Anaphylaxis vulnerable groups

Yehia El-Gamal
Professor of Pediatric Allergy and Immunology, Ain Shams University, Cairo, Egypt

Age groups vulnerable to serious attacks of anaphylaxis include infants, teenagers, pregnant women, and the elderly. Concomitant diseases, such as severe or uncontrolled asthma, cardiovascular disease, mastocytosis or clonal mast cell disorders and the concurrent use of some medications such as beta adrenergic blockers and angiotensin-converting enzyme (ACE) inhibitors increase the risk of severe or fatal anaphylaxis.1,2 Also, defects in mediator degradation pathways might predispose to severe or fatal episodes resulting in elevated baseline levels of tryptase, histamine, bradykinin (due to low serum ACE activity), and platelet-activating factor (PAF) due to low serum PAF acetyl hydrolase activity.3,4

Cofactors that amplify or augment anaphylaxis include Exercise-induced anaphylaxis, concomitant ingestion of ethanol or a NSAID that enhances intestinal permeability and allergen absorption, acute upper respiratory tract or other infections, fever, emotional stress, travel or other disruption of routine, and premenstrual status.1,5,6

Anaphylaxis in infants

Although anaphylaxis can be difficult to diagnose in infants, most case series of patients with anaphylaxis, published from different countries, include infants, one as young as two weeks of age.7,8

Most infants with anaphylaxis are atopic and most episodes are triggered by food. Less common triggers include medications (e.g. b-lactam antibiotics), natural rubber latex (including nipples, pacifiers, and toys), insect stings, inhalant allergens, vaccinations, and non-immune triggers such as cold exposure. Idiopathic anaphylaxis has been reported in infants.9,10

Common foods are cow’s milk (about 40%) and hen’s egg, but any food can be a trigger, including those presumed innocuous (e.g. cow’s milk substitutes and hypoallergenic formulas).11-13 In a population-based sample, more than 10% of one-year-olds had oral challenge-proven clinical reactivity to uncooked egg, peanut, or sesame.14

Anaphylaxis following immunization is a rare event; An incidence of 0.2-1 per million doses was estimated.15,16 An estimate of 1 per 100 000 after MMR vaccination (over a 14 year period) was reported.17 In children receiving combination vaccines, it is sometimes impossible to attribute risk to a single vaccine or component.18 Some of the vaccine-related reactions may be related to latex exposure during the administration of the vaccine.9,19

In infancy, anaphylaxis can be difficult to recognize; infants cannot describe their symptoms. Some signs of anaphylaxis such as flushing and dysphonia after crying, spitting up after feeding, and incontinence are normal daily events. Healthy infants have lower blood pressure and higher resting heart rate than older children. Serum tryptase is commonly normal in anaphylactic episodes caused by food allergy.8,11

In the treatment of anaphylaxis in infants, extreme care should be taken in calculating and drawing up the epinephrine dose, which is 0.01 mg/kg of a 1:1,000 (1 mg/ml) solution; the correct dose for a 5 kg infant is 0.05 mg! No epinephrine autoinjector currently available provides a dose of <0.15 mg.11,20,21 The onset of action of oral H1-antihistamines takes at least 1 to 2 hr. First generation H1-antihistamines potentially cause sedation that can impede the recognition of anaphylaxis, and can also lead to respiratory arrest in Infants.22-24

At-risk infants should wear accurate medical identification such as a T-shirt or Velcro patch on clothes with a specific alert message, for example, “Do not give cow’s milk to this baby” Medical identification bracelets made of cloth are available for older infants.25

Anaphylaxis in pregnancy

Anaphylaxis in pregnancy places both mother and baby at increased risk of fatality or hypoxic/ischemic encephalopathy.26 Late fetal demise and hypoxic-ischemic neurologic injury after previously normal development was reported due to in utero anaphylaxis to food antigens that
cross the placenta. Indirect evidence for fetal production of specific IgE is the high percentage of food reactions that occur on the first postnatal exposure.27

During the first, second, and third trimesters, triggers of anaphylaxis are similar to those in non-pregnant women. During labor and delivery, iatrogenic interventions such as oxytocin, antimicrobials and latex are common triggers.26 Symptoms and signs of anaphylaxis during pregnancy include low back pain, uterine cramps, fetal distress, preterm labor, and/or vaginal itching.28

Medical management of anaphylaxis during pregnancy is similar to management in the non-pregnant patient. Positioning of the patient should be semi-recumbent on the left side to prevent compression of inferior vena cava by the gravid uterus. Systolic BP should be kept > 90 mm Hg to ensure placental perfusion. When CPR is indicated at full term, continuous chest compressions can be difficult. Regular fetal heart monitoring is recommended if anaphylaxis occurs at more than 24 weeks pregnant. Fetal distress: correcting maternal hypoxia and/or hypotension. If the distress persists, emergency CS should be considered.2

Anaphylaxis in adolescents

A high proportion of deaths from food allergy involve teenagers and young adults. Professionals who work with adolescents in chronic disease clinics know how difficult it is for them to adjust to changes necessary to cope with their illness. However, they seem to perform fairly well in carrying on with normal lives, in spite of a potentially life-threatening disease.29,30

Teens are vulnerable to anaphylaxis recurrences because of risk-taking behaviors as they transit between parental control and autonomous decision-making. They fail to avoid their trigger(s) and some refuse to carry epinephrine autoinjectors. Others even ignore the risks.1,31,32 Food allergic adolescents are motivated by the psychological impact of their condition, which often makes them feel different to their peers and may result in bullying. Involvement of close friends and lay organizations may support appropriate management.33

Anaphylaxis in the elderly

In patients with anaphylaxis who are more than 50 years old, typical triggers are stinging insect venoms, medications, and ‘unknown’.1 In a 10-year retrospective study, shock was documented in 41% of 294 patients with anaphylaxis, typically in elderly patients after exposure to radioccontrast media or drugs.34

During anaphylaxis, histamine, leukotrienes, PAF, and other mediators released from cardiac mast cells contribute to vasoconstriction and coronary artery spasm. A naphylaxis can present as an acute coronary syndrome (angina myocardial infarction, arrhythmias) before, or in the absence of, epinephrine injection.35-37 Kounis Syndrome (acute coronary syndromes induced by mast cell activation during anaphylactic and anaphylactic reactions), was first reported in patients who had no previous coronary heart disease.38,39 Episodes of Kounis syndrome were reported during anaphylactic reactions to drugs such as diclofenac sodium, beta lactam antibiotics.40,41

Management of anaphylaxis in the elderly can be complicated by concomitant cardiovascular disease and limited cardiac reserve, and by concurrent medications such as beta adrenergic blockers. Concerns about the potential adverse cardiac effects need to be weighed against concerns about the cardiac complications of untreated anaphylaxis.1,42

REFERENCES


42. Kemp SF, Lockey RF, Simons FE; World Allergy Organization ad hoc Committee on Epinephrine in Anaphylaxis. Allergy 2008;63:1061-70.