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Abstract Background: Type 2 Diabetes Mellitus (T2DM) is a multifactorial disease involving both

genetic and also environmental factors. Potassium inwardly-rectifying channel, subfamily J, member 11

(KCNJ11) gene, an ATP-sensitive potassium channel-coding gene, contributes to insulin secretion.

Objectives: This research aimed to investigate E23K polymorphism in KCNJ11 gene and insulin

secretion in individuals with family history of T2DM (cases) and without family history of T2DM

(controls).

Method: This research was a case-control study involving 34 cases and 34 controls. E23K polymor-

phism of KCNJ11 was detected with PCR-RFLP. All of the obtained data were statistically analyzed

with T-test, Mann–Whitney U-test, Chi-Square and One-Way ANOVA.

Result: Frequency of AA genotype in individuals with family history of T2DM (41%) was higher

than in individuals without family history of T2DM (6%) (p= 0.001). Frequency of A allele in indi-

viduals with family history of T2DM (68%) was higher than in individuals without family history of

T2DM (38%) (p= 0.001). The risk of A allele in individuals with family history of T2DM was 3 times

higher than in individuals without family history of T2DM (p= 0.001, OR 3.38, CI 95% 1.67–6.84).

Homeostasis Model Assessment b (HOMA-b) values of AA genotype (85.44%± 39.55) were lower

than that of GA (212.20%± 79.30) and GG (254.00%± 61.98) genotypes (p= 0.000).

Conclusion: The risk of having A allele in individuals with family history of T2DM is higher than

that in individuals without family history of T2DM. HOMA-b values of AA genotype are lower than

that of GA and GG genotypes.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1 Characteristics of individuals case and control.

Variable Cases (n= 34) Controls

(n= 34)

p

Gender (M/F) 7/27 8/26 0.774*

Age (year) 23.94 ± 17.14 24.12 ± 3.57 0.562**

Systolic blood pressure

(mmHg)

110.35 ± 9.44 110.88 ± 8.74 0.811*

Diastolic blood pressure

(mmHg)

72.47 ± 6.98 75.06 ± 7.04 0.133*

Body height (cm) 158.79 ± 6.88 159.29 ± 7.31 0.772**

Body weight (kg) 52.65 ± 6.89 52.21 ± 6.80 0.791*

Body mass index (kg/m2) 20.84 ± 1.92 20.61 ± 1.78 0.612*

Fasting blood glucose

(mg/dL)

91.44 ± 12.32 90.74 ± 9.07 0.956**

Insulin (lIU/mL) 10.75 ± 6.35 16.26 ± 3.86 0.000*

Homeostasis Model

Assessment b value (%)

147.09 ± 71.81 232.32 ± 88.88 0.000*

Data are expressed as Mean ± SD [30].
* Independent Sample T-test.
** Mann Whitney U-test.
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1. Introduction

Type 2 Diabetes Mellitus (T2DM) is a multifactorial disease
involving both genetic and environment factors [1]. Diabetes

mellitus is generally classified into 4 groups based on their
pathogenesis with T2DM as the most frequent group (90–
95%). T2DM is determined by the presence of insulin resis-

tance and insulin deficiency or insulin secretions dysfunction
[2]. Data from World Health Organization (WHO) showed
that there were approximately 346 million individuals with
DM in 2011 and would be elevated to 438 million in 2030.

In Indonesia, individuals with DM were approximately 8.4
million in 2010 and is predicted to be raised to 21.3 million
in 2030 [3]. Based on the data from Basic Health Research in

2013, prevalency of DM in Yogyakarta (2.6%) was the highest
in number while that of Lampung was the lowest in number
(0.7%) [4].

Potassium inwardly-rectifying channel, sub family J, member
11 (KCNJ11) is a gene encoding an ATP-sensitive potassium
channel involved in the regulation of insulin secretion by pan-

creatic b cell [5]. KATP channels are open when extracellular
glucose, and thus b cell metabolism, is low. Consequently,
the cell membrane is hyperpolarized. This keeps voltage-
gated Ca2+ channels closed, so that Ca2+ influx remains low

and insulin secretion is inhibited. When extracellular glucose
increases, metabolism generates ATP at the expense of
MgADP, there by closing KATP channels. This leads to mem-

brane depolarization, opening of voltage-gated Ca2+ channels,
Ca2+ influx and exocytosis of insulin [6].

The E23K polymorphism of KCNJ11 gene is one of the

many polymorphisms that contributes to the development of
T2DM. It causes base substitution of guanine (G) to adenine
(A), resulting in the alteration of amino acid encoded, i.e., glu-

tamate (GAG) to lysine (AAG) mutation [7]. Individuals with
A allele and family history of T2DM have a higher risk in the
development of T2DM [8]. E23K polymorphism of KCNJ11
gene affects KATP channel by decreasing channel closure time

resulting in elevated activity of the channel and dysfunction of
insulin secretion [9–11].

The objective of this research is to investigate the associa-

tion of E23K polymorphism of KCNJ11 gene and insulin
secretion in individuals with family history of T2DM.

2. Subjects and methods

This research was a case control study with protocol approval
by Medical and Health Research Ethics Committee (MHREC)

of Faculty of Medicine (Number: KE/FK/274/EC), Gadjah
Mada University. Case group consisted of 34 apparently
healthy individuals with family history of T2DM, while con-
trol group consisted of 34 individuals without family history

of T2DM. All of the individuals came from Diabetic Clinic
of RSUP Dr. Sardjito, Yogyakarta. Inclusion criteria for case
group male or female, apparently healthy, aged 19–39 years

with family history of T2DM (in parents or grandparents),
while controls were individuals without family history of
T2DM and agreed to participate in this research. Individuals

were excluded in this research if fasting blood glucose
level P 126 mg/dL, obesity with body mass index P 25 kg/m2,
hypertension (systolic blood pressure P 140 mmHg, diastolic

blood pressure P 90 mmHg), and in pregnancy.
Fasting blood glucose levels were determined using glucose
oxydase-p-amino phenazone (GOD-PAP) spectrophotometry
method, fasting blood insulin level by enzyme-linked

immunosorbent assay (ELISA) obtained from DRG
International, Inc. USA (EIA-2935). Homeostasis Model
Assessment b (HOMA-b) value was determined using below

formula to analyze fasting insulin level reflecting pancreatic-
b cell function. Normal range of HOMA-b value is P107%
[12]. The formula [13] below is used to calculate HOMA-b
value:

HOMA-b ð%Þ ¼ fasting insulinðlIU=mLÞ � 360

Fasting blood glucoseðmg=dLÞ � 63
ð1Þ

DNA isolation was performed using Wizard Genomic
DNA Purification Kit (Promega, USA catalog number
A1120). Polymorphism of KCNJ11 E23K was analyzed with

polymerase chain reaction-restriction fragment length poly-
morphism (PCR-RFLP). Partial amplification of KCNJ11
was performed using forward primer 50-CCA CCG AGA

GGA CTC TGCA-03 and reverse primer 50-CTG GCG GGC
ACG GTA CCT-03 [20].

Amplification of DNA was performed in a mixture of 2 lL
of DNA, 15 lL of master mix PCR (2· PCR buffer, 150 mM

of dNTP, and 0.5 U of Taq DNA polymerase), 2 lL of primer
(1 lL of primer forward and 1 lL of primer reverse), 11 lL of
aquadest. PCR was performed as follows: an initial denatura-

tion at 94 �C for 7 min, followed by 35 cycles of denaturation
at 94 �C for 1 min, annealing at 63 �C for 1 min, extension at
72 �C for 1 min final extension at 72 �C for 7 min and cooling

at 4 �C. The PCR (Esco) program was running for 156 min.
The restriction digestion of PCR product (restriction fragment
length polymorphism/RFLP) was performed in a mixture of

0.5 lL of Ban II endonuclease (Eco241) (Thermo Scientific
Lot: 00184736), 1.0 lL of tango buffer, 4 lL of DNA and
4.5 lL of H2O in a tube. Then it was spinned down for a min-
ute at 3500 rpm. After that, the mixing formula was incubated

for 16 h at 37 �C.
Electrophoresis was done with 3% of agarose for 45 min,

100 Volt, and visualized with ethidium bromide. The results
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were seen under UV light. GG genotype (wild type) was desig-
nated by a band at 179 bp, GA (mutant heterozygote) by three
bands at 179 bp, 160 bp, and 19 bp) and AA (mutant homozy-

gote) by two bands at 160 bp and 19 bp [20].
Data were tested for normality with Saphiro–Wilk test

before being tested with Independent Sample T-test. If data

were not normally-distributed, data transformation would be
done, whereas if it is still not normally-distributed, Mann–
Whitney U test would be done as an alternative test. The dif-

ference of genotype and allele frequency between with and the
control group was analyzed using Chi-Square test. The risk of
having A allele was determined using odds ratio. The differ-
ence of HOMA-b values between AA, GA, and GG genotypes

were analyzed with One-Way ANOVA, continued with post
hoc test. The p value of less than 0.05 was established as the
significance level.

3. Results and discussion

3.1. Frequency distribution of genotypes and alleles of E23K

polymorphism in KCNJ11 gene among individuals case and
control

Table 1 showed individuals characteristic in individuals with
family history of T2DM (case) and without family history of

T2DM (control) groups. Based on this data, there was no sig-
nificant difference in distribution of gender, age, body weight,
Table 2 The distribution of genotype (AA, GA, GG) dan

allele (A and G) KCNJ11 gene in case and control groups.

Cases

(n= 34)

Controls

(n = 34)

p

OR (CI 95%)

Genotype AA 14 (41%) 2 (6%) 0.001*

GA 18 (53%) 22 (65%)

GG 2 (6%) 10 (29%)

Genotype AA and GA 32 (94%) 24 (71%) 0.011*

GG 2 (6%) 10 (29%) 6.66 (1.33–33.27)

Allele A 46 (68%) 26 (38%) 0.001*

G 22 (32%) 42 (62%) 3.38 (1.67–6.84)

* Chi-Square test [30].

GGAAGA

179 bp 

160 bp 

Figure 1 The genotyping results of E23K polymorphism in KCNJ11

GA= heterozygous mutant (179 bp, 160 bp, and 19 bp (unseen)) and
body height, body mass index, systolic blood pressure, dias-
tolic blood pressure, and fasting blood glucose, between indi-
vidual case and control. Fasting insulin level and HOMA-b
values differed significantly between the two groups [30].

Frequency of each genotype and allele is presented in
Table 2. The frequency of genotypes and alleles of E23K poly-

morphism in KCNJ11 gene among case and control groups in
Yogyakarta is variable due to the difference of genotype distri-
bution in homozygote and heterozygote. Frequency of AA

genotype in individuals with family history of T2DM (41%)
was higher than in individuals without family history of
T2DM (6%) (p = 0.001). Frequency of A allele in individuals
with family history of T2DM (68%) was higher than in individ-

uals without family history of T2DM (38%) (p= 0.001) [30].
Three genotypes (AA, GA, and GG) are shown in Fig 1.
Table 3 shows that the results of this study are in line with

that of other studies done in the populations of West Asia
(Palestine, Israel), East Asia (China, Japan), Middle Europe
(Cekoslovakia) and West Europe (Germany). This study,

along with previously mentioned studies, showed that AA
genotype and A allele were highly prevalent among several dif-
ferent ethnicities. The difference of this study to other studies

done in several other countries is that the subjects are individ-
uals with and without family history of T2DM, where as those
in another studies are normal individuals and those with
T2DM.

3.2. E23K polymorphism in KCNJ11 gene as risk factor of

having A allele in individuals with and without family history of
T2DM

Table 2 shows that individuals with family history of T2DM
(case) possess 6.66 times higher risk of having AA and GA

genotype than those without T2DM (controls) (p = 0.001,
OR 6.66, 95% CI = 1.33–33.27). The risk of having A allele
in cases is 3.38 times higher than that of controls (p = 0.001,

OR 3.38, 95% CI = 1.67–6.84). The odds ratio in this study
is the risk of having A allele, meanwhile those of another
studies are the risk of having T2DM [30].

The individuals in this study were grouped according to the

presence of A allele and the family history of T2DM. The risk
stratification is as follows: (1) Low risk (no A allele and no
family history of T2DM; (2) Moderate risk (no A allele, but

with the presence of family history of T2DM, or having A
GA M

100 bp 

200 bp 

gene. M= marker (Geneaid); GG genotype = wild type (179 bp),

AA= homozygous mutant (160 bp and 19 bp (unseen)) [30].



Table 3 The frequency of GG, GA, and AA genotype of

E23K polymorphism in KCNJ11 gene among different

ethnicities.

Ethnicity

(area)

Research

individuals

Genotypes Total

n

p

AA (%) GA (%) GG (%)

Caucasian

(Czech

Republic and

Slovakia

Republic) [14]

Normal 18 (16) 47 (42) 48 (42) 113 0.05

T2DM 4 (3) 85 (55) 66 (42) 155

Asian (Japan)

[15]

Normal 107 (12) 396 (45) 386 (43) 889 0.004

T2DM 127 (14) 446 (49) 333 (37) 906

Caucasian

(Germany)

[16]

Normal 134 (12) 492 (46) 444 (42) 1070 0.003

T2DM 47 (15) 156 (48) 121 (37) 324

Han

(Shanghai)

[17]

Normal 288 (15) 930 (49) 692 (36) 1910 0.017

T2DM 329 (18) 863 (47) 656 (35) 1848

Han (Beijing)

[18]

Normal 57 (15) 174 (45) 156 (40) 387 0.001

T2DM 87 (22) 189 (48) 120 (30) 396

Ashkenazi

(Israel) [19]

Normal 100 (12) 404 (48) 339 (40) 843 0.52

T2DM 79 (14) 266 (46) 228 (40) 573

Palestinian

(Gaza) [9]

Normal 3 (3) 29 (29) 68 (68) 100 0.000

T2DM 15 (15) 43 (43) 42 (42) 100

Javanese

(Yogyakarta)

[20]

Normal 8 (20) 22 (55) 10 (25) 40 0.572

T2DM 12 (30) 20 (55) 8 (20) 40

Javanese*

(Yogyakarta)

[30]

Without

T2DM

History

2 (6) 22 (65) 10 (29) 34 0.001

With

T2DM

history

14 (41) 18 (53) 2 (6) 34

* Javanese: People of Java island in Indonesia [30].
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allele, but no family history of T2DM); (3) High risk (having
both A allele and family history of T2DM). In one study done

in United States of America, the individuals were grouped
Table 4 T2DM Risk studies in several countries which are based o

Countries Study results

United States of America (USA) [21] Low risk: 2.791 (64.2%)

Moderate risk: 843 (19.4%)

High risk: 711 (16.4%)

United States of America (USA) [22] Low risk: 9.938 (67.5%)

Moderate risk: 3.437 (23.4%

High risk: 1.340 (9.1%)

Chicago [23] Low risk: 1.426 (61%)

Moderate risk: 643 (28%)

High risk: 261 (11%)

Yogyakarta (Indonesia) [30] Low risk: 10 (14.7%)

Moderate risk: 26 (38.23%)

High risk: 32 (47.06%)

* Individuals with family history of T2DM (cases).
** Individuals without family history of T2DM (controls) [30].
based on a sole criterion of the presence of T2DM in family
history. The risk stratification in that study is as follows: (1)
Low risk (no family history of T2DM); (2) Moderate risk

(one of the parents and also one of the grandparents has
T2DM, or both grandparents in either paternal or maternal
lineage have T2DM); (3) High risk (both parents have

T2DM, or one of both parents plus both grandparents have
T2DM) (Table 4).

3.3. The difference of HOMA-b value in individuals with AA,
GA, and GG genotype in this study

The difference of HOMA-b value in this research is presented

in Table 5. The value of HOMA-b with AA genotype
(85.44%± 39.55) was lower than GA genotype (212.20% ±
79.30) and GG genotype (254.00%± 61.98). One-Way
ANOVA analysis showed a significant difference of HOMA-

b value between AA, GA and GG genotypes (p = 0.000) [30].
The insulin secretion of individuals in this study was deter-

mined using HOMA-b as a model to study pancreatic b-cell
function. The results of this study showed that there was a
statistically significant difference of HOMA-b values between
individuals with AA, GA, and GG genotype. These results

are in line with one study [24] which shows the influence of
genetic factor on insulin biosynthesis and secretion. Another
study [25] also shows that b-cell functional decline is associ-
ated with low HOMA-b value. The decrease in insulin secre-

tion may be caused by several factors, and one of them is
genetic factor [26]. Genetic factor has a significant contributory
role on the prevalence and incidence of T2DM in a family [27].

Table 5 shows that HOMA-b value in AA genotype is lower
than those of GA and GG genotypes because E23K polymor-
phism in KCNJ11 gene causes amino acid change, by which

glutamic acid (GAG) is substituted for lysine (AAG). The
amino acid change subsequently changes its physicochemical
properties (negative charge is substituted for positive charge,

and acidic amino acid is substituted for basic amino acid).
This electrical charge substitution causes diminished closure
response of KATP channel to the presence of ATP, thus pro-
longs the opening of the channel. This event will eventually

lead to decreased insulin secretion [28,29].
n the presence of family history.

Data Individuals Total n

Questionnaire Cases* 4.345

Controls**

Questionnaire Cases* 14.715

) Controls**

Questionnaire Cases* 2.330

Controls**

Questionnaire & PCR-RFLP Cases* 68

Controls**



Table 5 The difference of HOMA-b among individuals in this research.

Variable Mean ± SD p

AA (n= 16) GA (n= 40) GG (n= 12)

HOMA-b (%) 85.44 ± 39.55 212.20 ± 79.30 254.00 ± 61.98 0.000*

* One-Way ANOVA [30].
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4. Conclusion

The frequency of AA genotype, A allele, and risk of having A

allele in the case group were higher than those in controls. The
HOMA-b value in individuals having AA genotype was lower
than that of individuals with GA and GG genotype.
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