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Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic
heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies.
However there have been limited direct comparisons between NGS and more established technologies
to assess the sensitivity and false negative rates of this new approach. The scope of the present manu-
script is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/
Sanger versus targeted NGS.
Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca
Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously under-
taken by high throughput denaturing high-performance liquid chromatography (dHPLC) followed by
Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac
genes (ICC). The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequenc-
ing data of the 3 genes was undertaken in a double blinded strategy.
Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in
total, some samples had double hits). There was a 0% false negative rate for NGS based analysis.
Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this
co- analysed cohort from 22.0% (33/150) to 31.3% (47/150).
Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of
homozygosity inMYBPC3 andMYH7 genes in comparison to other population studies (6/150, 4%). None of
the homozygous samples were detected by dHPLC analysis.
Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simulta-
neously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput
analysis of HCM patients and relevant control series in a less characterised population.
� 2017 Production and hosting by Elsevier B.V. on behalf of Ain Shams University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac dis-
ease characterised by left ventricular hypertrophy and myofibrillar
disarray [1]. HCM is typically inherited in an autosomal dominant
manner and, with an estimated worldwide reported prevalence of
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Fig. 1. Electropherogram of dHPLC screening of TNNT2 exon 17, sample showing a
variant profile (in orange) is subjected to Sanger based sequencing analysis to
identify the nature of the sequence change.
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1:500, it is the most common inherited cardiac disease and a lead-
ing cause of premature sudden cardiac death (SCD) in the young [2].

Mutations in almost 50 genes have been implicated in HCM,
including genes that encode for sarcomeric, Z-disc, calcium han-
dling and mitochondrial proteins [3], although the evidence for
many of these associations is doubtful [4]. Until recently however,
genetic testing for HCM has focused on mutations in myosin heavy
chain 7 (MYH7), myosin-binding protein C3 (MYBPC3) and cardiac
troponin T (TNNT2), which account for between 35% and 60% of
cases [5]. Traditionally such studies have been performed by single
gene analysis, utilising either polymerase chain reaction (PCR) or
denaturing high performance liquid chromatography (dHPLC) fol-
lowed by direct Sanger sequencing. Using these approaches, HCM
mutation profiles from many different population groups have
been published over the last decade [6–18], including an Egyptian
cohort of 192 HCM patients [19].

The recent advent of next generation sequencing (NGS) tech-
nologies has the power to revolutionise the genetic diagnosis of
heterogeneous diseases, such as HCM. NGS can be used for either
targeted gene panel or whole genome/exome sequencing [20],
and enables rapid and cost-effective analysis of the three core
HCM genes, as well as more comprehensive screening of all genes
associated with HCM. However, until now there have been limited
studies to assess the sensitivity of NGS and to compare its ability to
detect variants with more established and traditional methods. In
the present study, we have compared variant detection in the three
commonly involved sarcomeric genes: MYH7, MYBPC3 and TNNT2
in a cohort of 150 Egyptian HCM patients using dHPLC/Sanger
based analysis followed by NGS targeted deep sequencing assay.

2. Patients and methods

2.1. HCM patient population

The present study comprised 150 unrelated HCM index patients
recruited from the different geographic regions of Egypt. Patients
were diagnosed according to standard clinical evaluation by 2D
echocardiography at Aswan Heart Centre and satellite HCM clinics
as part of National BA HCM National Program. Demographic and
clinical data of this cohort was described in our earlier paper
[19]. The samples analysed were included based on availability of
sufficient DNA for analysis by both assays.

The present study has been carried out in accordance with the
Code of Ethics of the World Medical Association (Declaration of
Helsinki) and was approved by Aswan Heart Centre Research
Ethics Committee. Research subjects provided informed consent
for participation in the study.

Genomic DNA was extracted from 4 to 6 ml of blood samples
donated from index HCM patients and control subjects using Pro-
mega wizard genomic DNA purification Kit. Primers used for
amplification of the coding exons and flanking intronic sequences
of the three candidate sarcomeric genes: MYH7 (NM_000257.2,
MYBPC3 (NM_000256.3), and TNNT2 (NM_001001430.1) were
previously described [9,21,22].

New primers set used for amplifying exon 5 were designed in
the present study to bypass the intronic deletion polymorphism
(c.506-12delC) commonly encountered among Egyptians (present
at a frequency of 23%, as reported in our earlier study [19]) to
enable screening of the full span of exon 5 (MyBPC3 exon 5 new
primers: F primer TTTGCAGGTGGCAGCAT; R primer GTCCCCT
CTCTCCGTGTCTCC).

2.2. dHPLC/Sanger analysis

Initial screening for mutations in the three candidate sarcom-
eric genes: MYH7 (NM_000257.2, 38 coding exons, 3rd to 40th
exons), MYBPC3 (NM_000256.3, 34 exons, 1st to 34th), and TNNT2
(NM_001001430.1, 16 coding exons, 2nd to 17th) was undertaken
using heteroduplex analysis by dHPLC using WAVETM, Transge-
nomics, DNA Fragment Analysis System. The conditions for dHPLC
were developed on the basis of amplicon-specific melting profiles
predicted by the NAVIGATOR software (Transgenomics, San Jose,
California, USA).

Samples showing a variant profile (different from the wild type
pattern) in any of the amplicons were subjected to bidirectional
sequencing using automated dye terminator cycle- capillary elec-
trophoresis (ABI 3500 Applied Biosystems, Foster City, California,
USA) to determine the nature of the sequence change, as shown
in Fig 1.
2.3. NGS targeted resequencing

The samples were re-sequenced blindly using a custom capture
assay (Agilent SureSelect), with an Illumina HiSeq2500 system
which targets commonly involved sarcomeric genes (MYBPC3,
MYH7, TNNT2) implicated in hypertrophic cardiomyopathy. Reads
were demultiplexed (allowing zero mismatches) with HiSeq Con-
trol software and quality were checked in FastQC v.0.10.1. Low
quality (<20) bases were trimmed using PrinSeq v0.20.4 [23] and
the reads were aligned to hg19 reference using BWA v0.7.5 [24].

Marking duplicate reads, local realignment around indels and
base quality score recalibration process were done in Picard
v1.109 and GATK v2.8-1[25]. Alignment summary metrics and
callability and coverage reports were calculated using Picard, Sam-
tools v0.1.18 [26], Bedtools v2.11.2 [27] and in house perl scripts.

A subset file (ontarget) was created, based on reads mapping
quality >8. This ‘‘ontarget” file was used to make consistent variant
calls with GATK HaplotypeCallerandUnifiedGenotyper. Bases cov-
ered by at least 10 reads with a mapping quality �10 and base
quality �20 were denoted as ‘‘callable”, i.e. adequately covered
for variant calling with recommended GATK parameters [28]. Vari-
ants were annotated using the Ensembl API v75_37 [29] and
Human Gene Mutation Database (HGMD) Professional version
2013.4 [30].
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3. Results

The current cohort were co-analysed by two approaches of
complimentary dHPLC/Sanger and by targeted resequencing NGS
techniques. Both analyses were undertaken independently and
blindly.

Twenty-four likely pathogenic variants were detected in MYH7,
MYBPC3 and TNNT2 by dHPLC/Sanger, in 35 patients (Table 1). Two
patients had double hits, rendering a diagnostic yield using dHPLC/
Sanger analysis of 22% (33/150) in this cohort.

The 150 samples were then analysed on an NGS targeted panel
for deep sequencing of the three sarcomeric genes, with the aver-
age percentage of coding sequence considered callable as follows:
MYH7: 97.5%, MYBPC3: 99.8%, TNNT2: 99.9%. All variants identified
by dHPLC/Sanger were also detected using NGS, representing a 0%
false negative rate for this technique in this study. In addition, a
further 21variants were not identified by dHPLC/Sanger and were
detected only by NGS (Table 1).

All variants detected only by NGS were subsequently confirmed
by Sanger based sequencing using capillary electrophoresis. NGS
assay showed a 0% false positive rate for these three genes. In total,
fourteen samples were classified as having putative pathogenic
variant over the number of patients detected by dHPLC/Sanger.
Hence, NGS contributed towards a higher positive diagnostic yield
of 31.3% (47/150 patients) in comparison to the yield of dHPLC
(22%%, 33/150) in the same co-analysed cohort (Fig 2).
3.1. Discrepancies between dHPLC and NGS

The 19 individual variants that were detected only by NGS and
missed by dHPLC were investigated to determine why the initial
screening had failed to detect them.

The dHPLC profile was similar to the wild type profile for 12
variants. Fig 3 shows examples of samples with variants not picked
by dHPLC as a different profile from the wild. This is a known lim-
itation in sensitivity of dHPLC technique, with a reported sensitiv-
ity of 95%[31].

Detailed analysis of samples not detected by dHPLC showed six
variants were present in a homozygous state (c.1227-2A>G,
c.1321G>A, c.2458C>G, c.2618C>A, c.3676C>T in MYBPC3 and
c.1064C>T in MYH7). Homozygosity is not likely to be detectable
by dHPLC as this method relies on detection of mismatched
heteroduplexes which is only possible to be detected in DNA of
heterozygous individuals (Fig 3B) and is considered a limitation
in the dHPLC assay.

Additional issues included the initial primer design for MYBPC3
exon 5 covered a region enclosing the commonly encountered SNP
c.506-12delC (rs11570050), which occurs at a frequency of 0.23 in
Egyptians, [19]. The presence of the allele with the deletion pro-
vided a technical limitation in reading exon 5 in full. In the patient
sample, the variant of interest with relevance to pathogenecity,
c.649A > G, occurred in cis with the c.506delC SNP. Sanger
sequencing failed to identify the variant with the earlier described
primer set [21]. However following detection of the variant by
NGS, it was subsequently confirmed by Sanger sequencing with
redesigned primers (described above in Materials and methods
section).
3.2. Classification of MYH7, MYBPC3 and TNNT2 variants

In total, 50 variants were detected in 61 patient samples by
NGS, 35 were scored as putative pathogenic, 12 were scored as
variants of uncertain significance (VUS) and 3 were scored as likely
benign. The variants detected in this study were assessed for their
likely pathogenic effect based on variant type, previous reports
linking them to HCM, and variant frequencies reported in web
based publically accessed databases [32]. In addition to testing
for segregation in affected families whenever possible as illus-
trated in pedigrees of Fig 4.

Truncating variants (nonsense, frameshift or essential splice
site) or missense variants not present at a frequency >0.01% in
ExAC [33] and absent from 200 population matched controls were
considered as putatively pathogenic. Any variant present at a fre-
quency of >0.1% in ExAC and not previously linked to disease
was considered to be likely benign (Table 1). All others were clas-
sified as variants of unknown significance (VUS), which included
two variants, MYBPC3:c.148A>G in sample PM48/PA45 since it
did not co-segregate in affected family members of PM48, and also
MYBPC3:c.3800G>A a second hit in sample PA4 which was non co-
segregating in two affected family members in addition to the seg-
regating pathogenic mutation p.R719Q detected in all affected
family members (Fig 4).

MYBPC3 contributed for almost half of the variants detected in
the present cohort. The likely pathogenic variants detected
included 10 missense and 5 truncating variants including 2 non
sense mutations, an essential splice site variant c.1227-2A>G (in
a homozygous state) and two frame shift mutations (A179QfsX59,
D506TfsX7). The latter two variants were each detected in 3 Egyp-
tian HCM patients in addition to a nonsense mutation, p.W1098X,
was detected in 4 unrelated index patients.

There were 18 putative pathogenic variants detected in MYH7
in 23 patients, and PA8 had double hits. There were 16 missense
and two truncating variants, one is an essential splice variant
c.5791-1G>A and another is frame shift mutation, p.S1924AfsX9.
The latter mutation was detected in 5 patients in the current
cohort (5/150, 3%) and was absent in population matched controls
and other population databases. Most of the missense variants
were detected in the head motor region of MYH7 (14/16, 87.5%)
which is a recognised mutation hotspot [33]. In TNNT2, 2 likely
pathogenic missense variants were detected in 3 patients (Table 1).

Of the 35 distinct pathogenic variants, 21 have previously been
linked to cardiomyopathy and 14 are novel and described only in
the Egyptian HCM patients Several patients had more than a single
variant, in addition to the six homozygous patients (highlighted by
an asterisk in Table 1). Three patients were double heterozygotes.
One patient (PA26) had missense variants in MYBPC3 (c.2311G>A,
p.V771M) and also in MYH7 (c.799C>G, p.L267V), the second
(PM43) had a frameshift variant in MYH7 (c.5769delG) and a mis-
sense variant inMYBPC3 (c.2470G>A, p.D824N), the third (PA8) had
2 hits in MYH7 (c.925G>A, p.D309N & c.5769delG) These double
hits provides a possible explanation for the phenotype heterogene-
ity commonly described in HCM.
4. Discussion

Next generation sequencing is an immensely powerful
approach to genetic analysis with the potential to transform diag-
nosis of genetically heterogeneous diseases like HCM. Targeted
resequencing of a panel of known cardiomyopathy genes allows
for a comprehensive genetic screening in a relatively quick and
inexpensive manner. NGS approaches are now being used in diag-
nostic laboratories, though most continue to validate any findings
with targeted mutation Sanger sequencing. However the sensitiv-
ity of NGS in a diagnostic setting, and an evaluation of the false
negative rate of this technology, remains difficult to assess as tra-
ditional sequencing approaches and NGS are rarely run in parallel.

In this study, we have compared the performance of NGS with a
well characterised and clinically established sequencing method
(dHPLC/Sanger) in detecting variants in the three major HCM genes
in a cohort of Egyptian HCM patients. NGS detected all 50variants



Table 1
Details of the variants detected in this study by both dHPLC/Sanger and NGS and by NGS alone in the three genes analysed.

Gene Variant
nomenclature
at coding DNA
level

Variant
nomenclature
at protein level

Variant type Num. Samples (IDs) ExAC count
(freq.)

Classification of
pathogenicity

Novelty of
putative
pathogenic
variants

Both NGS

MYBPC3 c.355G>A p.E119K Missense 1 (PM64) 0 Putative pathogenic No
MYBPC3 c.416C>G p.S139X Nonsense 1 (PA15) 0 Putative pathogenic Yes

(this cohort only)
MYBPC3 c.534_541del p.A179QfsX59 Frameshift 3 (PA25, PA46,

PA52)
0 Putative pathogenic Yes

(this cohort only)
MYBPC3 c.772G>A p.E258K Missense 1 (PA59) 3

(0.00003903)
Putative pathogenic No

MYBPC3 c.956A>C p.E319A Missense 1 (PA33) 6
(0.00007891)

Putative pathogenic No

MYBPC3 c.1227-2A>G Essential
Splice Site

1* (P90) 0 Putative pathogenic No

MYBPC3 c.1516delG p.D506TfsX7 Frameshift 3 (P63, P70, P62) 0 Putative pathogenic Yes
(this cohort only)

MYBPC3 c.2308G>A p.D770N Missense 1 (P88) 1
(0.00000830)

Putative pathogenic No

MYBPC3 c.2311G>A p.V771M Missense 1 (PA26) 1
(0.00005661)

Putative pathogenic No

MYBPC3 c.2458C>G p.R820G Missense 1* (PA20) 0 Putative pathogenic No
MYBPC3 c.2470G>A p.D824N Missense 1 (PM43) 1

(0.00000829)
Putative pathogenic No

MYBPC3 c.2977C>T p.L993F Missense 1 (PA16) 0 Putative pathogenic Yes
(this cohort only)

MYBPC3 c.3293G>A p.W1098X Nonsense 4 (PA6, PA42, PA56,
PA93)

0 Putative pathogenic Yes

MYBPC3 c.3412C>T p.R1138C Missense 1 (PU11) 3
(0.00003719)

Putative pathogenic No

MYBPC3 c.3676C>T p.R1226C Missense 1* (PM34) 7
(0.00005805)

Putative pathogenic No

MYH7 c.632C>T p.P211L Missense 1 (PA27) 3
(0.00002471)

Putative pathogenic No

MYH7 c.665A>G p.Q222R Missense 1 (P3) 0 Putative pathogenic No
MYH7 c.746G>A p.R249Q Missense 1 (PA55) 0 Putative pathogenic No
MYH7 c.799C>G p.L267V Missense 1 (PA26) 0 Putative pathogenic Yes

(this cohort only)
MYH7 c.925G>A p.D309N Missense 1 (PA8) 1 (PA40) 3

(0.00002486)
Putative pathogenic No

MYH7 c.1064C>T p.A355V Missense 1* (P80) 0 Putative pathogenic No
MYH7 c.1182C>A p.D394E Missense 1 (PA54) 0 Putative pathogenic Yes

(this cohort only)
MYH7 c.1816G>A p.V606M Missense 1 (P35) 0 Putative pathogenic Yes
MYH7 c.2147G>C p.G716A Missense 1 (PA30) 0 Putative pathogenic Yes

(this cohort only)
MYH7 c.2155C>T p.R719W Missense 1 (PM60) 0 Putative pathogenic No
MYH7 c.2156G>A p.R719Q Missense 2 (PA4, PM68) 0 Putative pathogenic No
MYH7 c.2389G>A p.A797T Missense 1 (P16) 4

(0.00003296)
Putative pathogenic No

MYH7 c.2609G>A p.R870H Missense 1 (P77) 0 Putative pathogenic No
MYH7 c.2779G>A p.E927K Missense 1 (PA12) 0 Putative pathogenic No
MYH7 c.4145G>A p.R1382Q Missense 1 (PM65) 0 Putative pathogenic No
MYH7 c.4258C>T p.R1420W Missense 1 (PM24) 1

(0.00000824)
Putative pathogenic No

MYH7 c.5769delG p.S1924AfsX9 Frameshift 3 (PA24, PM3,
PM43)

2 (PA11,
PA8)

0 Putative pathogenic Yes
(this cohort only)

MYH7 c.5791-1G>A Essential
Splice Site

1 (P33) 0 Putative pathogenic No

TNNT2 c.221T>C p.L74S Missense 2 (PM1, PM12) 0 Putative pathogenic No
TNNT2 c.857G>A p.R286H Missense 1 (P102) 7

(0.00007882)
Putative pathogenic No

MYBPC3 c.148A>G p.S50G Missense 1 (PM48) 1 (PA45) 3
(0.00003887)

VUS1 NA

MYBPC3 c.530G>A p.R177H Missense 1 (P62) 92
(0.00094933)

VUS NA

MYBPC3 c.1321G>A p.E441K Missense 4 (PA38, PA123,
P12, P101)

1* (P65) 18
(0.00016221)

VUS NA

MYBPC3 c.1458-17C>G Splice Region 1 (P17) 0 VUS NA
MYBPC3 c.1458-7C>A Splice Region 1 (P89) 0 VUS NA
MYBPC3 c.1564G>A p.A522T Missense 1 (PA26) 47

(0.00039070)
VUS NA

MYBPC3 c.2149-8C>T Splice Region 1 (P100) 2
(0.00002204)

VUS NA

MYBPC3 c.2618C>A p.P873H Missense 1* (P20) 13
(0.00020272)

VUS NA
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Table 1 (continued)

Gene Variant
nomenclature
at coding DNA
level

Variant
nomenclature
at protein level

Variant type Num. Samples (IDs) ExAC count
(freq.)

Classification of
pathogenicity

Novelty of
putative
pathogenic
variants

Both NGS

MYBPC3 c.3800G>A p.R1267H Missense 1 (PA4) 5
(0.00004239)

VUS1 NA

MYH7 c.4520-3C>T Splice Region 1 (PA1) 11
(0.00009061)

VUS2 NA

TNNT2 c.690-4G>T Splice Region 1 (P32) 19
(0.00015650)

VUS NA

TNNT2 c.832C>T p.R278C Missense 1 (PM68) 40
(0.00042906)

VUS NA

MYBPC3 c.472G>A p.V158M Missense 2 (P14, P16) 2348
(0.09043291)

Likely benign NA

MYBPC3 c.649A>G p.S217G Missense 2 (PM46,
PA70)

248
(0.00226757)

Likely benign NA

MYBPC3 c.2149-5C>T Splice Region 1 (P87) 118
(0.00127947)

Likely benign NA

* – homozygous. 1 – variant does not segregate with disease in affected families. 2 – present at a frequency of 0.005 in Egyptian population control samples.

Fig. 2. Number of all variants (pathogenic, VUS and benign) detected in each gene
by both dHPLC/Sanger and targeted NGS, or by targeted NGS only and confirmed by
Sanger.

Fig. 3. dHPLC WAVETM Analysis showing electropherogram of wild profile samples
in GREEN and missed sample for variant detection in ORANGE. [A] MYH7 exon 8: P3
(c.665A>G; p.Q222R), heterozygous. [B]MYBPC3 exon 15: P65 (c.1321G>A; p.E441K,
homozygous).
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identified by dHPLC, giving it a zero false negative rate in this study
and indicating that this technology is sufficiently sensitive for use
in diagnostic laboratories.

In addition to detecting all of the variants identified by dHPLC/
Sanger, targeted NGS assay found an additional 19 variants in this
cohort, increasing the genetic diagnostic yield for this cohort from
22% (33/150 patients) in comparison to 31.3% (47/150). This has
highlighted the limitations in the sensitivity of dHPLC, both in
detecting variants with a profile too similar to wild-type and in
its intrinsic inability to detect homozygous variants. All variants
identified solely by NGS were subsequently verified by Sanger
sequencing, giving an overall false positive rate of 0% for NGS in
the three genes analysed.

The issue of homozygous mutations is likely to be of particular
importance in certain disease conditions and population groups.
The consanguinity rate among Egyptians has been reported to be
between 30% and 40% [34],indicating that homozygous variants
are likely to be more prevalent among Egyptians than in other pop-
ulations. Indeed in this study, six homozygous patients were iden-
tified (five in MYBPC3, one in MYH7). While there have been some
reports of homozygous mutations linked to HCM in these three
genes[6,13,18], the proportion of homozygosity in the Egyptian
cohort (4%, 6/150) is significantly higher than in the reported stud-
ies. Accordingly, the mutation screening using dHPLC which detect
variants through formation of heterduplexes could detect variants
in heterzygosity including double and compound heterzgyote sam-
ples. However, such assay would have a limitation in detecting
variants in homozygous status and would be of lower sensitivity
in such populations with expected higher rate of homozgosity
due to high prevalence of consanguinity. Utilising sequencing tech-
nologies, like NGS, that are able to detect these variants in compar-
ison to primary mutation screening by dHPLC is critical for
accurate genetic diagnosis in such highly consanguineous popula-
tions. The effect of homozygosity and mutation dosage on HCM



Fig. 4. Pedigrees of HCM patients showing segregation of sarcomeric variants with HCM phenotypte.
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clinical phenotype is currently under investigation and will be
reported in a future publication.

In a comparison with other population cohorts: there were
some variants that were detected only in Egyptian HCM patients
such as A179QfsX59, D506TfsX7 in MYBPC3 and S1924AfsX9 in
MYH7. Those variants were absent in all other population data-
bases, and were absent in 200 population matched controls as
reported in our earlier study [19]. These variants are anticipated
as possibly pathogenic by frame shift nature. The fact that they
were detected in several index patients may suggest founder effect,
however further extended family and haplotype studies are needed
to study this observation.

The frequency of involvement of the 3 sarcomeric genes
observed in HCM patients in the present study is similar to that
observed in Caucasian cohorts reported in Europe and the U.S. In
our earlier report of 192 HCM patients, MYBPC3 was found as the
most prevalent HCM gene in respect to variant detection among
Egyptian HCM patients [19]. Indeed, the variant detection frequen-
cies in Egyptian patients is quite similar to most reported Cau-
casian populations [3,6–10,12–14] and Tunisian population[35].
In contrast, MYH7 gene was the most prevalent HCM gene in pub-
lished studies from East Asia [11,15–17] and South America [18]. In
a comparison with other population cohorts, the pattern of the 3
sarcomeric genes involvement observed in the present study is
similar to that observed in Caucasian cohorts reported in Europe
and the U.S., in contrary to the reported commoner involvement
of MYH7 observed in Asian population.

However, for interest of population comparisons, this may be
limited due to the fact that reported data had also included vari-
ants of uncertain significance and hence may not reflect a true dif-
ference among different populations. It should also be noted that
yield for each gene in these studies is likely to be influenced by sev-
eral factors such as the sensitivity of the sequencing technologies
used, differences in the classification of pathogenic variants and
the proportion of familial HCM cases in each cohort.

This study has several limitations which include the relatively
small number of non-consecutive HCM samples and the fact that
the pathogenic potential of the variants were determined by com-
parison to the ExAC database which included different ethnicity
but no data as yet from the Egyptians. This is influential in deter-
mining the accurate positive yield in the 3 sarcomeric genes
(MYBPC3, MYH7, TNNT2) and may result in downgrading of several
previously described pathogenic variants to variants of uncertain
significance (VUS), causing transient discrepancies among different
population reports. It also highlights the urgency for including
large numbers of population relevant control series in ExAC
database to enable its relevance to different population studies.
Furthermore, the proper interpretation of VUS necessitates under-
taking functional assays and cosegregation studies in extended
families to determine if those variants do indeed bear any patho-
genic role. However, this limitation should not affect the validity
of the comparison between the use of NGS and Sanger, in the same
population from a technical perspective.

In conclusion, we have demonstrated that NGS technology can
be used for accurate genetic diagnosis of HCM, significantly outper-
forming the previously used dHPLC high throughput screening
technique with no false positives or false negatives detected in this
study in relevance to confirmation by Sanger sequencing.

As we have shown, an NGS approach is particularly sensitive
and advantageous for defining the specific genetic architecture of
the studied cohort. This comparative study and the earlier study
by Chin et al. [20] support use of NGS targeted genes panel deep
sequencing in a clinical diagnostic setting for genetically heteroge-
neous single gene disorders, such as inherited cardiomyopathies,
however Sanger sequencing remain as indispensable tool for con-
firmation of variant detection and family members screening.
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