Case Report

Two Libyan siblings with beta-ketothiolase deficiency: A case report and review of literature

Elsayed Abdelkreem, Hanna Alobaidy, Yuka Aoyama, Shaimaa Mahmoud, Mohamed Abd El Aal, Toshiyuki Fukao

Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
Department of Pediatrics, Faculty of Medicine, Sohag University, Sohag, Egypt
Department of Pediatrics, Faculty of Medicine, Tripoli University, Tripoli, Libya
Education and Training Center of Medical Technology, Chubu University, Aichi, Japan

Abstract
Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) deficiency is an autosomal recessive disorder characterized by impaired metabolism of ketones and isoleucine. In this study, we report on the first two siblings with T2 deficiency from Libya. Both siblings presented with ketoacidosis, but the severity and outcomes were quite distinctive. T2 deficiency in patient 1, the younger sister, manifested as recurrent severe episodes of ketoacidosis during the first year of life. She unfortunately experienced neurodevelopmental complications, and died at 14 months old, after her 5th episode. In contrast, patient 2, the elder brother, experienced only one ketoacidotic episode at the age of 4 years. He recovered uneventfully and has continued to achieve age-appropriate development to date. Upon analysis, the siblings' blood acylcarnitine profiles had shown increased levels of C5:1 and C5-OH carnitine. ACAT1 mutational analysis revealed patient 2 is homozygotic for a novel mutation – c.674C > A (p.Ala225Glu); this mutation was then confirmed by familial analysis. Transient expression analysis of c.674C > A mutant T2 cDNA revealed neither potassium ion-activated acetoacetyl-CoA thiolase activity, which represents T2 activity, nor mutant T2 protein. Therefore, this mutation is truly pathogenic. Interestingly, the incidence of T2 deficiency may be high among the Arab population. This disease should be considered in the differential diagnosis for unexplained ketoacidosis in children. Patients with T2 deficiency could have a favorable outcome if diagnosed and treated early.

1. Introduction
Beta-ketothiolase deficiency (Online Mendelian Inheritance in Man [OMIM] 203750, 607809), a defect in mitochondrial acetoacetyl-CoA thiolase (T2) (EC 2.3.1.9, gene symbol ACAT1), is an autosomal recessive disease that affects isoleucine catabolism and ketone body utilization [1,2]. Since Daum et al. first characterized T2 deficiency in 1971, more than 100 patients have been diagnosed with the disease worldwide [3]. T2 deficiency ordinarily manifests as intermittent ketoacidotic episodes between the ages of 6 and 18 months; patients are usually asymptomatic between episodes. A distinctive laboratory finding is an increased urinary excretion of isoleucine-catabolic intermediates 2-methyl-3-hydroxybutyrate (2M3HB), 2-methylacetoacetate (2MAA), and tiglylglycine (TIG). In addition, blood acylcarnitine analysis usually shows elevated C5:1 and C5-OH carnitine levels [1,2]. Nevertheless, some T2-deficient patients demonstrated atypical clinical and laboratory features. The severity and frequency of episodes vary among patients; however, the outcome is commonly favorable, unless a ketoacidotic episode causes life-threatening or irreversible sequelae [1,3].

The human ACAT1 gene is located at chromosome 11q22.3-23.1. It spans nearly 27 kb and contains 12 exons and 11 introns.
T2 cDNA is approximately 1.5 kb in length and encodes a precursor protein consisting of 427 amino acids [4]. ACAT1 mutations are highly diverse; more than 70 mutations have been identified to date. Except for p.Arg208* among the Vietnamese, no other common ACAT1 mutation patterns have yet been recognized [3,5].

There are few studies on T2 deficiency in the Arab population. Several cases have been detected by tandem mass spectrometry (MS/MS), but the diagnoses were seldom confirmed by an enzyme assay or genetic analysis [6–18]. In this study, we report on the first two Libyan siblings, sister and brother, with T2 deficiency. We describe their clinical and laboratory features and characterize a novel ACAT1 mutation. We also discuss the current situation of T2 deficiency among Arab population and review main characteristics of this disorder, which may point to diagnostic clues.

2. Patients and methods

Patient 1: The female patient was the third of four children born to first cousins parents of Arab ancestry in Libya. She was delivered at full term following an uneventful gestation, weighing 3 kg. There was no prior remarkable family history, as her elder brother, patient 2, was asymptomatic at that time. The patient thrived until 20 days of age when she was admitted to a hospital with vomiting, diarrhea, dehydration, and acidic breathing. Symptomatic management, including intravenous fluids, was given; she recovered uneventfully. A hydrolyzed milk formula was prescribed for presumed cow’s milk protein intolerance. No additional investigation was performed for this episode. At 7 months of age, the patient was admitted to an intensive care unit with dehydration, acidic breathing, and lethargy. This was preceded by fever, vomiting, and diarrhea for 2 days. Physical examination revealed hepatomegaly, marked hypotonia, hyporeflexia, and abnormal pupillary response to light, showing no reaction on the right and a sluggish reaction on the left. Arterial blood gases revealed pH 6.8, HCO3 3 mmol/L, base excess –24, and pCO2 15 mmHg. Ketonuria was detected. A blood count demonstrated leukocytosis (31 × 10⁹/μL), mild anemia (9.6 gm/dl), and normal platelets. Other investigations showed a blood glucose of 2.5 mmol/L, lactate 2 mmol/L, and ammonia 145 μmol/L; her electrolytes and liver and kidney function tests revealed no significant abnormalities. Management for an assumed central nervous system infection, such as meningitis or encephalitis, was implemented. After 12 days, her general condition was stabilized. She was then referred to a metabolic unit, where an organic aciduria was suspected. A subsequent acylcarnitine analysis of dried blood spots showed increased C5:1 (0.41 μmol/L) and C5-OH (4.13 μmol/L) levels. He was treated successfully with appropriate intravenous glucose, fluids, bicarbonate, and electrolytes. The previously-described precautionary measures were reinforced. At his current age of 7.5 years, he has not suffered of any further episodes. He has attained age-appropriate growth and development. Recently, dried blood spots were obtained from the living family members for an ACAT1 mutational analysis.

This study was approved by the Ethical Committee of the Graduate School of Medicine, Gifu University, Japan. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consents were obtained from all participants or their parents for inclusion in the study.

2.1. Mutation analysis

Small pieces (1.2 × 1.2 mm) were used for direct PCR amplification of DNA from dried blood specimens. The 12 ACAT1 exons, with flanking intron regions, were amplified by primer pairs as described before [19]. PCR conditions for all segments, using a BIOTAQ™ HS DNA Polymerase (Bioline Reagents Ltd, London, UK), were 95 °C for 10 min; 40 cycles of 94 °C for 30 s, 55 °C for 1 min, and 72 °C for 1 min; followed by 72 °C for 7 min. The amplified fragments were sequenced using a BigDye™ Terminator v1.1 cycle sequencing kit (Applied Biosystems, Foster City, CA, USA) and ABI PRISM 3130XL Genetic Analyzer (Applied Biosystems) per the manufacturer’s directions. The genomic ACAT1 sequence (GenBank accession NG_009888.1) was used as a reference.

2.2. Transient expression analysis

A pCAGGS eukaryote expression vector was used for transient expression analysis of T2 cDNA, as previously described [19–21]. In brief, we used a Kod-Plus-Mutagenesis Kit® (Tubyo Co., Osaka, Japan) to construct full-length mutant cDNA p.Ala225Gl. Wild-type and mutant constructs were transfected via Lipofectamine® 2000 (Invitrogen, San Diego, CA, USA) into 5 × 10⁵ SV40-transformed T2-deficient fibroblasts. After incubation at 37 °C for 72 h, cells were harvested and stored at –80 °C until needed. After that, cells were freeze–thawed and sonicated in 50 mM sodium phosphate (pH 8.0) and 0.1% Triton X-100. This was followed by centrifugation at 10,000 g for 10 min. Supernatants from cell extracts were used for enzyme assay and immunoblot analysis.

We spectrophotometrically monitored the decrease of acetoacetyl-CoA absorbance at 303 nm, which is caused by acetoacetyl-CoA thiolase to acetyl-CoA. Acetoacetyl-CoA thiolase activity, was measured in the absence and presence of potassium ions. Potassium ions specifically stimulate T2; hence, the difference represents T2 activity [19,21]. We calculated the average and standard errors of three independent experiments. An immunoblot analysis was performed as previously described [19,22]. We used a mixture of an anti-T2 and anti-succinyl-CoA:3-oxoacid CoA transferase (SCOT) antibodies as the first antibody. Serial dilution samples extracted from the wild-type (10, 5, 2.5, and 1.25 μg) were...
tions, fasting, or increased protein intake. Patients commonly
have clinical manifestations seen in metabolic encephalopathies,
such as vomiting, convulsions, abnormal tone, and disturbed con-
scious level. Most patients with T2 deficiency recover uneventfully,
as in patient 2 in this paper; however, death or irreversible neuro-
logical damage may ensue, as in patient 1 [1,25,26]. Given
the unspecific clinical presentation, T2 deficiency may be initially mis-
diagnosed by primary care physicians. T2 deficiency may mimic
central nervous system infection, like in the second episode of
patient 1; diabetic ketoacidosis, if associated with stress hyper-
glycemia; or even poisoning, such as of salicylates. Diagnostic clues
towards T2 deficiency include the following: first, a severe ketoaci-
dosis outweighing the associated illness; second, a ratio of free
fatty acids to total ketone body (TKB) (both in mmol/L) less than
0.3 during early fasting stages; and third, a significantly high TKB
relative to blood glucose (TKB × blood glucose > 14; both in
mmol/L) during hypoglycemic states [2,3,27]. Between episodes,
patients with T2 deficiency are usually asymptomatic, except for
potentially irreversible consequences from a prior severe ketoaci-
dotic episode [1]. Intriguingly, some T2-deficient patients, includ-
ing 4 Arabs, have been found to have neurodevelopmental
impairments without identifiable ketoacidotic episodes [6,28].
Metabolic stroke is increasingly recognized in T2 deficiency not
only after acute acidoses, as in mitochondrial respiratory chain
and organic acidurias, but also in the absence of frank metabolic
decompensation [25,26,28]. Direct neurotoxic effects of accumu-
lated isoleucine catabolic intermediates have been proposed
[28,29].

The characteristic abnormalities in blood acylcarnitine (ele-
vated C5:1 and C5-OH), as seen in our patients, and urinary organic
acids (increased 2M3HB, 2MAA, and TIG) profiles, usually provide
supportive evidence for T2 deficiency. However, some patients
whose mutant T2 enzymes retain some residual activities may
show subtle or atypical biochemical abnormalities [21]. Moreover,
another disorder, 2-methyl-3-hydroxybutyryl-CoA dehydrogenase
deficiency, may mimic, in part, the biochemical profile of T2 defi-
cency [3]. Therefore, a T2 enzyme assay or ACAT1 mutational
analysis is required to confirm the diagnosis. If a novel variant is
discovered, like c.674C > A in patient 2, an expression analysis is
required to prove its pathogenicity. Accordingly, the diagnosis
can be confirmed in the index patient, screening of other family
members for yet asymptomatic patients becomes applicable, and

3. Results

Patient 2 has a novel homozygous mutation c.674C > A (p.
Ala225Glu) in exon 7 of ACAT1 gene. This was confirmed by familial
analysis; both parents and the younger brother are heterozygotes
for the same mutation (Supplementary material 1). The expression
of wild-type T2 cDNA yielded high potassium ion-activated
acetoacetyl-CoA thiolase activity, which represents T2 activity. In
contrast, p.Ala225Glu mutation, like mock cDNA, did not produce
any detectable T2 enzyme activity (Fig. 1A). In immunoblot analy-
sis (Fig. 1B), no p.Ala225Glu mutant T2 protein was detected. The
smallest used amount of wild type (1.25 µg) was clearly visible.
Therefore, the amount of p.Ala225Glu mutant T2 protein, if any,
would be 12.5% less than that of wild-type.

4. Discussion

The classically-termed “Arab world” consists of 22 Arabic-
speaking countries over approximately 13 × 10⁶ km², and has a
population of approximately 425 million. Several patients with
T2 deficiency have been identified in different Arab countries,
mostly through case reports, retrospective studies, or selective
screening (Table 1). Emerging nationwide newborn screening
(NBS) programs by MS/MS have recently been launched in only a
few Arab countries (including Qatar, Saudi Arabia, and the United
Arab Emirates) [16]. The incidence of T2 deficiency has been esti-
mated by three Arab studies to be 1.4, 1.6, and 2.76 per 100,000
newborns [11,16,18]. These numbers are higher than the reported
figures of 1 per 313,000 in North Carolina, and 1 per 232,000 new-
borns in Minnesota, USA [23,24]. As some patients may not be
detected by NBS programs using MS/MS, the true incidence of T2
deficiency is likely higher [3]. This may be expected due to the high
rate of consanguineous marriages among Arab populations [16,18].

The typical presentation of T2 deficiency consists of intermit-
tent episodes of ketoacidosis that are usually triggered by infec-
tions, fasting, or increased protein intake. Patients commonly

![Fig. 1](image-url)

Fig. 1. Transient expression analysis. Wild-type, mock, and p.Ala225Glu mitochondrial acetoacyl-CoA thiolase (T2) cDNAs were transfected into SV40-transformed T2-
deficient fibroblasts. Cells were incubated at 37 °C for 72 h followed by harvesting. After processing, supernatants from cell extracts were used for an enzyme assay and
immunoblot analysis. (A) Acetoacetyl-CoA thiolase enzyme assay. The mean and standard errors of three independent experiments, before and after addition of potassium
ions, are shown. (B) Immunoblot analysis. Applied protein amounts are demonstrated (in µg) above the lanes. The 1st antibody was a mixture of an anti-T2 and anti-succinyl-
CoA:3-oxoacid CoA transferase (SCOT) antibodies. SCOT, succinyl-CoA:3-oxoacid CoA transferase; T2, mitochondrial acetoacetyl-CoA thiolase.
proper genetic counseling can be provided [3]. A prenatal diagnosis is also possible. However, it is not necessarily superior to a timely postnatal diagnosis because T2 deficiency is rarely manifested during the neonatal period [1]. Of note, T2 deficiency shows no correlation between genotype and clinical phenotype [1,30].

The management of acute ketoacidotic episodes in T2 deficiency is aimed at stabilizing the patient’s condition and correcting metabolic derangements. Intravenous glucose is started to suppress ketogenesis; blood glucose should be maintained at a high-normal range. Appropriate intravenous fluids and electrolytes are provided; bicarbonates are only used in severe metabolic acidosis. Other supportive measures, such as mechanical ventilation, may also be required. All measures are guided by frequent monitoring of the patient’s clinical and biochemical conditions [1–3]. The mainstay of precautionary management for T2 deficiency includes avoidance of prolonged fasting and early management of infections. Intravenous glucose should be administered when an associated illness precludes oral intake. Other non-evidence-based measures, such as mild protein restriction, avoidance of excessive fat intake, and carnitine supplementation, are also commonly advised [1,3]. As patient 2 manifested after his younger sister (patient 1) had already been diagnosed with T2 deficiency, a timely diagnosis, and both acute and long-term management, were assured. This likely contributed to the favorable outcome in patient 2.

In conclusion, we report on two siblings with T2 deficiency from Libya. Both siblings were presented with ketoacidosis, but the severity and outcomes were quite distinctive. We identified a novel ACAT1 mutation (c.674C > A) and proved its pathogenicity by transient expression analysis. The incidence of T2 deficiency may be high among the Arab population. This disease should be considered in the differential diagnosis of unexplained ketoacidosis and in certain clinical circumstances. Patients with T2 deficiency could have more favorable outcomes with early diagnosis and proper management.

Conflicts of interest

The authors declare no potential conflicts of interest on the research, authorship, and publication of this article.

Acknowledgments

The authors thank the Cultural Affairs and Missions Sector of the Egyptian Ministry of Higher Education for providing a scholarship to study beta-ketothiolase deficiency. The authors also thank Ms. Naomi Sakaguchi, a technician at Gifu University, for her indispensable technical assistance. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan [grant numbers 16K09962, 15K01693], and Health and Labour Science Research Grants for Research on Intractable Diseases from the Ministry of Health, Labour and Welfare of Japan.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ejmhg.2016.11.001.

References

Table 1

<table>
<thead>
<tr>
<th>Population</th>
<th>Pt no.</th>
<th>Estimated prevalence</th>
<th>Study type</th>
<th>Enzyme assay</th>
<th>ACAT1 mutation analysis</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunisia</td>
<td>10</td>
<td>–</td>
<td>Case reports</td>
<td>Yes (1)</td>
<td>–</td>
<td>[8]</td>
</tr>
<tr>
<td>Egypt</td>
<td>8</td>
<td>2.76</td>
<td>NBS pilot study (1) selective screening (7)</td>
<td>– –</td>
<td>–</td>
<td>[9,12,13,18]</td>
</tr>
<tr>
<td>Syria</td>
<td>5</td>
<td>–</td>
<td>Retrospective</td>
<td>– –</td>
<td>–</td>
<td>[14]</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>3</td>
<td>1.4</td>
<td>NBS program (1) retrospective (2)</td>
<td>– c.86_87dupTG, c.854C > T</td>
<td>[11,15]</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>3</td>
<td>–</td>
<td>NBS program (1) retrospective (2)</td>
<td>– c.86_87dupTG, c.854C > T</td>
<td>[11,15]</td>
<td></td>
</tr>
<tr>
<td>Oman</td>
<td>2</td>
<td>–</td>
<td>Selective screening</td>
<td>– –</td>
<td>–</td>
<td>[17]</td>
</tr>
<tr>
<td>Lebanon</td>
<td>2</td>
<td>1.6</td>
<td>Limited NBS program</td>
<td>– –</td>
<td>–</td>
<td>[16]</td>
</tr>
<tr>
<td>Libya</td>
<td>2</td>
<td>–</td>
<td>Case report</td>
<td>– c.674C > A</td>
<td>Current study</td>
<td></td>
</tr>
<tr>
<td>Yemen</td>
<td>1</td>
<td>–</td>
<td>Case report</td>
<td>– –</td>
<td>–</td>
<td>[6]</td>
</tr>
<tr>
<td>Palestine</td>
<td>1</td>
<td>–</td>
<td>Case report</td>
<td>– –</td>
<td>–</td>
<td>[7]</td>
</tr>
</tbody>
</table>

a This may not be an exhaustive list.
b Per 1 × 10⁶ newborns.
c Potassium ion-activated acetoacetyl-CoA thiolase assay.
d Coupled assay for detection of defects in isoleucine catabolism distal to enoyl-CoA hydratase, using tiglyl-CoA as a substrate.
e Pathogenicity of these variants have not been confirmed to date. NBS, newborn screening; Pt, patient.

