in

drug discovery [30–33]. Research in small molecules’ protein–
protein inhibitors consequently identified novel RGS inhibitors
that retain activity under reducing conditions and ones that

have a reversible mechanism of action [34]. These compounds,
CCG63808 and CCG63802 bind to a B site, allosteric site where
it causes a destabilizing of the RGS4 protein. CCG4968 also

inhibits RGS4 but it binds more strongly to the cysteines in
the RGS and therefore forms an irreversible bound state [35].

In our study we evaluated the therapeutic potential of the
three drugs which are the RGS inhibitors. The main purpose

was to explore the possibility of a non-dopamine therapy for
Parkinson’s disease. The drugs were docked with RGS4 to find
their binding energy needed and the stability of the complexes.

It was then observed that when the RGS4–drug complex was
bound with Gq then the binding energies were lower than
the binding energy needed for the native Gq–RGS4 complex,

thus proving that these complexes were less favourable than
the native complex. The RGS4–drug complexes are less porous
than the native RGS4 protein. Conformational flexibility of a

protein molecule affects its interaction with the ligand and its
biological partners at different levels [36–43]. The distance fluc-
tuation between two C alpha atoms was studied to observe the
flexibility of the complexes around the interactive residues. It

was also observed that the RGS4–drug complexes are more
flexible than the native RGS4 in its bound state with Gq, this
structural change could be the reason because of which the

RGS4–drug complex is inhibited from attaching to Gq. Thus
it was concluded that these small drugs which are inhibitors
of RGS4, regulate the eCB-LTD and therefore can potentially

be used to treat Parkinson’s disease.

2. Materials and methods

2.1. Dataset

The two sequences for the purposes of this study were taken
from PDB (Protein Data Bank): 3AH8 (Gq) [44] and 1AGR
(Galphai1–RGS4) [45]. The structures of the 3 drug molecules
that we used for our research were obtained from their litera-

tures, CCG4986 [46], CCG63802 and CCG63808 [34]. Three
dimensional molecular structures for drug molecules were de-
rived from CORINA web server. SMILE notation of the drug

molecules was given as input to the server which was used to
generate the PDB file of the 3D structure.

2.2. Protein–ligand docking

Protein–ligand interactions were calculated by using Autodock
4.2 [47]. Autodock combines an empirical free energy force

field with a Lamarckian Genetic Algorithm, providing fast pre-
diction of bound conformations with predicted free energies of
association. The primary method for conformational searching
is a Lamarckian genetic algorithm in which a population of

trial conformations is created, and then in successive genera-
tions these individuals mutate, exchange conformational
parameters, and compete in a manner analogous to biological

evolution, ultimately selecting individuals with lowest binding
energy. PDB files of the complex thus formed with the lowest
energy were considered.

2.3. Protein–protein interactions

Protein–protein interactions play a pivotal role in various as-
pects of the structural and functional organization of the cell

and their elucidation is crucial for a better understanding of
processes such as metabolic control, signal transduction, and
gene regulation. Protein–protein docking was done using

HADDOCK web server [48]. HADDOCK (High Ambiguity
Driven protein–protein DOCKing) encodes information from
the identified or predicted proteins in ambiguous interaction

residues to drive the docking process. Gq protein and the
RGS4–ligand complex were uploaded in the web server to ob-
tain docked complexes.

2.4. Prediction of functional sites

InterProSurf was used to predict interacting functional amino
acid on a protein surface. The prediction method is based on

solvent accessible surface area of residues in the isolated sub-
units, a propensity scale for interface residues and a clustering
algorithm to identify surface regions with residues of high

interface propensities [49]. Amino acids whose change in acces-
sible surface area was above 45.0 were chosen as the interact-
ing residues in our study. The PDB files of the protein were
uploaded to be evaluated.

CPORT (Consensus Prediction Of interface Residues in
Transient complexes) was also used to obtain the interacting
residues on the surface of the given complexes. The server com-

bines six interface prediction web servers to give a consensus
method [50]. The Gq–RGS4–drug complexes were given as
an input to the server.

2.5. Protein movement analysis

ElNémo the Elastic Network Model [51] was used to find out

the neighbouring residues of the amino acids chosen by Inter-
ProSurf and CPORT, to check their flexibility. The present
version of elNémo allowed us to compute the low frequency
normal modes for a given protein structure in PDB format.

We were able to analyse these modes at different levels of de-
tail, i.e. compare the collectivity of the modes, view 3-D anima-
tions of the protein movement for each mode and identify

those residues that have the largest distance fluctuations in a
given mode. The map for distance fluctuations between resi-
dues i and j measures the relative moments between residues

in the mode k which is also provided by the server. In such
maps, rigid and flexible blocks of amino acid residues can be
identified, as well as their relative moment can be studied.

The blocks of amino acid residues which behave as rigid bodies
during the motion appear in white in the map, whereas flexible
segments are filled with dark blue or light blue colour. Dark
blue colour indicates that the distance between two C alpha

atoms increases significantly, and a light blue symbols that it
decreases. Every pixel corresponds to a single residue. Grey
lines are drawn every 10 residues, blue lines every 100 residues.

We gave the Gq–RGS4–drug docked complexes as input to
elNémo.
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3. Result and discussion

RGS4, a GTPase was identified as the regulator for the Gq-pro-
tein by accelerating its inactivity. This GTPases are abundantly

found in the striatum, the part of the brain that controls move-
ment. In models of Parkinson’s disease in mice, the researchers
at the Gladstone Institute found that RGS4 actually contrib-

utes to problems with motor control, leading to a deterioration
of movement and motor coordination [5]. In our studies, we
evaluated the effect of three drugs which act as inhibitors for

protein–protein interaction between RGS4 and Gq(alpha).
Inhibition of signalling networks through the disruption of pro-
tein–protein interactions presents unique new targets for the
development of chemical tools and for possible therapeutic

drug discovery [52,53]. The small molecules inhibit the down-
stream process of the mGluR which is the main target for the
regulation of the endocannabinoid-dependent Long Term

Depression (eCB-LTD). The traditional drugs for example;
levodopa, used in the treatment increase the dopamine level
but as the disease progresses it is seen that the drug becomes less
Figure 1 RGS4 complex with small RGS modulators, the binding site

and CYS 148. (a) The native RGS4 (light purple)- ccg638029(dark gre

grey, stick model) (c) The native RGS4(light purple)- ccg4986 (dark g
effective and may also have side effects like dyskinesia, demen-
tia and nausea. We choose these drugs because CCG4986,
CCG-63802 and CCG-63808 are relatively selective for RGS4

over other R4 family members, including the closely related
RGS8 and RGS16. In accordance with various other studies,
it was observed that the binding of these small molecule RGS

inhibitors to the RGS4 protein leads to conformational
changes in the complex as seen through the changes in the
Gq(alpha)–RGS–drug complexes’ accessible surface area. To

evaluate the change in binding energy because of the small mol-
ecule inhibitors on the RGS4–drug complex stability we carried
out protein–ligand docking (Fig. 1(a), (b), (c)). The energy of
the drug–protein complexes showed us that CCG63802 had

the least energy, �6.00 followed by CCG63808 with �5.99
while the docking energy of the irreversible CCG4986 was com-
puted as�5.10. This showed that these ligandmolecules bind at

the allosteric site of RGS4 to form the stable complex (Table 1).
But according to the docking energy of these ligands with
RGS4 we found that CCG63802 formed the most stable com-

plex among the three drug molecules.
s for these drugs are present at the allosteric site; CYS 95, CYS132

y, stick model) (b) The native RGS4(light purple)- ccg63808(dark

rey, sick model).



Table 1 The docking energies of the Rgs and the

drug(ccg63808,ccg63802, ccg4986) complexes.

Protein–drug Docking energy

Rgs4–ccg63808 �5.99
Rgs4–ccg63802 �6.00
Rgs4–ccg4986 �5.10

Table 2 The total accessible surface area and docking energies

of the Gq(alpha)–Rgs and the

drug(ccg63808,ccg63802,ccg4986) bound complexes.

Complex Docking energy ASA(in A2)

Gq(alpha)–Rgs4 �87.9 ± 4.7 21070.0

Gq(alpha)–Rgs4–ccg63808 �74.7 ± 4.1 20983.6

Gq(alpha)–Rgs4–ccg63802 �71.6 ± 1.4 20685.6

Gq(alpha)–Rgs4–ccg4986 �81.1 ± 4.1 20757.3

ASA= accessible surface area.

Rgs = Regulators of G Protein Signalling.

Table 3 C-alpha fluctuation distance (in Å) for the interacting

residues corresponding to the neighbouring residues in protein–

protein complex.

Gq(alpha)–Rgs4 and Gq(alpha)–Rgs4–ccg63802 complex

GLU 281 0.08 GLU 83 �0.08 ASN 336

LYS 125 0.14 GLU 83 �0.02 PHE 328

LYS 125 0.08 TYR 84 �0.10 ASN 336

LYS 125 0.18 TYR 84 �0.05 LYS 81

ASN 137 0.05 ASN 128 �0.06 ILE 62

GLU 280 0.13 ASN 128 �0.10 GLY 197

ASN 137 0.22 ASP 163 �0.06 PHE 339

ALA 342 0.06 ASP 163 �0.15 GLY 66

GLN 142 0.27 ARG 167 �0.07 PHE 339

THR 124 0.04 ARG 167 �0.06 THR 175

MET 284 0.26 ARG 172 �0.10 ALA 343

THR 124 0.07 ARG 172 �0.03 GLU 281

GLU 143 0.32 LEU 175 �0.12 ALA 343

ASP 69 0.05 LEU 175 �0.04 ARG 166

Gq(alpha)–Rgs4 and Gq(alpha)–Rgs4–ccg63808 complex

GLU 281 0.08 GLU 83 �0.08 ASN 336

GLN 303 0.08 GLU 83 �0.10 ALA 343

LYS 125 0.08 TYR 84 �0.10 ASN 336

SER 68 0.06 TYR 84 �0.13 ALA 343

ASN 137 0.05 ASN 128 �0.06 ILE 62

SER 171 0.09 ASN 128 �0.15 GLN 303

ASN 137 0.22 ASP 163 �0.06 PHE 339

SER 171 0.12 ASP 163 �0.09 GLN 303

GLN 142 0.27 ARG 167 �0.07 PHE 339

ASP 69 0.12 ARG 167 �0.07 GLN 303

GLN 142 0.27 ARG 172 �0.10 ALA 343

GLY 66 0.11 ARG 172 �0.03 GLN 303

GLU 143 0.32 LEU 175 �0.12 ALA 343

GLU 281 0.09 LEU 175 �0.04 GLU 47

Gq(alpha)–Rgs4 and Gq(alpha)–Rgs4–ccg4986 complex

GLU 281 0.08 GLU 83 �0.08 ASN 336

SER 85 0.11 GLU 83 �0.03 VAL 51

LYS 125 0.08 TYR 84 �0.10 ASN 336

LYS 125 0.18 TYR 84 �0.04 ALA 78

ASN 137 0.05 ASN 128 �0.06 ILE 62

GLU 280 0.12 ASN 128 �0.11 ALA 342

ASN 137 0.22 ASP 163 �0.06 PHE 339

ALA 342 0.04 ASP 163 �0.16 GLY 66

ASN 69 0.05 ARG 167 �0.08 GLY 66

GLN 197 0.04 ARG 167 �0.07 SER 118

GLN 142 0.27 ARG 172 �0.10 ALA 343

ALA 28 0.07 ARG 172 �0.03 GLU 281

GLU 143 0.32 LEU 175 �0.12 ALA 343

ASP 69 0.05 LEU 175 �0.03 TYR 124

ASP: aspartate; ALA: alanine; SER: serine; ILE: isoleucine; LEU:

leucine; PHE: phenylalanine; ASN: asparagine; VAL: valine; ARG:

arginine; GLU: glutamate; HIS: histidine; THR: tyrosine; TRP:

tryptophan; CYS: cysteine; VAL: valine.
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Then the protein–protein docking was carried out to find

the energy required to bind the RGS4–drug complex to Gq(al-
pha) which led us to the stability characteristics of the complex
(Table 2). The drugs which were studied in our paper inhibit

the protein–protein interactions thus making the RGS4–
Gq(alpha) complex less favourable. The protein–protein dock-
ing energy for Gq–RGS4 (alpha) was �87.9 ± 4.7 and the

accessible surface energy was 21070.0. The docking energy
for Gq(alpha)–RGS4–CCG63802 was �71.6 ± 1.4 and the
accessible surface energy was 20685.6, this showed that there
was a conformational change in the complex due to the bind-

ing of CCG63802 to RGS4. The surface energy changes to a
more compact structure after docking with the RGS which is
bound with the drug. For Gq(alpha)–RGS4–CCG63808 the

docking energy was �74.7 ± 4.1 and the accessible surface en-
ergy was 20983.6, this showed that there was a conformational
change in the complex when compared to the original struc-

ture. The surface energy changed to a more compact structure
after docking with the RGS which is bound with the drug
CCG63808 as seen in the previous drug. The RGS4–

CCG4986 binds irreversibly to the Gq (alpha) protein with
an energy of �81.1 ± 4.1 and the accessible surface energy
was 20757.3, the conformational changes were in accordance
to the previous drugs. The RGS4–drug complexes with the

Gq(alpha) were less stable than the complex formed by the na-
tive RGS4,this was due to the conformational changes due to
the drug binding at the allosteric site to RGS4. This showed us

that the binding of the RGS4–drug complex to the Gq(alpha)
protein was less favourable than the native RGS4. The change
in conformation of the RGS4–drug complex is probably the

result of the increase in flexibility, a possible reason for the de-
crease in the stability of the Gq(alpha)–RGS4–drug complex.

The matrix generated by elNémo displays the maximum
distance fluctuations (Table 3) between all pairs of C alpha

atoms and between the two extreme conformations that were
computed for this mode.

The matrix for native RGS4 showed the largest decrease in

fluctuations. The cumulative sum of largest increase was 17.32
and largest decrease was �17.46 where as the matrix for CCG-
63802 bound RGS4 showed the largest increase in distance
fluctuations. The cumulative sum of the largest increase was
20.17 and largest decrease was �12.95. Therefore this showed

that CCG-63802 bound RGS4 is more flexible than the native
form of RGS4. In the matrix for CCG-63808 bound RGS4 we
could see that there is the largest decrease in distance fluctua-

tions (Fig. 2(a), (b), (c) and (d)). The cumulative sum of largest
increase was 12.82 and the largest decrease was �18.5.



Figure 2 Distance fluctuation maps which highlight residue pairs i and j with the strongest variation in the distance between their C-

alpha atoms in a given mode. Here the top distance fluctuations are coloured in dark grey and light grey. Distance fluctuations coloured in

dark blue shows the increase in distance fluctuation whereas distance fluctuations coloured in light blue shows the decrease in distance

fluctuation. Fig. 2(a), (b), (c) and (d) depict the distance fluctuation for Gq(alpha)–RGS4, Gq(alpha)–RGS4–ccg63802, Gq(alpha)–

RGS4–ccg63808, and Gq(alpha)–RGS4–ccg4986 respectively.
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Therefore this showed that like CCG-63802 bound RGS4 the

CCG-63808 bound RGS4 is also more flexible than the native
form of RGS4. Similarly in the matrix generated for CCG-
4986 bound RGS4, it showed the largest increase in distance

fluctuations. The cumulative sum of the largest increase was
20.27 and the largest decrease was �13.37. Therefore as seen
in the results of the other two drugs the elNemo results for

CCG-4986 bound RGS4 showed that there is more flexibility
in CCG-4986 bound RGS4 than the native form of RGS4.
This increase in flexibility in comparison to the native state
could account for the change in the stability of RGS4 bound

drug complex. But CCG4986 is irreversible and also is not
functional in a reducing environment. CCG-63802 and CCG-
63808, with their reversibility and activity in glutathione, a pre-

dominant intracellular reductant, represents a significant step
forward in the development of RGS small molecule protein–

protein interaction inhibitor (SMPPIIs) [34].

4. Conclusion

The results affirmed that CCG63802 is best suited over the
other two drugs. It was seen that RGS4–CCG63802 complex
was more stable than the other two complexes. The Gq(al-

pha)–RGS4–CCG63802 complex also showed that it was less
favourable when compared with the other drugs. As it strongly
binds to RGS4 and changes its conformation in such a way

that it prevents the formation of the Gq(alpha)–RGS4–
CCG63802 complex. This has been affirmed by our results
and thus can be considered as a potential drug to treat Parkin-
son’s by a non-dopamine treatment. CCG63802 binds to
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RGS4 reversibly therefore it is preferred when compared with
CCG4986 which binds irreversibly to RGS4. Further research
on the effect of RGS4 on in cholinergic neurons and other

parts of the striatal should provide us with the needed informa-
tion. The actual physical interaction among the D2 and A2A
receptors should also be studied to understand how these

receptors control the striatal plasticity. The research in finding
targeting novel steps in signal-transduction pathways has
become an exciting field therefore the research on the RGS

inhibitors and protein–protein interaction inhibitors in general
provides exciting new opportunities. The knowledge about the
interaction of the small molecule RGS inhibitors with its
environment can provide valuable information about how

the pathway changes its functions because of the inhibition
of the RGS by these molecules. Further studies of the mecha-
nism and structure–activity relationships for this compound

class and translation to cellular and animal models of RGS
function are currently being studied. This would provide a
marked increase in the number of potential pharmacological

targets based on the small molecule inhibition of the RGS thus
controlling the signal-transduction in the cells.
Acknowledgment

We gratefully acknowledge the management of the Vellore

Institute of Technology University for providing the facilities
to carry out this work. We thank the anonymous reviewers
for their helpful comments and critical reading of the

manuscript.
References

[1] Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal

ganglia and adaptive motor control. Science 1994;265:1826–31.

[2] Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia

in the control of purposive saccadic eye movements. Physiol Rev

2000;80:953–78.

[3] Packard MG, Knowlton BJ. Learning and memory functions of

the Basal Ganglia. Annu Rev Neurosci 2002;25:563–93.

[4] Yin HH, Knowlton BJ. The role of the basal ganglia in habit

formation. Nat Rev Neurosci 2006;7:464–76.

[5] Lerner TN, Kreitzer AC. RGS4 is required for dopaminergic

control of striatal LTD and susceptibility to parkinsonian motor

deficits. Neuron 2012;73:347–59.

[6] Calabresi P, Pisani A, Mercuri NB, Bernardi G. Post-receptor

mechanisms underlying striatal long-term depression. J Neurosci

1994;14:4871–81.

[7] Calabresi P, Saiardi A, Pisani A, Baik JH, Centonze D, Mercuri

NB, et al. Abnormal synaptic plasticity in the striatum of mice

lacking dopamine D2 receptors. J Neurosci 1997;17:4536–44.

[8] Choi S, Lovinger DM. Decreased probability of neurotransmitter

release underlies striatal long-term depression and postnatal

development of corticostriatal synapses. Proc Natl Acad Sci

USA 1997;94:2665–70.

[9] Kreitzer AC, Malenka RC. Dopamine modulation of statedepen-

dent endocannabinoid release and long-term depression in the

striatum. J Neurosci 2005;25:10537–45.

[10] Sung KW, Choi S, Lovinger DM. Activation of group I mGluRs

is necessary for induction of long-term depression at striatal

synapses. J Neurophysiol 2001;86:2405–12.

[11] Lerner TN, Horne EA, Stella N, Kreitzer AC. Endocannabinoid

signaling mediates psychomotor activation by adenosine A2A

antagonists. J Neurosci 2010;30:2160–4.
[12] Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous

dopaminergic control of striatal synaptic plasticity. Science

2008;321:848–51.

[13] Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that

regulate endocannabinoid signaling in the nervous system. Chem

Rev 2008;108:1687–707.

[14] Piomelli D. The molecular logic of endocannabinoid signalling.

Nat Rev Neurosci 2003;4:873–84.

[15] Ade KK, Lovinger DM. Anandamide regulates postnatal devel-

opment of long-term synaptic plasticity in the rat dorsolateral

striatum. J Neurosci 2007;27:2403–9.

[16] Giuffrida A, Parsons LH, Kerr TM, Rodrı́guez de Fonseca F,

Navarro M, Piomelli D. Dopamine activation of endogenous

cannabinoid signaling in dorsal striatum. Nat Neurosci

1999;2:358–63.

[17] Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of

striatal LTD and motor deficits in Parkinson’s disease models.

Nat Protocols 2007;445:643–7.

[18] Kheirbek MA, Britt JP, Beeler JA, Ishikawa Y, McGehee DS,

Zhuang X. Adenylyl cyclase type 5 contributes to corticostriatal

plasticity and striatum-dependent learning. J Neurosci

2009;29:12115–24.

[19] Gold SJ, Ni YG, Dohlman HG, Nestler EJ. Regulators of G-

protein signaling (RGS) proteins: region-specific expression of

nine subtypes in rat brain. J Neurosci 1997;17:8024–37.

[20] Schwendt M, McGinty JF. Regulator of G-protein signaling 4

interacts with metabotropic glutamate receptor subtype 5 in rat

striatum: relevance to amphetamine behavioral sensitization. J

Pharmacol Exp Ther 2007;323:650–7.

[21] Huang J, Zhou H, Mahavadi S, Sriwai W, Murthy KS. Inhibition

of Galphaq-dependent PLC-beta1 activity by PKG and PKA is

mediated by phosphorylation of RGS4 and GRK2. Am J Physiol

Cell Physiol 2007;292:C200–8.

[22] Saugstad JA, Marino MJ, Folk JA, Hepler JR, Conn PJ. RGS4

inhibits signaling by group I metabotropic glutamate receptors. J

Neurosci 1998;18:905–13.

[23] Taymans JM, Kia HK, Claes R, Cruz C, Leysen J, Langlois X.

Dopamine receptor-mediated regulation of RGS2 and RGS4

mRNA differentially depends on ascending dopamine projections

and time. Eur J Neurosci 2004;19:2249–60.

[24] Ding J, Guzman JN, Tkatch T, Chen S, Goldberg JA, Ebert PJ,

et al. RGS4-dependent attenuation of M4 autoreceptor function

in striatal cholinergic interneurons following dopamine depletion.

Nat Neurosci 2006;9:832–42.

[25] Geurts M, Hermans E, Maloteaux JM. Opposite modulation of

regulators of G protein signalling-2 RGS2 and RGS4 expression

by dopamine receptors in the rat striatum. Neurosci Lett

2002;333:146–50.

[26] Geurts M, Maloteaux JM, Hermans E. Altered expression of

regulators of G-protein signaling (RGS) mRNAs in the striatum

of rats undergoing dopamine depletion. Biochem Pharmacol

2003;66:1163–70.

[27] Farooqui T, Farooqui AA. Lipid-mediated oxidative stress and

inflammation in the pathogenesis of Parkinson’s disease. Parkin-

son’s Disease 2011:247467.

[28] Roof RA, Jin Y, Roman DL, Sunahara RK, Ishii M, Mosberg

HI, et al. Mechanism of action and structural requirements of

constrained peptide inhibitors of RGS proteins. Chem Biol Drug

Des 2006;67:266–74.

[29] Wang Y, Lee Y, Zhang J, Young KH. Identification of peptides

that inhibit regulator of G protein signaling 4 function. Mol

Pharmacol 2008;82:97–104.

[30] Pandey A, Kumar A, Purohit R. Sequencing Closterium moni-

liferum: future prospects in nuclear waste disposal. Egypt J Med

Hum Genet 2012. http://dx.doi.org/10.1016/j.ejmhg.2012.08.00.

[31] Pandey A, Kumar A, Purohit R. Current vision of genomic

research and its positive impact on global community. J Anal

Bioanal Tech 2012;3:136.

http://dx.doi.org/10.1016/j.ejmhg.2012.08.00


142 K.S. Gaonkar et al.
[32] Kumar A, Rajendran V, Sethumadhavan R, Purohit R. In silico

prediction of a disease-associated STIL mutant and its affect on

the recruitment of centromere protein J (CENPJ). FEBS Open Bio

2012;2:285–93.

[33] Balu K, Purohit R. Mutational analysis of TYR gene and its

structural consequences in OCA1A. Gene 2012. http://dx.doi.org/

10.1016/j.gene.2012.09.128.

[34] Blazer LL. Reversible, allosteric small-molecule inhibitors of

regulator of G protein signaling proteins. Mol Pharmacol 2010;78:

524–33.

[35] Kimple AJ, Willard FS, Giguere PM, Johnston CA, Mocanu V,

Siderovski DP. The RGS protein inhibitor CCG-4986 is a

covalent modifier of the RGS4 G alpha-interaction face. Biochim

Biophys Acta 2007;1774:1213–20.

[36] Purohit R, Rajasekaran R, Sudandiradoss C, George Priya Doss

C, Ramanathan K, Sethumadhavan R. Studies on flexibility and

binding affinity of Asp25 of HIV-1 protease mutants. Int J Biol

Macromol 2008;42:386–91.

[37] Purohit R, Sethumadhavan R. Structural basis for the resilience of

darunavir (TMC114) resistance major flap mutations of HIV-1

protease. Interdiscip Sci 2009;1:320–8.

[38] Purohit R, Rajendran V, Sethumadhavan R. Relationship

between mutation of serine residue at 315th position in M.

tuberculosis catalase-peroxidase enzyme and isoniazid suscepti-

bility: an in silico analysis. J Mol Model 2011;17:869–77.

[39] Purohit R, Rajendran V, Sethumadhavan R. Studies on adapt-

ability of binding residues and flap region of TMC-114 resistance

HIV-1 protease mutants. J Biomol Struct Dyn 2011;29:137–52.

[40] Rajendran V, Purohit R, Sethumadhavan R. In silico investiga-

tion of molecular mechanism of laminopathy cause by a point

mutation (R482W) in lamin A/C protein. Amino Acids 2012;43:

603–15.

[41] Kumar A, Purohit R. Computational investigation of pathogenic

nsSNPs in CEP63 protein. Gene 2012;503:75–82.

[42] Kumar A, Purohit R. Computational screening and molecular

dynamics simulation of disease associated nsSNPs in CENP-E.

Mutat Res. 2012;738–739:28–37.

[43] Gulati G, Gaonkar KS, Balu K, Kumar A and Purohit R.

Structure based energy calculation to determine the regulation of
G protein signaling by RGS and RGS-G protein interaction

specificity. Interdiscip Sci 2012. http://dx.doi.org/10.1007/s12539-

012-0130-0.

[44] Nishimura A, Kitano K, Takasaki J, Taniguchi M, Mizuno N,

Tago K, et al. Structural basis for the specific inhibition of

heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci

USA 2010;107:13666–71.

[45] Tesmer JJ, Berman DM, Gilman AG, Sprang SR. Structure of

RGS4 bound to AlF4–activated G(i alpha1): stabilization of the

transition state for GTP hydrolysis. Cell (Cambridge, Mass.)

1997;89:251–61.

[46] Roman DL, Talbot JN, Roof RA, Sunahara RK, Traynor JR,

Neubig RR. Identification of small-molecule inhibitors of RGS4

using a high-throughput flow cytometry protein interaction assay.

Mol Pharmacol 2007;71:169–75.

[47] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK,

Goodsell DS, et al. Autodock4 and AutoDockTools4: automated

docking with selective receptor flexiblity. J Comput Chem

2009;30:2785–91.

[48] De Vries SJ, Van Dijk M, Bonvin AMJJ. The HADDOCK web

server for data-driven biomolecular docking. Nat Protocols 2010;

5:883–97.

[49] Negi SS, Schein CH, Oezguen N, Power TD, Braun W.

InterProSurf: a web server for predicting interacting sites on

protein surfaces. Struct Bioinform 2007;23:3397–9.

[50] De Vries SJ, Bonvin AMJJ. CPORT: a consensus interface

predictor and its performance in prediction-driven docking with

HADDOCK. PloS One 2011;6:e17695.

[51] Sanejouand Y, Suhre K. ElNémo: a normal mode web server for
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