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Abstract Genome-wide patterns of variation across individuals provide most powerful source of

data for uncovering the history of migration, expansion, and adaptation of the human population.

The arrival of new technologies that type more than millions of the single nucleotide polymor-

phisms (SNPs) in a single experiment has made SNP in genome-wide association (GWA) assay a

prudent venture. SNPs represent the most widespread type of sequence variation in genomes,

and known as valuable genetic markers for revealing the evolutionary history and common genetic

polymorphisms that explain the heritable risk for common diseases. Characterizing the nature of

gene variation in human populations and assembling an extensive catalog of SNPs in candidate

genes in association with particular diseases are the major goals of human genetics. In this article

we explore the recent discovery of SNP–GWA to revolutionize not only the process of genetic var-

iation and disease detection but also the convention of preventative and curative medicine for future

prospects.
� 2012 Ain Shams University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Genome-wide data sets are increasingly being used to identify
biological pathways and networks underlying complex diseases
and in drug development process (Fig. 1). In particular, ana-

lyzing genomic data through sets defined by functional path-
ways offers the potential of greater power for discovery and
natural connections to biological mechanisms. Much of genet-
ic variation in the human genome is in the form of SNPs which

is the result of point mutations that produce single base-pair
differences (substitutions or deletions) among chromosome
sequences. There are many laboratories and computational ap-

proaches to finding single nucleotide polymorphisms (SNPs)
within a genome, but all involve some form of comparative
analysis of the same DNA segment from different individuals

or from different haplotypes. SNP identification can be based
on expressed sequence tags (ESTs), which are generated by sin-
gle-run sequencing of cDNAs obtained from different individ-
uals and assembly of overlapping sequences for the same

region permits novel SNP discoveries. The non-coding SNPs
can be classified according to whether they are found in gene
regulating segments of the genome. Many complex diseases

may arise from quantitative, rather than qualitative, differ-
ences in gene products. Coding SNPs can be classified as to
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development with some advantages and limitations [105–113].
whether they alter the sequence of the protein encoded by
the altered gene. Changes that alter protein sequences can be

classified by their effects on protein structure [1].
GWA studies have become an important tool for discovering

susceptibility genes for complex diseases. Information, includ-

ing genotype frequencies, linkage disequilibrium (LD), and
recombination rates, across populations help researchers to
conduct GWA analysis using millions of SNP markers. The

differences in association results among populations for pheno-
types of interest are partially explained byHapMap information
such as population specific common variants and linkage dis-

equilibrium blocks [2,3]. Moreover, the phased haplotypes of
HapMap samples are used as a reference for imputing untyped
markers. One million SNPs can be increased to up to 2.5 million
by imputing haplotypes from HapMap phased haplotypes

based on the pattern of observed genotypes [4].

2. SNPs in human population and concerning issues

GWA studies build directly on recent efforts to map the pat-
terns of inheritance for the most common form of genomic
variation by the use of SNPs [5]. An estimated 10 million com-

mon SNPs, those with a minor-allele frequency of at least 5%,
are transmitted across generations in blocks, allowing a few
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particular, or tag, SNPs to capture the great majority of SNP
variation within each block [6]. Rapid advances in technology
and quality control now permit affordable, reliable genotyping

of up to 1 million SNPs in a single scan of a person’s DNA [7].
Genotyping hundreds of thousands of SNPs has led to a great
accuracy with new models and approaches in inferring popula-

tion structure, thus reconstructing population histories from
given SNPs data [8].

A complication of genome wide association studies is the

enormous number of tests of association required (at least
one per SNP); thresholds of statistical significance are strin-
gent, making it necessary to work with very large samples
[9]. One frequently used approach to managing size is the

tiered design, in which a subset of SNPs found to be significant
in the GWA study (sometimes called the discovery set) is gen-
otyped in a second tier (a replication set), yielding a smaller

subset of significantly associated SNPs that are then tested in
a third tier (a second replication set), and so on [10,11]. This
process helps to identify false positive associations. Carrying

forward a large number of SNPs identified through a GWA
study into a test of replication also minimizes false negative re-
sults [12], while raising the bar for the establishment of true po-

sitive results. The pooling of results obtained in GWA studies
(Fig. 2) under the auspices of large consortia is often required
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disease. Such pooled studies, like all genetic association stud-
ies, must be examined and controlled for differences in allele

frequency between groups that can lead to spurious (false po-
sitive) associations [13].

3. SNPs reveal functional polymorphism

Regulatory polymorphisms at DNA level can potentially cause
variations in gene expression. A SNP in a regulatory DNA

binding site may alter the affinity with the regulatory protein,
resulting in different gene expressions as shown in Fig. 2. SNPs
in the osteopontin promoter have been shown to modify DNA

binding affinity to transcription factors SP1/SP3 [14]. A GWA
study revealed a G-to-A substitution in the 5_ untranslated re-
gion (5_-UTR) of the FOXE1 gene to associate with thyroid

cancer susceptibility [15]. The T-to-C substitution located in
the 5_-UTR of the GDF5 gene causes a different interaction
with DEAF-1, a trans-acting factor for GDF5, leading to a
reduced gene expression [16].

Opioid receptors (mainly l-, d- and j-receptors) in the
endogenous opioid system regulate neuronal activity via neu-
rotransmission or neuromodulation. Variation in opioid recep-
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receptors, leading to increased risk for drug or alcohol depen-
dence. The minor G-allele of SNP rs569356 may enhance tran-
scription factor binding and increase d-opioid receptor gene

(OPRD1) expression [17].
At the protein and post-translational levels, variation in

protein stability due to SNPs in coding sequences can cause

different levels of enzyme activities. Thiopurine S-methyltrans-
ferase (TPMT) catalyzes the S-methylation of thiopurine
drugs. Several human TPMT variant alleles that alter the en-

coded amino acid sequence of the enzyme generate less stable
proteins [18]. Therefore, patients with those alleles have very
low TPMT activity and suffer severe, life-threatening drug tox-
icity when treated with ‘‘standard’’ doses of thiopurine drugs

[19]. The l opioid receptors (MOPRs), belonging to the seven
transmembrane receptor (7TMR) family [also called the G
protein-coupled receptor (GPCR) family], mediate the

pharmacological effects of morphine and other l-preferring
compounds. Activation of the MOPRs produces analgesia, re-
ward, mood changes, sedation, respiratory depression, immu-

nosuppression, decreased gastrointestinal motility, increased
locomotor activity, tolerance and dependence. A common
A118G SNP reduces MOPR N-glycosylation and protein sta-

bility [20].
Non-synonymous SNPs can affect post-translational mod-

ifications. Because protein phosphorylation is one of the key
elements in signal transduction, an altered phosphorylation

pattern can cause different responses to the environment.
The human ether-a-go-go-related gene 1 (ERG1) protein chan-
nel polymorphism is associated with cardiac arrhythmias [21].

A SNP leading to a Lys897Thr substitution creates a phos-
Table 1 GWA studies showing SNPs association with cancer.

Disease Chromosomal

location

Gene

Breast cancer 10q26.13 FGFR2

16q12.1 TNCR9/LOC643714

5q11.2 MAP3K1

11p15.5 LSP1

8q24.21 Intergenic

2q34 ERBB4

10q26.13 FGFR2

2q35 Intergenic

Basal cell carcinoma 1q42.13 RHOU

1p36.13 PADI4, PADI6, RCC2, ARHGEF

12q12.13 KRT5

9p21 CDKN2A/B

8q24.21 Intergenic

8q24.21 Intergenic

17q12 TCF2

11p15 IGF2, IGF2A, INS, TH

Colorectal cancer 8q24.21 ORF, DQ515897

18q21.1 SMAD7

Lung cancer 15q25.1 CHRNA3, CHRNA5, CHRNB4,

6p22.1 TRNAA-UGC

Melanoma 20q11.22 CDC91L1

22q13.1 Intergenic

Neuroblastoma 6p22.3 FLJ22536, FLJ44180

2q35 BARD1

Ovarian cancer 9p22.2 Intergenic

Thyroid cancer 9q22.23 FOXE1

14q13.3 NKX2-1
phorylation site in ERG1, which in turn inhibits channel activ-
ity for the downstream signal transduction [22].

4. GWA study in human disease

GWA studies in which hundreds of thousands of single-nucle-
otide polymorphisms (SNPs) are tested for association with a

disease in hundreds or thousands of persons have revolution-
ized the search for genetic influences on complex traits
[23,24]. Such conditions, in contrast with single-gene disorders,

are caused by many genetic and environmental factors work-
ing together, each having a relatively small effect and few if
any being absolutely required for a disease to occur. Although

complex conditions have been referred to as the geneticist’s
nightmare [25], in recent years GWA studies have identified
SNPs implicating more than hundreds of robustly replicated

loci for common diseases such as cancer, infectious diseases
and many other traits shown in Tables 1–3 respectively.

GWA studies use dense maps of SNPs covering the human
genome to look for allelic frequency differences between the

cases (patients with a specific disease or individuals with a cer-
tain trait) and controls. Linkage disequilibrium (LD) mapping,
recognizes that a mutation which is shared by affected individ-

uals through common descent is surrounded by other alleles at
nearby loci, thus representing the haplotype of the ancestral
chromosome region where the mutation first occurred. Two

polymorphic sites are said to be in LD when their specific al-
leles are correlated in a population. High LD means that the
SNP alleles are almost always inherited together; information

about the allele of one SNP in an individual is strongly
Strongest SNPs-risk

allele

P-value Reference

rs2981582-G 2 · 10�76 [11,36-38]

rs3803662-C 1 · 10�36

rs889312-A 7 · 10�20

rs3817198-T 3 · 10�9

rs13281615-T 5 · 10�12

rs13393577-C/T 8.8 · 10�14

rs1219648-G 1 · 10�10

rs13387042-A 1 · 10�13

rs801114-G 6 · 10�12 [39-44]

10L rs7538876-A 4 · 10�12

rs11170164-A 2 · 10�9

rs2151280-C 7 · 10�9

rs16901979-A 1 · 10�12

rs6983267-G 9 · 10�13

rs4430796-A 1 · 10�11

rs7127900-A 3 · 10�33

rs10505477-A 3 · 10�11 [45,46]

rs4939827-T 1 · 10�12

PSMA4, LOC123688 rs8034191-C 5 · 10�20 [47]

rs4324798-A 2 · 10�8 [48]

rs910873-T 1 · 10�15 [49,50]

rs2284063-G 2 · 10�9

rs6939340-G 9 · 10�15 [51,52]

rs6435862-G 9 · 10�18

rs3814113-T 5 · 10�19 [53]

rs965513-A 2 · 10�27 [15]

rs944289-T 2 · 10�9



Table 2 SNPs significantly associated with infectious disease phenotypes in genome-wide studies.

Disease SNP location Strongest SNPs-risk allele P-value Reference

Creutzfeldt–Jakob disease PRNP rs1799990 2.0 · 10�27 [54]

Dengue shock Syndrome MICB rs3132468 4.4 · 10�11 [55]

Hepatitis B HLA-DPA1 rs3077 2.3 · 10�38 [56]

HLA-DPB1 rs9277535 6.3 · 10�39

Hepatitis C IL28B rs8099917 6.1 · 10�9 [57]

HIV-1 and AIDS HLA-C rs9264942 5.9 · 10�32 [58–64]

HLA-B, HCP5 rs2395029 4.5 · 10�35

HLA-B rs2523608 5.6 · 10�10

HLA-C rs9264942 2.8 · 10�35

MICA rs4418214 1.4 · 10�34

HLA-B, HCP5 rs2395029 9.7 · 10�26

PSORS1C3 rs3131018 4.2 · 10�16

HLA-B rs2523608 8.9 · 10�20

Intergenic rs2255221 3.5 · 10�14

HLA-B rs2523590 1.7 · 10�13

Intergenic rs9262632 1.0 · 10�8

ZNRD1, RNF39 rs9261174 1.8 · 10�8

PARD3B rs11884476 3.4 · 10�9

HLA-B, HCP5 rs2395029 6.8 · 10�10

CXCR6 rs2234358 9.7 · 10�10

Leprosy LACC1 rs3764147 3.7 · 10�54 [65]

NOD2 rs9302752 3.8 · 10�40

RIPK2 rs42490 1.4 · 10�16

CCDC122 rs3088362 1.4 · 10�31

TNFSF15 rs6478108 3.4 · 10�21

Meningococcal disease CFH rs1065489 2.2 · 10�11 [66]

Severe malaria HBB rs11036238 3.7 · 10�11 [67]

Tuberculosis 18q11.2 GATA6, TAGE1, RBBP8, CABLES1 rs4334126 6.8 · 10�9 [68]
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predictive of the allele of the other SNP on that chromosome.
The first example of LD between a DNA polymorphism and a

disease mutation was provided by an association between an
allele of an RFLP in the b-globin gene and the sickle-cell form
of hemoglobin [26].

Next-generation sequencing projects are revolutionizing
our understanding of genetic variation. The quality of data
from the next-generation technology and the availability of

analysis tools are both rapidly increasing. Just considering
the pilot data from the 1000 Genome Projects, this new re-
source has provided the location, allele frequency, and local
haplotype structure of approximately 15 million SNPs [27].

Successful GWA studies are the most visible and exciting out-
come of HapMap which has also been invaluable in developing
genotyping and analytic methods to realize advances in the

prevention and treatment of common diseases. The tool of
sequencing enables scientists to pinpoint functional variants
from association studies and improve the knowledge available

to researchers interested in evolutionary biology, and hence
may lay the foundation for predicting disease susceptibility
and drug response.
5. Role of SNPs in drug development

GWAS have uncovered many genetic loci that are associated

with human diseases, but two fundamental limitations have
hampered our ability to translate these results into clinically
useful predictors of disease and drug targets [28]. The U.S.
Food and Drug Administration’s Adverse Event Reporting

System (AERS) allows us to develop an initial understanding
of the context within which molecular level drug-target interac-
tions can lead to distal effectors that results in adverse pheno-

types at the organ and organismal levels [29]. Targeting drugs
for complex diseases and predicting therapeutic efficacy and
adverse risk for individuals with allelic variation (like SNPs)

are the major goals of pharmacology. The allelic variants of
the genes can lead to adverse effect of drugs and open new
ways to drug development. Some of the genes related to severe

diseases with pharmacogenomic targets and recommended
drug therapy are shown in Table 4.

Drug transporters are now widely known as important
determinants governing drug absorption, excretion, and, in

many cases, extent of drug entry into target organs. Transport-
ers of the solute carrier (SLC) and ATP-binding cassette
(ABC) superfamilies are considered to be of major importance

in drug therapy and outline how understanding the expression,
function, and genetic variation in such drug transporters will
result in better strategies for optimal drug design and tissue

targeting as well as reduce the risk for drug–drug interactions
and adverse drug responses. SNPs in genes encoding Organic
cation transporters (OCTs) have been identified and character-
ized [30].

Aldehyde oxidase (AO) is a complex molybdoflavoprotein
that belongs to the xanthine oxidase family. Human aldehyde
oxidase (hAOX1) encoded by AOX1 gene has an important

role in the metabolism of drugs, based on its broad substrate
specificity oxidizing aromatic aza–heterocycles, e.g., N1-meth-
ylnicotinamide and N-methylphthalazinium, or aldehydes,

such as benzaldehyde, retinal and vanillin. SNP based func-
tionally inactive hAOX1 allelic variants and also variants cod-
ing for enzymes with different catalytic activities are well
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considered for the design of future drugs [31]. VKORC1
encodes the vitamin K-epoxide reductase protein, the target
Table 3 SNP-GWA association studies in various traits.

Disease/trait Chromosomal location Gene

Autoimmune diseases

Rheumatoid arthritis 2p14 SPRED2

5q11 ANKRD55,

3p14 PXK

4p15 RBPJ

3 6q27 CCR6

31 7q32 IRF5

9q34 TRAF1-C5

6q23.3 Near TNFAI

Systemic lupus erythematosus 4q24 BANK1

Cardiovascular conditions

Atrial fibrillation/atrial flutter 4q25 Intergenic

Near PITX2

Coronary disease 9p21.3 CDKN2A/B

9p21.3 CDKN2A/B

6q25.1 MTHFD1L

2q36.3 Pseudogene

Coronary heart disease (CHD) 9q33 DAB2IP

Myocardial 9p21.3 CDKN2A/B

Diabetes

Type 1 diabetes 19q13.33 FUT2

12q24.13 C12orf30

12q13.2 ERBB3

16p13.13 KIAA0350

18p11.21 PTPN2

18q22.2 CD226

12q13.2 ERBB3

16q13.13 TRAFD1, PT

16p13.13 KIAA0350

Type 2 diabetes 11p15 KCNQ1

8q24.11 SLC30A8

16q12.2 FTO

10q23.33 HHEX

6p22.3 CDKAL1

9p21.3 CDKN2B

3q27.2 IGFBP2

9p21.3 CDKN2A/B

3q27.2 IGF2BP2

6p22.3 CDKAL1

6p22.3 CDKAL1

9p21.3 CDKN2A/B

3q27.2 IGF2BP2

11p12 Intergenic

Gastrointestinal disorders

Celiac disease 4q27 KIA1109, TE

Crohn disease 5p13.1 Intergenic

1q24.3 Intergenic

18p11. PTPN2

3p21.31 Many genes

5q33.1 IRGM

21q22.2 Intergenic

10q24.2 NKX2–3

1q31.2 Intergenic

2q37.1 ATG16L1

3p21.31 BSN, MST1

5q33.1 IRGM

10q24.2 NKX2–3

18p11.21 PTPN2
enzyme of warfarin. VKORC1 catalyzes the conversion of vita-
min K-epoxide into vitamin K, which is the rate-limiting step
Strongest risk allele P-value References

rs934734-A 3.2 · 10�7 [69–71]

IL6ST rs6859219-C 2.5 · 10�9

rs13315591-T 3.7 · 10�7

rs874040-G 1.9 · 10�7

rs309302-G 3.3 · 10�7

rs104886-T 2.8 · 10�6

rs3761847-G 1 · 10�14

P3, OLIG3 rs10499194-C 1 · 10�9

rs10516487-G 4 · 10�10 [72]

rs2200733-T 3 · 10�41 [73]

rs10033464-T 7 · 10�11

rs1333049-C 1 · 10�13 [74,75]

rs1333049-C 3 · 10�19

rs6922269-A 3 · 10�8

rs2943634-C 2 · 10�7

rs7025486-? 0.003 [76]

rs10757278-G 1 · 10�20 [77]

rs601338A >G 4.3 · 10�18 [74,78–80]

rs17696736-G 2 · 10�16

rs2292239-A 2 · 10�20

rs12708716-A 3 · 10�18

rs2542151-C 1 · 10�14

rs763361-A 1 · 10�8

rs11171739-C 1 · 10�11

PN11, KIAA0350 rs12708716-A 5 · 10�7

rs2903692-G 7 · 10�11

rs151290-? 0.002 [25,81-84]

rs13266634-C 6 · 10�8

rs8050136-A 1 · 10�12

rs5015480-C 6 · 10�10

rs10946398-C 4 · 10�11

rs10811661-T 8 · 10�15

rs4402960-T 9 · 10�16

rs10811661-T 8 · 10�15

rs4402960-T 9 · 10�16

rs7754840-C 4 · 10�11

rs7754840-C 4 · 10�11

rs10811661-T 8 · 10�15

rs4402960-T 9 · 10�16

rs9300039-C 4 · 10�7

NR, IL2, IL21 rs6822844-G 1 · 10–14 [85]

rs1373692-? 2 · 10–12 [74,86-88]

rs12035082-? 2 · 10�7

rs2542151-? 3 · 10�8

rs9858542-? 5 · 10�8

rs13361189-? 2 · 10�10

rs2836754-? 5 · 10�7

rs10883365-? 4 · 10�18

rs10801047-? 3 · 10�8

rs2241880-G 1 · 10�13

rs9858542-A 4 · 10�8

rs1000113-T 3 · 10�7

rs10883365-G 6 · 10�8

rs2542151-G 2 · 10�7



Table 3 (contiued)

Gallstones 2p24.2 ABCG8 rs11887534-C 1 · 10�14 [89]

12q24.13 SH2B3/LNK rs17696736-G 2 · 10�14

Inflammatory bowel disease 1p31 IL23R rs11209026-A 4 · 10�11 [90]

Lipid metabolism

HDL-cholesterol 1q42.13 GALNT2 rs4846914-G 2 · 10�13 [91,92]

12q24.11 MVK/MMAB rs2338104-G 3 · 10�8

LDL-cholesterol 1p13.3 CELSR2, PSRC1 rs599839-G 1 · 10�7 [91,93]

1p13.3 CELSR2, PSRC1, SORT1 3 · 10�29

19p13.11 CILP2, PBX4 rs16996148-G 3 · 10�8

Triglycerides 7q11.23 BCL7B, TBL2, MLXIPL rs17145738-T 7 · 10�22 [91,92,94]

19p13.11 CILP2, PBX4 rs16996148-G 4 · 10�9

8q24.13 TRIB1 rs17321515-A 4 · 10�17

1q42.13 GALNT2 rs4846914-G 7 · 10�15

1p31.3 ANGPTL3, DOCK7, ATG4C rs12130333-C 2 · 10�8

2p23.3 GCKR rs780094-T 6 · 10�32

8q24.13 TRIB1 rs17321515-A 7 · 10�13

19p13.3 NCAN/CILP2 rs16996148-G 3 · 10�9

7q11.23 MLXIPL rs17145738-C 2 · 10�12

1p31.3 ANGPTL3 rs1748195-C 2 · 10�10

7q11.23 MLXIPL rs3812316-C 1 · 10�10

Neuropsychiatric conditions

Amyotrophic lateral sclerosis 7q36.2 DPP6 rs10260404-C 5 · 10�8 [95]

APOE*e4 with late-onset Alzheimer disease 11q14.1 GAB2 rs2373115-G 1 · 10�10 [96]

Bipolar disorder 13q14.11 DGKH rs1012053-A 2 · 10�8 [74,97]

16p12.1 PALB2, NDUFAB1, DCTN5 rs420259-A 6 · 10�8

Multiple sclerosis 16p13 KIAA 0350 rs6498169-? ? [98,99]

10p15.1 IL2RA rs12722489-C 3 · 10�8

5p13.2 IL7RA rs6897932-C 3 · 10�7

Restless legs syndrome 6p21.2 BTBD9 rs3923809-A 1 · 10�17 [100,101]

2p14 MEIS1 rs2300478-G 3 · 10�28

6p21.2 BTBD9 rs9296249-T 4 · 10�18

15q23 MAP2K5, LBXCOR1 rs12593813-G 1 · 10�15

Schizophrenia Xp22.33/Yp11.32 CSF2RA rs4129148-C 4 · 10�7 [102]

Sporadic amyotrophic lateral sclerosis 10q26.13 Intergenic rs4363506-? 7 · 10�7 [103]

N/R = not reported, ? = not described.
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in vitamin K recycling. A common non-coding variant
(�1639G > A, rs9923231) is significantly associated with

warfarin sensitivity and its polymorphism alters a VKORC1
transcription factor binding site, leading to lower protein
expression [32].

Fig. 3 represents allelic variants associated with drug-in-
duced liver injury (DILI). Pharmacogenomic study reveals
the associations between DILI susceptibility and several poly-

morphisms in various genes, such as specific alleles in manga-
nese superoxide dismutase glutathione peroxidase, and
glutathione S-transferase that are significantly more frequent
in DILI patients than in controls and shared across multiple

drugs [33–36]. In the context of large genetic variation,
GWA studies help us in identifying SNPs as pharmacody-
namic models which can lead to develop a mechanistic under-

standing of drug action in the context of population as well as
an individual’s genomic status.
6. Conclusion

Natural selection exerts its influence by changing allele fre-
quencies of polymorphic markers to eliminate a deleterious

phenotype from a population or otherwise fix a beneficial
one. The human complex traits as a matter of fact, show var-
iation with SNPs having adverse effects on drug exposure
which could be lethal. Many SNPs have been explored as a
high-resolution marker for accelerating the pace of gene map-

ping related to diseases or traits. The GWA–SNPs have been
studied in different human populations and their quantifica-
tion for population structure within and between the

populations has been attempted for association studies. Inter-
individual variability in drug response is influenced by varia-
tion in genes that control the absorption, distribution,

metabolism and excretion of drugs. The Wellcome Trust Case
Control Consortium (WTCCC) is engaged in exploring the
utility, design and analysis of GWA studies. The International
HapMap resource, documents patterns of genome-wide varia-

tion and linkage disequilibrium in population samples and
greatly facilitates both the design and analysis of association
studies. The availability of advance genotyping chips, contain-

ing sets of large number of SNPs provides good coverage of
the human genome, to which means that GWA studies can
be used for thousands of cases and controls for exploring the

basis of complex traits.
Identification of the genetic basis for polymorphic expres-

sion of a gene is done through intronic or exomic SNPs which
abolishes the need for different mechanisms for explaining the

variability in drug metabolism. SNPs based variations in mem-
brane receptors lead to multidrug resistance (MDR) and the
drug–drug interactions. Even drug induced toxicity and many

adverse effects can be explained by GWA studies. The aim of



Table 4 Some genes identified by Genome-wide studies which are pharmacogenomic targets with recommended drug therapy.

Therapeutic area Gene/marker Drug involved

Allergy CYP2D6 Desloratadine, Pseudoephedrine

Analgesics CYP2D6 Codeine, Tramadol, Acetaminophen

CYP2C9 Celecoxib

Antiarrhythmics CYP2D6 Quinidine

Antifungals CYP2C19 Voriconazole

CYP2D6 Terbinafine

Antiinfectives NAT1; NAT2 Rifampin, Isoniazid, Pyrazinamide

Antivirals CCR5 Maraviroc

IL28B Boceprevir

Cardiovascular ApoE2 Pravastatin

CYP2C19 Ticagrelor, Clopidogrel

CYP2D6 Metoprolol, Carvedilol, Propranolol

Dermatology and dental PML/RARa Tretinoin

DPD Fluorouracil

CYP2D6 Cevimeline

Gastroenterology UCD NAGS;

CPS; ASS; OTC;

ASL; ARG

Sodium Phenylacetate, Sodium Benzoate

CYP2C19 Rabeprazole, Esomeprazole, Pantoprazole,

Dexlansoprazole,

Hematology VKORC1 Warfarin

CYP2C9 Warfarin

Metabolic and Endocrinology LDL receptor Atorvastatin

Musculoskeletal CYP2C19 Carisoprodol

Neurology CYP2D6 Dextromethorphan, Quinidine, Tetrabenazine,

Galantamine

CYP2C19 Clobazam

HLA-B*1502 Carbamazepine

Oncology PDGFR Imatinib

PML/RARa Arsenic Trioxide

CYP2D6 Gefitinib

CD20 antigen Tositumomab

KRAS Cetuximab, Panitumumab

Her2/neu Lapatinib, Trastuzumab

CD30 Brentuximab Vedotin

C-Kit Imatinib

DPD Capecitabine

TPMT Mercaptopurine, Thioguanine, Cisplatin

FIP1L1-PDGFRa Imatinib

ER &/PgR

receptor

Exemestane

ER receptor Fulvestrant, Tamoxifen

Ph Chromosome Nilotinib, Dasatinib, Busulfan, Imatinib

BRAF Vemurafenib

ALK Crizotinib

EGFR Panitumumab, Cetuximab

Psychiatry UCD NAGS;

CPS; ASS; OTC;

ASL; ARG

Valproic Acid

CYP2C19 Diazepam, Citalopram, Fluvoxamine, Modafinil

CYP2D6 Citalopram, Clomipramine, Desipramine,

Aripiprazole, Iloperidone, Fluoxetine, Pimozide,

Doxepin, Protriptyline, Chlordiazepoxide,

Amitriptyline, Modafinil, Nefazodone, Nortriptyline,

Thioridazine, Trimipramine, Venlafaxine, Clozapine,

Risperidone, Fluoxetine, Olanzapine

Pulmonary CFTR G551D Ivacaftor

Reproductive and urologic CYP2D6 Tolterodine

Rheumatology TPMT Azathioprine

CYP2C9 Flurbiprofen

Compiled from Food and Drug Administration, 2012 [104].
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Figure 3 GWA approach to uncover SNPs for drug induced hepatotoxicity. The study has shown statistically significant associations

with particular HLA class I or II alleles, suggesting that T cell responses contribute to the liver injury. The adverse reactions by the

corresponding SNPs against HLA genes in response to drugs are shown on the right hand side of the above figure which is compiled from

the data of some recent studies [119–122] based on GWA studies.
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this review is to throw fresh light on human genetic variation
using SNPs to predict drug response and its wide applications

in medical, health and pharmacogenetic studies. The tool of
SNPs can help understand the alteration in the amino-acid
sequence of the encoded protein and make a common cause

of pharmacologically relevant functional variation. The multi-
tude of SNPs help in understanding gene pharmacokinetic
(PK) or pharmacodynamic (PD) pathways. The association of
a wide range of human diseases like cancer, infectious diseases

(AIDS, leprosy, hepatitis, etc.) autoimmune, neuropsychiatric
and many other diseases (Tables 1–4) with different SNPs can
bemade as relevant pharmacogenomic targets for drug therapy.
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