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Abstract Fragile X syndrome (FXS) is a multigenerational disorder having massive adverse effect

not only on the individuals but also on their families. It is the most common type of intellectual

disability after Down’s syndrome. Over two decades have passed since the discovery of FMR1,

the causal gene for FXS, but still little is known about the pathophysiology of this disease. This lack

of knowledge presents the major barrier encountered by the scientific community for early diagnosis

and effective treatment. Since early diagnosis has important implication in determining the disease

status among members of the family tree so the genetic counseling and supportive therapy get ham-

pered in larger perspective. The present review emphasizes on the recent findings in FXS pathophys-

iology, therapeutics and technical challenges in molecular diagnosis.
� 2016 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Intellectual disability (ID) is defined as a failure to develop a
sufficient cognitive and adaptive level, caused by both genetic

and environmental factors and is normally reflected in matura-
tion, learning, or social adjustment (American Psychiatric
Association 1987). It affects approximately 2% of the general

population [1]. The genetic cause of ID frequently involves X
chromosome, elucidating to a certain extent the lower preva-
lence of ID in females in comparison to males [2]. About
20% of all the X linked ID cases is because of fragile X syn-

drome (FXS) [3], which is by far the second most widespread
inherited cause of ID after Down syndrome [4]. This cognitive
disorder has an incidence of 1 in 4000 males and 1 in 8000

females [5]. It is characterized by mild to severe mental
disability, often accompanied by autistic like behavior, devel-
opmental delay, augmented vulnerability to seizures, and

macroorchidism in males [6] (Table 1).

2. Genetics insight of FXS

FXS (OMIM #300624) is an X linked dominant disorder
caused by mutation in a single gene Fragile X Mental Retar-
dation 1 (FMR1). An affected female will have 50% affected

children but an affected male will have all daughters affected
but all sons normal. The molecular basis of this syndrome is
the expansion of a CGG repeat sequence located at the 50

UTR of a highly conserved FMR1 gene that consists of 17

exons and spans about 38 kb, positioned at Xq27.3, there
by leading to hypermethylation of the repeat sequences and
of the neighboring promoter region leading to silencing of

this gene [7]. Due to X linked inheritance of FMR1, FXS
females show variability in symptoms and are mildly affected
than males because of random X inactivation. Severity of

disease symptoms in FXS females is inversely related to the
activation ratio for the normal FMR1 allele and its product,
FMRP (Fragile X Mental Retardation Protein) level. The
Table 1 Characteristic features of FXS.

Features Description

Intellectual

deficiency

Mild to severe in males (IQ between 20 and

60), borderline IQ in females accompanied by

learning difficulties and problems in doing

mathematics [63–65]

Phenotypic

features

Mild facial dysmorphia characterized by

elongated face, prominent forehead,

prominent ears, prominent jaw, velvety skin

[66]

Connective tissue

anomalies

Pes planus [67], low muscle tone [68], strabis-

mus [69], hyper extensible joints, double

jointed thumb [70,71], recurrent sinusitis and

otitis media (childhood), mitral valve pro-

lapse, macro-orchidism (post puberty) [72,73]

Behavioral

abnormalities

Social withdrawal, hyperactivity, anxiety,

preseverative speech, hyperarousal to sensory

stimuli, tactile defensiveness, stereotypic

movements (hand flapping, hand biting or

rocking), autistic like features (shyness, poor

eye contact, problem in face encoding) [74,75]
FM (full mutation) males or methylation mosaic FM males
too show variability in severity of cognitive impairment
depending upon the amount of unmethylated DNA and

FMRP level [8].
On the basis of CGG repeat length the FMR1 gene is

classified into 4 allelic forms normal allele (5–44 repeats), inter-

mediate allele (also referred as gray zone, inconclusive, or
borderline) (45–54 repeats), premutation (PM) allele (55–200
repeats) and full mutation (FM) allele (>200 repeats). The

most common repeat length in normal allele is 29 or 30
CGG repeats. Normal alleles are transmitted to next genera-
tion stably without any expansion and found to have AGG
interruption after every 9 or 10 CGG repeats. AGG repeats

anchor the repeat region during replication by preventing
strand slippage. This is supported by the finding that most of
the PM alleles have a single or no AGG repeat and are unsta-

bly transmitted to the offspring by mother parent [9]. The pres-
ence of AGG interruptions in all PM mothers having repeat
lengths below �100 CGG reduces the risk of the expansion

to FM upon transmission [10]. The possibility of expansion
to a full mutation is positively associated with the length of
the premutation in the transmitting female [11]. The maternal

PM repeat size as small as 56 repeats have been reported to
expand to a FM in a single generation [12]. But PM or FM
male can transmit only PM allele to their daughters due to
selection against full mutation in sperm during spermatogene-

sis (Fig. 1). The presence of an FM allele causes FXS, but the
carriers of PM alleles does not exhibit any of the characteristic
phenotypic features associated with FXS. Unlike FXS,

neuropathological changes in PM are a result of RNA toxicity
related to over expression of mRNA containing the CGG
repeat expansion [13]. PM is more frequent in population as

compared to FXS and occurs in 1 in 113–259 females and 1
in 260–810 males [14]. PM males and, to a lesser extent, PM
females are at an augmented risk of an adult-onset neurode-

generative Fragile X-associated Tremor/Ataxia Syndrome
(FXTAS). 40% of PM males and 8% of PM females develop
FXTAS over 50 years of age [15] which is characterized by
progressive intention tremor, gait ataxia and dementia [16]

and recently in 80% of FXTAS cases olfactory dysfunction
was also reported. Also it was found that there is �20% risk
for PM female to develop a form of ovarian dysfunction

known as Fragile X associated Premature Ovarian Insuffi-
ciency (FXPOI) [17]. FXPOI presents with a range of
problems like heavy bleeding, irregular periods or increased

rates of twinning, infertility and menopause before the age of
40 with reduced anti-mullerian hormone (AMH) indicative
of a reduced follicle pool, and increased follicle stimulating
hormone (FSH) [18].

3. FMRP and its role in cognitive development

Extensive repeat expansion and consequential hypermethyla-

tion of the FMR1 gene in FM individuals lead to transcrip-
tional silencing of FMRP. Insufficient FMRP in full
mutation individuals leads to cognitive impairment in FXS.

FMRP is a multifunctional mRNA-binding protein having
three RNA interacting domains namely, two hnRNP K
homology domains and a cluster of RGG (arginine–glycine–

glycine) box. It has a nuclear localization signal (NLS) and
a nuclear export signal (NES) for functioning as a



Figure 1 Inheritance pattern of fragile X syndrome. (1) Affected (FM) female will have 50% chance of having affected children [53]. (2)

Affected (FM) male rarely reproduce due to cognitive/behavioral limitations, reduced fertility due to sperm malformations and

oligospermia however if they reproduce they can transmit PM allele to their daughters [54]. (3) Carrier female (PM) can transmit expanded

FM allele to 50% of her children depending upon the size of CGG repeat [55]. (4) Carrier male (PM) can transmit only PM allele to his

daughters and all his sons will be normal [56].
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nucleocytoplasmic shuttling protein, which can associate with

up to 4% of all mRNAs present in the brain [19]. It is involved
in activity-dependent mRNA metabolism in neurons, such as
mRNA transport [20], stability [21] and regulation of dendritic
kkmRNA translation. FMRP thus plays pivotal role in

establishing correct synaptic connectivity [22], synaptic
plasticity [23] and dendritic morphology [24]. This was
consistent with the finding that the mouse models of FXS

depicts extensive defects in synaptic plasticity [25], and that
the FMR1 KO (Knock Out) mice and FXS patients have
augmented numbers of elongated and thin dendritic spines

comparative to the mushroom-shaped spines typical of
stronger and mature synapses [26,27].

The creation and elimination of dendritic protrusions are
essential for establishing and maintaining normal synaptic

communication and hence governs the process of learning
and memory [28]. Long term synaptic plasticity requires new
protein synthesis which is regulated through Group 1 metabo-

tropic glutamate receptors (mGluRs) by several pathways [28].
Synaptic studies in Fmr1-deficient mouse depict excessive
protein synthesis leading to exaggerated mGluR LTD (long

term depression) [29]. These findings, along with already
known translational repression potential of FMRP suggest
that both FMRP and mGluR work in concert to fine-tune

activity-dependent local protein synthesis.
4. Disease pathogenesis

FMRP regulates the translation of proteins important for

proper synaptic function. The precise mechanism of transla-
tional regulation by FMRP is unknown. FMRP is thought
to form a dimer in the cytoplasm and enters the nucleus of

neurons where it interacts with target mRNA. FMRP-
mRNA complex thus formed is shuttled out into cytoplasm
again and is transported down to the dendritic spines, where

they wait in a translationally silent state for synaptic stimula-
tion signal like mGluR activation [60].

How FMRP mediates this translation repression is sup-
ported by two theories. According to First theory, FMRP

can repress the translation of certain cargo mRNAs via specific
microRNAs. On binding to its specific mRNA ligands, FMRP
may recruit RISC (RNA-induced silencing complex) complex

along with miRNAs allowing recognition between miRNAs
and their target mRNA. The association of mammalian
FMRP with RISC complex suggests its role in micro RNA-

mediated translational control [30]. But there is yet another
theory which states that FMRP bounds with its target mRNA
by interacting with ribosome directly in RNA independent

manner [31] and can interfere with normal translation process
without needing the miRNA by interfering with the binding of
essential translation factors to the ribosome. In agreement to



Figure 2 Translation repression by FMRP. (1) Monomeric FMRP dimerises in cytoplasm of neural cell. (2) Dimeric FMRP enters

nucleus using NLS [57,58]. (3) FMRP dimer binds target mRNA through its RGG domain which interacts with G quadruplex sequences

[59]. (4) FMRP-mRNA complex reenters cytoplasm using NES domain [58]. (5) FMRP-mRNA complex binds to inter subunit space

within ribosome in a RNA independent manner thereby interfering with binding of translation factors thus repressing translation [31,32].

(6) Alternatively, FMRP-mRNA complex interacts with RISC complex via specific miRNA causing translation repression [30]. (7) Specific

mRNAs are thus transported in translationally silent state at the dendritic spines and waits for signal [60]. (8 and 9) translation commence

upon stimulation of metabotropic glutamate receptor by glutamate [61,62].
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this theory, recently it was found that FMRP binds within the
intersubunit space of the ribosome preventing the binding of
eEF1A.GTP.aminoacyl-tRNA ternary complex and eEF2 to

the 80S ribosome hence blocking translation [32] (Fig. 2).

5. Treatment

Presently there is no cure for FXS but supportive management
therapies like special education and vocational training bene-
fits FXS patients. A lot of studies have been conducted in

order to understand the molecular pathogenesis of FXS to find
possible treatment. The finding of exaggerated mGluR LTD in
FXS has been exploited in opening many potential therapeutic
interventions. The majority of therapeutic interventions being

developed today for FXS focus on drugs whose action reduces
the activity of Group 1 mGluRs and its downstream signal
transduction pathways [33]. Different animal models of FXS

like fruit fly, zebra fish, and mouse depicted rescued behavioral
and cognitive deficits upon the administration of mGluR5
antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) [34].

MPEP has limitation like toxicity and a short half life thus it
is not feasible for use in clinical trials for FXS patients.
Fenobam, an mGluR NAM was administered to a cohort of
12 adult males and females with FXS. No significant adverse

reactions to fenobam were detected and it is found to be safe
[35]. However more high quality and placebo controlled trials
on a larger group of subjects become necessary to provide a
strong indication of benefit in treating FXS patients.

Preclinical trials of mavoglurant also known as AFQ056, a
mGluR antagonist had shown promising results in FMR1 KO
mice [36,37] and also in a double-blinded trial of mavoglurant
conducted on 30 FXS adult subjects stratified according to the

methylation status of FMR1 promoter, it was found that indi-
viduals with a fully methylated promoter showed significant
improvements as compared to the control group [38]. However

when large international clinical trial was conducted in adults,
negative results are obtained which compelled to discontinue
any development program for this drug. Such underwhelming

results had dwindled the likelihood of using mGluR5 modula-
tors as a single pharmacologic treatment in FXS. However it is
still possible that the studies done till date were not long

enough to show benefits, or that the drug may work in younger
children. Currently another mGluR5 negative allosteric modu-
lator, basimglurant is clinically found to be potent, selective,
and safe with good oral bioavailability and long half-life, good

brain penetration, and high in vivo potency [39]. It is now in
Phase II trials for which results are still not released.

Also drugs targeting impaired GABA receptors in FXS are

also under clinical trials. Ganaxolone, a GABAA receptor
agonist that has anticonvulsant, anxiolytic, and sedative effects
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is found to be orally active and does not have hormonal
effects. It is under development for the treatment of seizure
disorders and posttraumatic stress disorder. A randomized,

Phase II, double-blind, placebo-controlled crossover trial to
investigate its efficacy for the treatment of anxiety and atten-
tion deficits in children with FXS aged 6–17 years [40] is cur-

rently under way. If efficacy in FXS is demonstrated and
there is FDA approval for an FXS indication, then it will be
studied in ASD and related disorders. Arbaclofen, a GABAB

agonist too has demonstrated efficacy for children with FXS
and social deficits or ASD in a controlled trial [41].

Both mGlu R pathway and GABA pathway have shown to
be critical in FXS pathogenesis, still other pathways may also

be involved as FMRP is found to regulate many proteins
which are important for the brain development. Recently a
possibility of involvement of dysregulated nitric oxide signal-

ing in the pathopsychology of FXS and other neuropsychatric
disorders have been reviewed opening new avenues in the
development of more drugs for FXS treatment [42]. In the

present scenario it has now become important to concentrate
more on the functioning of FMRP which is missing in FXS.
Understanding the pathway adapted by FMRP for translation

repression of its target mRNA can help in designing potential
drugs which can replicate the function of FMRP and rescue
FXS phenotype. With the growing concern and information
about FXS, we feel optimistic to find an effective treatment

for FXS very soon.
6. FMR 1 diagnosis

More than 99% of the FXS cases are the result of CGG-
repeat-expansion at 50 UTR [43]. Hence the molecular diagno-
sis of FXS relies on the tests that determine the number of the

triplet repeat elements in the FMR1 gene. Before cloning of
FMR1 gene, FXS diagnosis was done by Cytogenetic identifi-
cation of fragile site at Xq27.3, induced by culturing cells in

folic acid deficient medium. This method is no longer used
because it is less sensitive and more costly than molecular
genetic testing [76].

Cloning of FMR1 gene in 1991 has revolutionized molecu-
lar diagnosis of FXS. It requires an amalgamation of PCR and
methylation-informative Southern Blot (SB) analysis [44].
Briefly, the technical simplicity and rapidity of PCR made it

a preferred method for molecular diagnostics in general. But
the presence of high GC rich expansions in FM, size and
methylation mosaics of CGG repeats, random X-inactivation

in females, and the incomplete/absent methylation in certain
prenatal samples like chorionic villus sample made the molec-
ular diagnosis of FXS complex and technically challenging

[45]. Therefore long PM and FM alleles cannot be successfully
amplified using conventional PCR amplification [46].

Southern blot can clearly distinguish between FM and PM
alleles. SB provides information regarding methylation status

and can identify female homozygous alleles that often con-
found interpretations of PCR data. Thus, SB supplements
the result of PCR and is traditionally used for the diagnosis

of FMR1 [47]. But Southern blot analysis have limitations of
being labor intensive, time consuming, requires large quantities
of high-quality DNA for analysis and has low resolution and

sensitivity compared to PCR-based methods [48,49]. Therefore
SB is not feasible for speedy diagnosis as is required in prenatal
testing and carrier screening demand in clinical setup. Thus
considerable efforts are put in for developing PCR technology
to increase its ability to identify fragile X full mutations.

A PCR method named Triplet primed PCR (TP-PCR), has
emerged as a reliable non-radioactive method that replaced
Southern blot [50,51]. Triplet – primed PCR assays is showing

high promise in the field of FMR1 diagnostics due to their cost
effectiveness, and high sensitivity for large expansions. Differ-
ent variations of this approach have been proposed [51]. Fur-

ther information about the methylation pattern of FM FMR1
alleles can be supplemented using Methylation-specific PCR
[52]. Thus excluding the need of SB for FMR 1 diagnosis,
probably, in the near future more advanced TP PCR will be

the only technology preferred for FMR 1 analysis.

7. Conclusion

It has been more than two decades since the discovery of frag-
ile x syndrome but the disease continues to hold surprises in
spite of extensive research. Among the primary goal of the

researchers, it is to find effective targeted therapy for the syn-
drome and also to develop speedy, sensitive and cost effective
diagnostic method.

The mGluR model proposed for defining the pathogenesis
is accepted widely. It explains the role of FMRP in activity
dependent local protein synthesis but little is known about

the transport of mRNA to the dendritic spines in a transla-
tional inactive state. In the present review, two different path-
ways are discussed through which FMRP could repress
translation, one via miRNA mediated translational inhibition

and alternatively by interacting directly with ribosome. More
research is required to unravel the precise pathway adapted
by FMRP in upholding apt synaptic plasticity to pave way

for designing and validating possible drug target.
Following advancement in therapy, early recognition of the

syndrome is also a big concern. Early diagnosis of FXS is

important to ensure that not only affected children and fami-
lies can receive all possible benefits, including genetic counsel-
ing and intervention services but is also important for prenatal

diagnosis as the risk of recurrence of Fragile X-MR is high in
the family and carrier relatives. TP PCR has preferably substi-
tuted traditionally used SB technique owing to its sensitivity,
selectivity, and low cost. It offers the possibility of early diag-

nosis in clinical suspects, prenatal testing and is also competent
in mass screening for carrier status. A progress in both diagno-
sis and therapy would hopefully improve the quality of life

lived by FXS patient in future.
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