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Abstract Single Nucleotide Polymorphisms (SNPs) within microRNA (miRNA) encoding regions

of the genome are a large potential source for biologically relevant variation. SNPs along with miR-

NA act as a powerful tool to study the biology of a disease and also have the potential in monitor-

ing disease prognosis and diagnosis. Therefore, evaluating the functional role of target mRNA will

be a major challenge of future studies in the field of cancer biomarker research in leukemia. To

assess, whether miRNA target SNPs are implicated in leukemia associated genes, we conducted

an in silico approach along with the availability of publicly available web based tools for miRNA

prediction and comprehensive genomic databases of SNPs. In this in-depth report, we attempted to

use two computational approaches: prediction of miRNA in leukemia associated genes, and iden-

tifying the functional role of mRNAs targeted by miRNA. Our results from this study suggest that

the application of in silico algorithms miRdSNP, PupaSuite and UTRScan analyses might provide

an alternative approach to select target untranslated region (UTR) SNPs and understand the effect

of SNPs on the functional attributes or molecular phenotype of a protein.
� 2013 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Leukemia is a type of cancer that can affect the bone marrow,
blood cells, lymph nodes and other parts of the lymphatic sys-
tem. This disease probably results from acquired mutations to

the DNA of a single lymph or blood forming stem cell. The
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abnormal cells multiply and survive without the usual controls

that are in place for healthy cells. The accumulation of these
cells in the marrow, blood and/or lymphatic tissue interferes
with production and functioning of red cells, white cells and

platelets. The disease process can lead to severe anemia, bleed-
ing, an impaired ability to fight infection, or death [1]. miR-
NAs are short, endogenous, non-coding RNA fragments of

21–25 nucleotides that post-transcriptionally repress protein
translation or degrade the coding message by binding with
imperfect complementarity to the 30 UTRs of target messenger
RNAs (mRNAs) [2]. Recent reports from GWAS have shown

that mutations in these regions are associated with several neu-
rological disorders, muscular hypertrophy, gastric mucosal
atrophy, cardiovascular disease and Type II diabetes [3]. Accu-

mulation of the large amount of biological data suggests that a
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single miRNA could bind to hundreds of mRNA targets, and
these targets could be implicated in the regulation of almost
every biological process [4]. Loss or amplification of miRNA

genes has been reported in a variety of cancers such as lung,
breast, and colorectal, and altered patterns of miRNA expres-
sion may affect cell cycle and survival programs [5]. The

importance of miRNAs in gene regulation and their potential
significance in both cancer biology and gene evolution suggests
that mutations in miRNA target sites might well also be

important in the etiology of human associated disease. Because
small variation in the quantity of miRNAs may have an effect
on thousands of target mRNAs and result in diverse functional
consequences, the most common genetic variation such as

SNPs, in miRNA sequences may also be functional and there-
fore, may represent ideal candidate biomarkers for cancer
prognosis [6]. When SNPs occur in 30 UTR, they may interfere

with mRNA stability and translation by altering polyadenyla-
tion, protein: mRNA, and miRNA::mRNA regulatory interac-
tions. An increasing number of programs are available on the

World Wide Web to predict miRNA-target mRNA sites; how-
ever, it is advisable to use multiple algorithms to confirm the
predictions. The role of SNPs in the leukemia associated genes

by GWAS has been studied extensively. There are queries on
which SNPs within miRNAs that target associated genes can
regulate leukemia. However, there is no such report to evaluate
the role of SNPs in miRNA::mRNA gene regulation and its ef-

fect on leukemia associated genes. These motivate us to predict
the impact of SNPs on candidate miRNAs and investigate the
availability of these candidate miRNA regulators in leukemia

by in silico approach. To answer this question, in the absence
of other experimental investigations, we have presented an
integrated computational method for the first time which al-

lows the use of miRdSNP [7] PupaSuite [8] and UTRScan [9]
as a pipeline for the prediction of miRNAs and their targets,
and also we evaluated the functional role of targeted mRNAs.

The proposed computational approach could scale up in two
ways. As a first step, we used miRdSNP to scan the whole gen-
ome to find possible SNPs located at experimentally proved
miRNAs. In the second step, we applied PupaSuite and UTR-

Scan to evaluate the functional role of target mRNA SNPs.
This analysis will definitely hold a promise in future for study-
ing the prognosis and diagnosis of leukemia, as well as phar-

macogenomics, molecular epidemiology and for
individualized medicine.

2. Materials and methods

2.1. Gene and SNP dataset considered for our evaluation

A list of 167 leukemia associated genes was retrieved from the
Internet resource, Leukemia Gene Database (LeGenD), avail-

able at (http://www.bioinformatics.org/legend/leuk_db.htm).
Ten genes namely CCND1, EVI1, NUP214, PDGFRB,
PER1, PICALM, PBX1, PTPN11, RPL22 and TAL2 were in-
volved in two different forms of leukemia. The Atlas of Genet-

ics and Cytogenetics in Oncology and Haematology was used
to validate the involvement of gene in mutation; where this
gene is implicated in diseases, with the prognosis and data

on oncogenesis; a selected bibliography with hyperlinks to
MEDLINE abstracts. The annotated sequence is required to
determine the functional class (e.g., intron, exon, exonic
UTR) of the SNP so that appropriate in silico tools can be se-
lected for analyses. Functional class information regarding the
SNPs was obtained from NCBI. In this work as a first step, we

used miRdSNP which incorporates a set of computational
tools like miRTarBase, TarBase, miR2desease and miRecords
to identify experimentally validated miRNAs and their target

mRNAs in leukemia associated genes.

3. Analyzing miRNAs and their target sites

In our study, experimentally confirmed miRNA target genes in
leukemia were considered. Systematic analysis of miRNAs tar-
geting leukemia associated genes was performed based on

three curated target prediction database; miRdSNP [7]. This
provides a comprehensive data source for exploring the effect
of SNPs on miRNA binding in relation to human diseases.

Gene names under Homo sapiens were chosen as search crite-
ria provided in graphical user interface of the database search.
miRdSNP incorporates data from four curated databases Tar-
Base, miRTarBase, miRecords and miR2disease which collect

experimentally confirmed miRNA target interactions in order
to address low prediction specificity.

4. PupaSuite

PupaSuite [8] are now synchronized to deliver annotations for
both noncoding and coding SNPs, as well as annotations for

the Swiss-Prot set of human disease mutations. In this ap-
proach, we used the input option as list of genes and specified
the type of gene identifiers by selecting either Ensembl or an

external database (which includes GenBank, Swissprot/TrEM-
BL and other gene IDs supported by Ensembl). PupaSuite
finds all the SNPs mapping in locations that might cause a loss

of functionality in the genes. PupasView retrieves SNPs that
could affect conserved regions that the cellular machinery uses
for the correct processing of genes (intron/exon boundaries or
exonic splicing enhancers) and miRNAs. It uses either se-

quence-based or structural bioinformatics tools additional
methods for predicting SNPs in TFBSs and splice sites.
5. Scanning of UTR SNPs in UTR site

50 and 30 untranslated regions (UTR) of eukaryotic mRNAs

are involved in many post transcriptional regulatory pathways
that control mRNA localization, stability and translation effi-
ciency [9]. We used the program UTRScan for this analysis.

UTRScan looks for UTR functional elements by searching
through user-submitted query sequences for the patterns de-
fined in the UTRsite collection. UTRsite is a collection of
functional sequence patterns located in 50 or 30 UTR se-

quences. Briefly, two or three sequences of each UTR SNP
that have a different nucleotide at an SNP position are ana-
lyzed by UTRScan, which looks for UTR functional elements

by searching through user-submitted sequence data for the
patterns defined in the UTRsite and UTR databases. If differ-
ent sequences for each UTR SNP are found to have different

functional patterns, this UTR SNP is predicted to have func-
tional significance. The internet resources for UTR analysis
were UTRdb and UTRsite. UTRdb contains experimentally

proven biological activity of functional patterns of UTR se-

http://www.bioinformatics.org/legend/leuk_db.htm
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quence from eukaryotic mRNAs. The UTRsite has the data
collected from UTRdb and also is continuously enriched with
new functional patterns.

6. Results

6.1. miRNA and their target mRNA

By comparing the results of all the three miRNA target dat-

abases, out of 167 only 23 (14%) genes namely ABL1, CBFB,
CDX2, CHIC2, EP300, HOXC13, KIT, LASP1, NCOA2, PI-
CALM, RUNX1, ARNT, CCND1, CDK6, JAK2, LMO2,

MLL, NOTCH1, BCL2, BCL6, CCND2, CAV1 and ETS1 dis-
played miRNAs and their targets (Table 1). These genes inter-
acted with several hundreds of mRNA targets via perfect or

imperfect base-pairing primarily in the 30 UTR. We identified
experimentally verified 56 miRNAs associated with 2962 target
mRNAs that can potentially create, destroy, or modify miR-
NA binding sites by our computational approach as depicted

in Supplementary Table 1 [10–43].

7. Polymorphism in miRNA target sites

To validate the computational predictions and the biological
relevance of target SNPs, we retrieved the SNP related infor-
mation from dbSNP for all the 23 genes predicted by miRTar-

Base, TarBase and miRecords. As a next step, we submitted
the SNP information in PupaSuite and UTRScan to identify
the functional significance of the targeted mRNAs. By

PupaSuite, 505 SNPs in mRNA were predicted to disrupt exon
splicing enhancers and 57 were predicted to disrupt exon splic-
ing silencer. Notably, 35 SNPs were predicted to disrupt both

exon splicing enhancer and exon splicing silencer. Next, puta-
Table 1 List of leukemia associated genes taken for our analysis.

Acute myeloid leukemia ABL2, AF10, AF15Q14, ARH

CREBBP, DDX10, DEK, ELF

GRAF, HEAB, HLXB9, HOX

MDS1, MLF1, MN1, MSF, M

PER1, PICALM, PMX1, PNU

RUNXBP2, SEPT6, SET, SSH

Acute myeloblastic leukemia ARNT

Acute lymphoid leukemia AF1Q, AF3p21, AF5q31, BCL

FLT3, FOXO3A, GPHN, HLF

MLLT3, MLLT4, MLLT6, M

RAP1GDS1, SH3GL1, SIL, T

ZNFN1A1

Chronic myeloid leukemia ABL1, AXL, BCR, D10S170,

Chronic lymphoid leukemia BCL2, BCL3, BCL5, BCL6, B

B-cell acute lymphocytic leukemia PBX1, STL

Juvenile myelomonocytic leukemia HCMOGT-1, PTPN11

T-cell acute lymphoblastic leukemia OLIG2, TAL2, TRA@, TRB@

T-cell prolymphocytic leukemia ATM

Murine leukemia EVI2A, EVI2B

Myeloid leukemia CDC23, CLC

Pre B-cell leukemia PBX1, PBX2, PBX3

T-cell leukemia TCL1B, MTCP1, LDB1

Human monocytic leukemia ETS1

T-cell leukemia CAV1

Mixed linkage leukemia MLL3

Acute promyelocytic leukemia NUMA1, PML, RARA, THR
tive UTR functional elements potentially affected by cancer-
associated SNPs were searched for using UTRScan. As shown
in Supplementary Table 1, a total of six regulatory elements

out of the 31 included in the UTRSite database were located
near or at cancer-associated SNP sites. Based on the UTRScan
analysis, 35 SNPs showed a functional pattern change of 15-

LOX-DICE, 287 SNPs showed a functional pattern change
of IRES, 8 SNPs showed a functional pattern change of GY-
Box, 62 SNPs showed a functional pattern change of K-Box,

22 SNPs showed a functional pattern change of Brd-Box and
5 SNPs showed a functional pattern change of TOP,
respectively.

8. Discussion

Founding members of miRNAs were discovered by genetic

screening approaches, experimental approaches were limited
by their low efficiency, time consuming, and high cost. As a
consequence, several web-based or non web-based computer

software programs are publicly available for predicting miR-
NAs and their targets have been devised in order to predict tar-
gets for follow up experimental validation. Recent work by
Machová et al. [44] has identified miRNAs associated with

CML pathogenesis by in silico approach based on integrated
miRNA expression profiling. Similarly, Chan et al. [45] per-
formed an in silico study applying genomic sequence analysis

for the prediction of miRNAs that target EGFR in lung can-
cer. Even though many computational methods for the identi-
fication of miRNA may have their own limitations, there is no

other option now other than to use computational methods for
miRNA predictions. The next step in miRNA research is to
identify and experimentally validate their mRNA targets.

Since direct experimental methods for discovering miRNA tar-
gets are lacking, a large number of target prediction algorithms
GEF12, CBFA2T2, CBFA2T3, CBFB, CBL, CDX2, CEBPA, CHIC2,

4, EP300, ERG, EVI1, FACL6, FLT3, FNBP1, FUS, GAS7, GMPS,

A9, HOXA13, HOXC13, HOXD11, IRF1, KIT, LASP1, LCX, LCP1,

YH11, MYST4, NCOA2, NPM1, NSD1, NUP98, NUP214, PDGFRB,

TL1, PRDM16, PSIP2, PTPN11, RGS2, RPL22, RPN1, RUNX1,

3BP1, TOP1, TRIP11

9, BCL11B, BCR, CCND1, CDK6, ELL, EPS15, FBXW7, FCGR2B,

, JAK2, LAF4, LCK, LMO1, LMO2, LYL1, MLL, MLLT1, MLLT2,

LLT7, MLLT10, NOTCH1, NUP214, PICALM, RANBP17,

AF15, TAL2, TCF3, TCL6, TFPT, TLL, TLX1, TLX3, ZNF385,

EVI1, HIP1, HOXA11, MSI2, PDGFRB, PER1, RAB5EP, RPL22

TG1, CCND1, CCND2, DLEU1, DLEU2, FSTL3, IGH@, TCL1A

, HOX11, BAX

A, TIF1, ZNF145
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have been developed. In this study, publicly available SNP
data have been analyzed in context with miRNAs and their
target sites. This allows the use of miRdSNP, PupaSuite and

UTRScan as an integrated pipeline for the prediction of miR-
NAs and their targets, and also evaluated the functional role of
targeted mRNAs. By our analysis we found experimentally

verified 56 miRNAs associated with 2962 target mRNAs.
562 SNPs were found to be functionally significant by PupaSu-
ite and 419 SNPs by UTRScan. In silico methods provide a

useful tool for an initial approach to any mutation suspected
of causing aberrant RNA processing. These mutations can re-
sult either in complete skipping of the exon, retention of the
intron or in the introduction of a new splice site within an exon

or intron. Nonsense and missense mutations can disrupt exo-
nic splicing enhancers (ESEs) and cause the splicing machinery
to skip the mutant exon, with dramatic effects on the structure

of the gene product [46]. ESEs are common in alternative and
constitutive exons, where they act as binding sites for Ser/Arg-
rich proteins (SR proteins), a family of conserved splicing fac-

tors that participate in multiple steps of the splicing pathway
[47]. Recent studies show that regulatory mutations could
make a significant contribution to genetic variation, including

disease susceptibility leading to the identification of mutations
in regulatory variants (rSNPs) affecting transcript levels in cis
[48]. The most common interpretation of such cis effects is that
the corresponding variants are modulating the activity of reg-

ulatory elements, including promoters and enhancers. Recent
studies showed that mutations in cis splicing regulating se-
quences will lead to pathogenicity with increased cancer-prone

potential [49]. Several studies have related the occurrence of
SNPs in human 30 UTRs that may modulate the expression
of computationally predicted miRNA target sites [50]. Our re-

sults from this study suggest that the application of computa-
tional algorithms, PupaSuite and UTRScan analyses might
provide an alternative approach to select target SNPs by

understanding the effect of SNPs on the functional attributes
or molecular phenotype of a protein. In the absence of exper-
imental evidence, the potential functional consequences of a
SNP can be predicted using various bioinformatics tools.

However, these in silico tools are often not familiar to epidem-
iologists. There is a need for a simple guide for non-bioinfor-
matics researchers to obtain this information, particularly

when genomic data are continually updated and revised as
new discoveries are made. The computational protocol pro-
posed in this study is based on integrating relevant biomedical

information sources to provide a systematic analysis of com-
plex disease miRNA identification and target prediction.
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[11] Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R,

Rajewsky N. Widespread changes in protein synthesis induced by

microRNAs. Nature 2008;455:58–63.

[12] Zhang J, Guo H, Zhang H, Wang H, Qian G. Putative tumor

suppressor miR-145 inhibits colon cancer cell growth by targeting

oncogene Friend leukemia virus integration 1 gene. Cancer

2011;117:86–95.

[13] Ozen M, Creighton CJ, Ozdemir M, Ittmann M. Widespread

deregulation of microRNA expression in human prostate cancer.

Oncogene 2008;27:1788–93.

[14] Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al.

Identification of microRNA-181 by genome-wide screening as a

critical player in EpCAM-positive hepatic cancer stem cells.

Hepatology 2009;50:472–80.

[15] Hackanson B, Bennett KL, Brena RM, Jiang J, Claus R, Chen SS,

et al. Epigenetic modification of CCAAT/enhancer binding

protein alpha expression in acute myeloid leukemia. Cancer Res

2008;68:3142–51.

[16] Mees ST, Mardin WA, Wendel C, Baeumer N, Willscher E,

Senninger N, et al. EP300-a miRNA-regulated metastasis sup-

pressor gene in ductal adenocarcinomas of the pancreas. Int J

Cancer 2010;126:114–24.

[17] Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM,

Wang ZC, et al. A pleiotropically acting microRNA, miR-31,

inhibits breast cancer metastasis. Cell 2009;137:1032–46.

http://dx.doi.org/10.1016/j.ejmhg.2013.01.004
http://dx.doi.org/10.1016/j.ejmhg.2013.01.004


In silico profiling of miRNAs and their target polymorphisms in leukemia associated genes 225
[18] Felicetti F, Errico MC, Segnalini P, Mattia G, Carè A. MicroR-
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