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 Agricultural sector is crucial for Ethiopia's overall economic growth and has notable spillover 

effects. Hence, it is essential to conduct recurrent analysis of production performance, 

investigating efficiency level and inefficiency differentials, which are key indicators of 

productivity growth and informative for policymakers. This paper estimated transient and 

persistent inefficiencies distinguished from farm-heterogeneity and endogeneity for Ethiopian 

grain crop-producing farmers for the period of 2004 – 2015. The study used Mundlak-adjusted 

random effect – four error component stochastic frontier model by extending earlier version of 

the model to distinguish endogeneity and farm-heterogeneity from time-invariant inefficiency 

and to explain inefficiencies. The adjusted model was then estimated using multi-step 

estimation. The mean estimates of   persistent, transient and overall efficiencies were 79, 73 

and 58%, respectively. Result from inefficiency effect model revealed sex, family-size, number 

of plots, owing-oxen, soil-fertility and rainfall influenced transient inefficiency negatively; 

while, age, education, and temperature variation had positive effect. Persistent inefficiency 

was influenced negatively by owing-oxen, soil-fertility, farm-size, population pressure, rainfall, 

and market proximity; whereas, age and education affected it positively. Generally, the overall 

technical efficiency is low, mainly due to the transient part. In conclusion, the findings are vital 

to initiate government policy options to reduce inefficiency, focusing on factors affecting the 

long-run and short-run inefficiencies distinctly. The low level of efficiency can be addressed 

by facilitating farmers’ access to more arable-land and modern farming tools and machinery, 

creating targeted support programs for female farmers, improving technologies that promote 

soil-fertility and reduce weather adverse effects in central highlands of Ethiopia. 
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1. Introduction 

Within the analysis of crop production performance, 

studying the sources of increased production and 

examining the extent and identifying the sources of 

inefficiencies are important indicators for productivity 

growth and they are relevant instrument for informing 

agricultural policymakers. The agricultural sector, 

particularly that of crop-farming sub-sector, plays the 

central role in Ethiopia though the sector’s performance 

in terms of technical efficiency and productivity growth 
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is sub-optimal when compared with performances in the 

Sub-Saharan Africa (SSA). In SSA, where most 

countries derive over 60% of their livelihoods from 

agriculture and related economic activities (Maurice et 

al. 2015), knowing the level of efficiency of smallholder 

farms has important implications for the choice of 

development strategy. Agriculture sector plays 

important role in overall economic growth of Ethiopia, 

and it has significant spillover effects on the other 

http://www.ejssd.astu.edu/
mailto:oumer.beriso@astu.edu.et


Oumer Berisso                                                                                                           Ethiop. J. Sci. Sustain. Dev., Vol. 12(1), 2025 

2 
  

sectors of the economy as well (Anbes, 2020). 

According to the World Bank (2022), agriculture 

accounted 37.6 and 33.3% to national GDP in 2021 and 

2022, respectively. The sector provides livelihood to 

more than 75% of the population and 80% of foreign 

earnings (NBE, 2019).  

Ethiopia’s grain production is prodigiously of a 

subsistence nature and it is dominated by smallholders 

mainly for basic self-consumption, most of who work 

on less than a hectare of land. The principal grain crops 

include cereal such as barley, corn, maize, sorghum, teff 

and wheat, accounting to 71% of the 2020/21 

production. These crops represent nearly 80% of the 

cultivated land and they employ 60% of the rural 

workforce (CSA, 2021). However, the state of the grain 

crop sub-sector is progressively declining in Ethiopia; 

as the result, its productivity remains low due to 

numerous challenges - limited private investment, 

fragmented markets, environmental degradation and 

recurrent shocks (Neglo et al., 2021). Moreover, the 

sector is characterized by inefficiencies and low 

productivity in which cereal crops have shown a steady 

low-growth rate in the last two decades (Abebayehu, 

2023; Merihun et al., 2022). Hence, being an agriculture 

dependent country with limited capacity for developing 

and adopting new technologies, increasing production 

and enhancing farming efficiencies with the existing 

technologies is not a matter of choice but is instead a 

must for Ethiopia. Recent Ethiopian government plan - 

the 10 years development plan - notes that the 

anticipated productivity and efficiency enhancement in 

the crop farming sector is only possible through efficient 

utilization of resources, proper management and 

dissemination of available technologies and tackling the 

challenges which have constrained the achievement of 

farmers’ full potential (PDCE, 2020). Hence it is 

significant to study farm production performance, in 

particular the grain crop sub-sector. 

A numbers of researchers have analyzed farm 

technical efficiency and their determinants of 

smallholder farmers in Ethiopian agriculture using 

different methodologies. Bamlak et al. (2009) and 

Endrias et al. (2013) assessed the level of technical 

efficiency and determinants of crop farming. Most 

studies pay relatively little attention to assessing the 

influence of agro-eco-climatic factors and adaptation 

strategies on farm efficiency in the country. These 

studies typically employed cross-sectional data, specific 

geographical areas, and specific crops (Getachew, 2018; 

Talie et al., 2019; Assefa et al., 2019) and they used 

inefficiency effects model (Battese and Coelli, 1995) 

that fails to separate inefficiency from unobserved 

heterogeneity. The existing studies are almost 

exclusively based on overall inefficiency measures that 

do not distinguish between transient and persistent 

inefficiency. More importantly, though few studies 

(Abebayehu, 2023; Merihun et al., 2022; Oumer et al., 

2022) have been emerging differentiating between 

transient and persistent inefficiency components in 

Ethiopian farming context, none of them have applied 

to account for endogeneity and heterogeneity for grain 

crop-producing farms.  

The study considered the most recent Generalized 

True Random Effects - Four error Component 

Stochastic Frontier (GTRE-4eCSF) panel data model 

that disentangles farm-heterogeneity and endogeneity 

from inefficiency while estimating persistent and 

transient with their determinants for Ethiopia’s major 

grain crop-producing farmers using a household-level 

panel dataset. The researcher extended the earlier 

4eCSF model to address heterogeneity, endogeneity and 

determinants of transient and persistent inefficiency. 

The model was extended in three ways: firstly, 

Mundlak-adjustment was made to the random effects 

specification to account for unobserved time-invariant 

farm-heterogeneity which is correlated to the random 

error; secondly, factors explaining inefficiencies were 

included in the Mundlak-adjusted in GTRE-4eCSF 

model to accommodate the determinants of persistent 

and transient inefficiencies; thirdly, the potential 

endogeneity from different sources were addressed by 

applying a multi-step estimation of non-linear 

Generalized Method of Moments (GMM) estimator. 

Hence, it supposed to provide consistent estimates by 

accounting for three sources of potential endogeneity: 

endogeneity due to unobserved heterogeneity, 

simultaneity of input use with both types of technical 

efficiency and potential correlation of the noise term 

with the regressors. Thus, the extended model produced 

estimates of both inefficiency and their determinants 

thereof, while controlling farm-heterogeneity and 

endogeneity. Consequently, it provided a more thorough 
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analysis, compared to earlier models applied to this field 

in Ethiopia. This study is one of the first applications of 

the recent methodological advances in augmented 

GTRE–4eCSF model. 

Thus, the objective of this study is to estimate long-

run (persistent) and short-run (transient) inefficiencies 

separated from farm-heterogeneity and endogeneity and 

also to assess inefficiency differentials for major grain 

crop-producing farmers in central highlands of Ethiopia. 

From a policy outlook, the study may contribute to a 

better understanding of the efficiency of crop-farming 

households and the impact of its different components 

on overall farm performance. Moreover, the paper has 

an important policy implication for the developing 

nations to make clear factors of agricultural inefficiency 

and possibly to help them devise strategies that can 

contribute to the betterment of their national agricultural 

production. 

2. Materials and Methods 

2.1. Description of the model used 

The 4eCSF model distinguishes between time-

invariant firm heterogeneity, the time-invariant 

efficiency, the time-varying efficiency and the 

stochastic error-term (Kumbhakar et al., 2014; Colombi 

et al. (2014).  

The 4eCSF model is given as:     

 𝑦𝑖𝑡 = 𝛼0 + 𝑓(𝑥𝑖𝑡; 𝛽) + 𝑥𝑖 + 𝑣𝑖𝑡 − 𝜂𝑖 − 𝑢𝑖𝑡 …. (1)  

where yit denotes the natural logarithm of output for 

farm-household i at time t; i = 1, . . ., n denotes 

production units (farm-household), and t = 1 , . . . , T 

indicates the time period at which each unit is observed, 

xit is a vector of inputs (expressed in logs); );( itxf

stands for the  production technology governing the 

input – output relationship;  β  is a  vector  of  parameters 

to be estimated; α0 is a common intercept.  

The remainder parts of Eq. (1) incorporate four-

components of the composite random terms which can 

be expressed in two groups as:

itititiii uvand   . i  depicts time-

invariant component where i capturing unobserved 

farm-heterogeneity while ηi captures persistent 

inefficiency. εit is a time-varying component where -υit 

is the random/stochastic error term that accounts for 

measurement and functional form errors, and uit 

captures transient inefficiency.  

In this model, vit and uit are independently and 

identically distributed (i.i.d). variables following 

),0( 2

vN   and ),0( 2

uN  , respectively; i  is assumed to 

be i.i.d. ),0( 2

N and i is i.i.d. ),0( 2


N . The farm-

heterogeneity i in the above model can be modeled as 

either fixed effects (FE) or Random effects (RE) model. 

FE has the advantage of allowing for correlation 

between heterogeneity and the explanatory variables 

and hence provides unbiased estimates of the parameter 

vector β.  RE model may result in biased estimates of 

technology parameters when the unobserved factors are 

correlated with the explanatory variables. Karagiannis 

(2014) argues that random effects SF models may be 

more appropriate for agricultural production given the 

time-lag between input decisions and output realization 

and the uncertainty regarding production conditions. 

Hence, one can assume that the correlation between the 

weather affected stochastic error term and the predator 

mined input variables is zero or very small. However, 

even if this was not the case, the FE estimator does not 

allow the inclusion of any time-invariant variables (e.g. 

variables accounting for the production environment) of 

the farm unit in the estimation because of perfect 

multicollinearity with χi. 

As a solution to the problem, Addo and Salhofer 

(2022) assumed farm-heterogeneity to be random, but 

applyed Mundlak’s (1978) adjustment to reduce 

potential biases in the parameters; this study applied the 

augmented GTRE–4eCSF model. Accordingly, to 

control correlation between farm-specific effects and 

explanatory variables, and to reduce the potential biases 

in the slope parameters and inefficiency term, as 

proposed by Farsi et al. (2005), in this study farm-

heterogeneity was assumed to be random and modeled 

as: ,iii x    where; ix is the vector of farm level 

arithmetic mean of each input variable in the model;  , 

is the corresponding parameters to be estimated, and ξi 

is pure time-invariant heterogeneity. All the other 

parameters are defined in the same way as in Eq. (1).  

Hence augmenting Eq. (1) by this auxiliary equation 

and rewriting it gives Eq. (2):    



Oumer Berisso                                                                                                           Ethiop. J. Sci. Sustain. Dev., Vol. 12(1), 2025 

4 
  

𝑦𝑖𝑡 = 𝛼0 + 𝑓(𝑥𝑖𝑡; 𝛽) + (𝜙′𝑥𝑖̅ + 𝜉𝑖) + 𝑉𝑖𝑡 − 𝜂𝑖 − 𝑢𝑖𝑡  

......................................................................... (2) 

The augmented GTRE–4CSF model in Eq. (2) 

controls time-invariant farm effects by distinguishing 

farm-heterogeneity from persistent inefficiency. In 

addition, it controls for endogeneity due to the 

correlation between χi and xit. Nevertheless, it doesn’t 

control for the endogeneity that can arise due to 

correlation between uit and xit as well as vit and xit; and 

also it doesn’t account for potential heteroscedasticity in 

any stochastic component. Consequently, to account for 

potential heteroscedasticity, in line with Addo and 

Salhofer (2022) and Badunenko and Kumbhakar 

(2017), the augmented GTRE – 4eCSF model in Eq. (2) 

was extended to include determinants of persistent and 

transient inefficiency components, so that ηi and uit are 

heteroscedastic. Accordingly, to explain differences in 

inefficiency, the variances of time-invariant (persistent) 

and time-variant (transient) inefficiency were assumed 

conditioned by a set of determinants z (the combination 

of wi and zit) variables, making the variance parameters 

(ηi and uit) functions of the determinants.  

Thus, it was assumed ))(,0(~)(
2

iii wNw   and

))(z,0(~)(z it

2

it uit Nu 
, where both ηi and uit follow 

half normal distribution. Assuming means of both 

transient and persistent inefficiency are non-linear 

functions of contextual variables zit and wi, respectively, 

(Badunenko and Kumbhakar 2017; Lien et al., 2018), 

Eq. (2) will become the form of Eq. (3):  

𝑦𝑖𝑡 = 𝛼0 + 𝑓(𝑥𝑖𝑡; 𝛽) + 𝜙′𝑥𝑖̅ + 𝜉𝑖 + 𝑉𝑖𝑡 − 𝜂𝑖(𝑤𝑖) −

𝑢𝑖𝑡(𝑍𝑖𝑡) ……...……………………..…….. (3) 

The GTRE–4CSF model can be estimated using a 

single-step maximum likelihood procedure (Colombi et 

al. 2014); however, the multi-step estimation procedure 

is more straightforward to implement (Kumbhakar et al., 

2014), especially when explanatory variables are 

included in the inefficiency terms, enabling 

investigating factors that cause farms to deviate from 

frontier technologies (Lien et al., 2018). Hence, in line 

with Addo and Salhofer (2022) and Lien et al. (2018), 

relying on a modified version of Kumbhakar et al.’s 

(2014) GTRE model, the multi-step procedure 

introduced by Bokusheva et al., (2023) was applied. The 

latter approach has the advantage of providing 

consistent estimates by accounting for the three sources 

of potential endogeneity. Accordingly, to implement 

this procedure, it was assumed that the farm-effects ξi to 

be random and i.i.d. with mean zero and also the random 

shock vit to have zero mean and constant variance.  

Moreover, it was assumed that the expected values to

)())(z()())(w( 2it1i ititii zguEandwgE  by 

assuming g1(⋅) and  g2(⋅) to have a parametric functional 

form so that ))(z())(w( iti iti uEandE  are non-

negative. As a result the persistent inefficiency, ηi(wi) is 

non-negative such that 0)())(( 1  iii wgwE  and the 

transient inefficiency )( itit zu is non-negative such that

0)())(( 2  ititit zgzuE .  

To instrument the multi-step estimation procedure, 

Eq. (3) was rewritten again as:
  

𝑦𝑖𝑡 = 𝛼0
∗ + 𝑓(𝑥𝑖𝑡; 𝛽) + 𝜙′𝑥𝑖̅ + 𝜆𝑖 + 𝜀𝑖𝑡  …….... (4) 

Where, 𝛼0
∗ = 𝛼0 − 𝑔1(𝑤𝑖) − 𝑔2(𝑧𝑖𝑡); 

               𝜆𝑖 = 𝜉𝑖 − 𝜂𝑖(𝑤𝑖) + 𝑔1(𝑤𝑖); 

              𝜀𝑖𝑡 = 𝑉𝑖𝑡 − 𝑢𝑖𝑡(𝑧𝑖𝑡) + 𝑔2(𝑧𝑖𝑡) 

Here the expected value

)()(2))(z( 2

2

it itituit zgzuE   , which is 

estimated as a function of time-varying exogenous 

parameters ,)(
2

1
exp 0

2








 itu z where

2

u  is 

the variance of the transient inefficiency, and κ the 

vector of unknown parameters to be estimated (Battese 

and Coelli 1995); and the expected value 

)()(2))(w( 1

2

i iii zgwE   is parameterized 

as ,)(
2

1
exp 0

2








 iw

 where
2

  is the 

variance of the persistent inefficiency and δ is a vector 

of unknown parameters to be estimated (Addo and 

Salhofer, 2022; Lien et al., 2018). 

 Thus, expected values can be expressed as: 

𝐸(𝑢𝑖𝑡(𝑧𝑖𝑡)) = √
2

𝜋
exp (

1

2
(𝐾0 + 𝐾′𝑍𝑖𝑡)) and 

𝐸(𝜂𝑖(𝑤𝑖)) = √
2

𝜋
exp (

1

2
(𝛿0 + 𝛿′𝑤𝑖))  ……...… (5) 
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Hence, from Eq. (2) – Eq. (5), the GTRE-4eCSF 

model with heteroscedasticity in both persistent and 

transient technical efficiency can be rewritten as: 

𝑦𝑖𝑡 = 𝛼0 − √
2

𝜋
exp (

1

2
(𝐾0 + 𝐾′𝑧𝑖𝑡)) −

√
2

𝜋
exp (

1

2
(𝛿0 + 𝛿′𝑤𝑖)) + 𝑓(𝑥𝑖𝑡; 𝛽) + 𝜙′𝑥𝑖̅ +

𝜆𝑖 + 𝜀𝑖𝑡 ……………....………...…………. (6) 

Overall, a non-linear GMM estimator was applied to 

estimate production technology parameters for the 

model in Eq. (6), assuming that zit and wi are exogenous 

and they are uncorrelated with vit.  

The estimation procedure consists of four steps.  

Step 1: GMM estimator is used to account for the 

three sources of potential endogeneity and to estimate 

the production technology parameter β for the model in 

Eq. (6). It estimates the model both in levels and in 

differences and it uses two types of instruments: the 

lagged values of the level variables for the differenced 

equations and the lagged values of the differenced 

variables for the equations in levels. Additional 

variables related to farm-heterogeneity, such as credit 

access, farmer’s age, irrigated land size, as well as 

regional dummies and more variables can be used as 

instruments if available. The non-linear GMM 

consistently estimates the technology parameters 

estimates of β, δ and κ directly from the moment 

conditions, without imposing any conditions on the 

distribution of the error term. 

Step 2: The residuals from Eq. (6), namely itr̂ , 

derived using the GMM estimates of β, δ and κ were 

used. Barring the difference between the true and 

estimated parameters, these residuals can be written as

.ˆ
itiitr  

 
This Eq. can be estimated as a random 

effects model, which will give the predicted values of 

the time-invariant i  and time-varying εit. Note that 

these are zero-mean random variables, 

0)(,0)(..  iti EEei   and there are no regressors.  

Step3: The predicted value for λi from the second step 

and E(ηi) estimated in the first step, are used to estimate 

the persistent technical efficiency and its determinants 

using a SF model in which the dependent variable is r1it. 

For this, given that )()(2))(w( 1

2

i iii zgwE   , 

the residuals for )()( iiiiii wmw    can be 

rewritten i as: )())(w( i1 iiiiit wEr   , then the 

distributional assumptions about ηi and ξi were made in 

such a way as: ),0(~
2

 Ni
and the persistent 

inefficiency term ηi is assumed to follow a half-normal 

distribution with ))(,0(~)(w
2

i ii wN   ,

.)(
2

1
exp 0

2








 iwwhere 

 

Consequently, )())(w( i1 iiiiit wEr   was 

estimated using the standard cross-sectional SF 

technique and the predicted values of ηi was obtained 

using Jondrow et al. (1982) procedure, and estimated 

values of persistent technical efficiency (PTE) as

)ˆexp( iPTE  was also determined. 

Step 4: In a similar way, in the final step, predicted 

values for εit from the second step, and E (uit) estimated 

in the first step, are used to estimate the transient 

technical efficiency and its determinants using a SF 

model in which the dependent variable is r2it. Indeed, 

given that )()(2))(z( 2

2

it itituit zgzuE   , the 

residuals for )()( 2 ititititit zgzuv  from the 

second step can be rewritten as:

).())((2 ititititititit zuvzuEr  
 

Here, 

),0(~
2

vit Nv  ; and the transient term uit is assumed 

to follow a half-normal distribution with

))(z,0(~)(z it

2

it uit Nu 
; so that 

.)(
2

1
exp 0

2








 itu z Hence, the predictions, itû  

for the inefficiency values of uit (zit), as well as the 

marginal effects of the zit variables on transient 

inefficiency were obtained and transient efficiency 

(TTE) as )ˆexp( ituTTE   was estimated. Note that the 

determinants of transient inefficiency are modeled in the 

pre-truncated variance of uit. This specification allows 

not only for heteroscedasticity but also for variations in 

the mean of uit. Indeed, since uit is assumed to follow a 

half-normal distribution, then 









 )(

2

1
exp/2)(2))(( 0

2

itituitit zzzuE 

(Badunenko & Kumbhakar 2017). This implies that, 

given the half-normal assumption, the parameterization 
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of 
2

itu allows the zit variables to affect the expected 

value of the transient inefficiency and that the sign of κ 

reveals the direction of the effect of zit on E (uit). Finally, 

the overall technical efficiency (OTE) was simply the 

product of PTE and TTE.

 For empirical model, the most commonly used 

functional forms in efficiency analysis are the Cobb-

Douglas (CD) and the trans-log (TL) specifications. In 

the present paper, to estimate the parameters of the 

production function in the first step, the TL functional 

form, which has proven standard as it has the advantage 

of being more flexible than and superior to simpler 

forms such as the CD, was utilized (Lien et al., 2018) as 

it captures both first and second order effects and 

accommodates non-linearity within the input variables.  

Hence the empirical specification is given by:  

ln 𝑦𝑖𝑡 = 𝛼0 + ∑ 𝛽𝑗
𝐽
𝑗=1 ln 𝑥𝑗,𝑖𝑡 + 𝛽𝑡𝑡 +

1

2
(∑ 1𝐽

𝑗=1 ∑ 𝛽𝑗ℎ
𝐽
ℎ=1 ln 𝑥𝑗,𝑖𝑡 ln 𝑥ℎ,𝑖𝑡 + 𝛽𝑡𝑡𝑡2) +

∑ 𝛽𝑗𝑖
𝐽
𝑗−1 ln 𝑥𝑗,𝑖𝑡 𝑡 + ∑ 𝜙𝑗

𝐽
𝑗=1 ln 𝑥̅𝑖𝑡 + 𝜆𝑖 + 𝜀𝑖𝑡 

…………………………………………... (7) 

where all variables are as previously defined. 

The Mundlak adjustment, as well as an interaction 

time term for inputs were included. Moreover, the time 

trend variable (t) and its squared term were involved in 

order to separate exogenous technical change from 

inefficiency and to capture the shift in crop production 

over time. The trend captures the direction of the 

change, while the squared term captures the non-linear 

shift in the production function over time.   

2.2. Data sources 

The data source for the study is the fraction of 

Ethiopian rural household survey (ERHS) dataset. 

This dataset is farm-level panel data, conducted in 

collaboration by the department of economics, Addis 

Ababa University and international food policy 

research institute (IFPRI). The dataset includes farm 

production and economic data collected in 5 rounds (in 

years 1994, 1999, 2004, 2009 and 2015) from 

randomly selected farm-households at local farmers 

associations (FAs) level in rural Ethiopia, which was 

selected to represent the country’s diverse farming 

systems. The farms included in this dataset are a 

stratified sample representing the Ethiopian 

agricultural sector in terms of standard output, 

production orientation and altitude, found in five 

agro-ecological zones (AEZs) in the country 

(Dercon, 2004). One of these AEZs is the central 

highland AEZ, represented in study by the FAs from 

Amhara and Oromia regions. Accordingly data for 

the current study covers seven FAs in five districts 

in these two major grain crop-producing regions in 

the central highlands of Ethiopia. 

The database provides information on physical 

quantities, such as area, production and yields for each 

crop and socio-economic characteristics of farmers 

and their households, such as age, educational level 

and gender of manager. For this paper, the data 

collected in last three rounds, in 2004, 2009 and 2015 

years, covering seven FAs, forming a partially 

balanced 367 panel farm-households from 1043 

observations, was used. These three rounds include 

more FAs than the earlier from the two major grain 

crop-producing regions (Amhara and Oromia). 

Moreover, additional secondary data such as FAs’ 

altitude and metrological data were obtained from the 

Ethiopian Meteorology Authority (EMA). The 

meteorological data includes monthly average 

observations of rainfall and maximum and minimum 

temperature (from which their annual mean values and 

their variability were computed), from 2004 to 2015 

collected in stations close to the study villages.  

2.3. Variables of the study 

2.3.1 Input-output variables used in the stochastic 

frontier function 

The dependent variable for the stochastic frontier 

function, the production output (Y), is total revenue from 

sales of cereals produced by the farm, which combines 

aggregate cereal crop output market value measured in 

thousands of Ethiopian birr (ETB). Six different 

conventional production input variables were included 

in the estimated frontier model. Inorganic-fertilizers 

(X1) measured in kilogram; agro-chemicals (X2) 

measured in ETB, these include the sum of costs on 

pesticides, herbicides, fungicides and insecticides used 

by the farmers; agricultural machinery-implement (X3) 

measured in ETB, which is the sum of costs on tractor, 

combiners and related machinery and equipment; 

file:///C:/Users/user/Desktop/%5bEJSSD%5d%20Editor%20Decision/Endogeneity.docx%23_bookmark29
file:///C:/Users/user/Desktop/%5bEJSSD%5d%20Editor%20Decision/Endogeneity.docx%23_bookmark29
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livestock-ownership (X4) measured in tropical livestock 

units (TLUs) as a proxy for wealth and asset 

endowments; Farm-labour (X5) measured in man-day-

units (MDUs) and it includes both family and hired 

workers disaggregated by gender and age; and lastly 

cereal sown farmland-area (X6) measured in hectares, it 

captures the total crop planted farmland-area. All values 

are aggregated per/at farm-household level; and 

monetary values are deflated using the appropriate price 

indices from official statistics, with 2004 the base year.  

2.3.2 Variables used to explain inefficiency 

Following Addo and Salhofer (2022) and Lien et al. 

(2018) approaches, for this paper two different set of 

variables were considered to assess inefficiency effects. 

The first set of variables include, time-varying (zit-

variables) which are likely to change over the observed 

period; in addition to dummy variables which were used 

to explain transient inefficiency. These include farmer-

specific characteristics, adaptation technologies, agro-

ecological and climatic factors.  

Next, to maintain the time-invariant features for 

factors explaining persistent inefficiency, the researcher 

took the means over time of time-varying variables 

(from the first set of determinants) and used with other 

dummy variables so that all factors are time-invariant. 

Hence, the second set of variables includes the time-

invariant (wi- variables) that are relatively stable over 

time factors and they were used to explain persistent 

inefficiency. 

2.3.3 Descriptive statistics of the study variables 

The statistical summary of the data used in the study 

are provided in Table 1 and Table 2. The output and 

input variables reveal that production and input usage 

had positive trends over time in the study area (Table 1). 

As is evident from the table, there was relatively little 

use of cultivated farmland which is typical of 

smallholders farming and considerable variations in the 

amount of fertilizers, agrochemicals, machinery and 

farm-labor usage pattern. For such production, the 

farmers have used on average 1.9 ha for grain crops 

cultivation. They used an average of 234 MDUs of 

labor, reflecting the fact that grain crop-farming is labor-

intensive in Ethiopia. Their inorganic fertilizers 

application was minimal with an average of 113.3 ETB 

per farm-household. Livestock-ownership, which is a 

proxy for wealth and asset endowments and used as a 

source of draft power, food, income, and energy for 

rural farm-households in Ethiopia, averaged to 7 TLUs.  

The variables used in the inefficiency effect model 

are given in Table 2. The statistics shows that majority 

of the farm-households were male-headed (71.4%). The 

number of plots cultivated by the farmers which is also 

used as a proxy to measure land-fragmentation among 

subsistent smallholders averaged 3.7 with a maximum 

of 21 plots. The two interaction variables: total farm-

size (interaction between area-cultivated and number of 

plots) and population pressure (the ratio of the size of 

productive household members to the cultivated land-

size) averaged 3.9 and 5.1, respectively. 

Education plays an important role in enhancing e 

utilization of farm inputs and in the willingness to adopt 

new technologies, hence it has a potential to improve 

farming efficiency. The data for this study shows that 

the farm head’s educational level varied over the years. 

59.25% had not attended any formal education; 42.5% 

of these had not attained informal school either, 3.64% 

had some religious learning and 13.1% had participated 

in adult literacy programs. 

Table 1: Summary statistics of variables used in the frontier function 

Stochastic Frontier  

Variables 

2004 2009 2015 All-waves 

Mean SD Mean SD Mean SD Mean SD Min Max 

Output value 2,225 2,711 12,457 12,492 27,498 22,278 14,718 18,355 107 133,127 

Inorganic-fertilizers 88.2 141.1 95.2 108.0 152.5 110.0 113.3 122.8 0.1 1400.0 

Agro-chemicals  23.7 77.2 126.7 506.0 324.8 682.3 165.9 520.2 0.0 8,560.0 

Farm-labor  263.0 285.6 176.2 227.8 266.5 251.3 233.7 257.5 30.0 2,546.0 

Machinery  41.9 301.8 873.9 3160.5 429.6 929.8 471.1 1,987.9 0.5 36,540.0 

Livestock units  4.5 4.0 7.8 6.5 8.3 7.8 7.0 6.6 0.0 58.8 

Planted-area 1.9 1.1 2.1 1.4 1.6 1.3 1.9 1.3 0.1 11.0 
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Table 2: Summary statistics of variables in inefficiency effect model 

Continuous Variables Mean SD Min Max Dummy Variables % 

Total farm size 3.90 5.00 0.10 61.00 Own an ox (at least one) 78.80 

Farm head’s age  51.60 15.20 17.00 103.00 Credit access 55.10 

Family-size 5.60 2.50 1.00 16.00 Farm head’s sex  71.40 

Farm head’s schooling 5.20 6.50 - 30.00 Soil-conservation 52.40 

Number of plots cultivated 3.70 2.60 1.00 21.00 Water-harvesting 20.50 

Distance to closest market center 9.40 7.00 0.30 24.00 Irrigation 29.20 

Population pressure 5.10 6.10 0.20 61.50 Off/non-farm activity 39.60 

Soil quality (index) 2.18 4.11 1.00 8.00 Agri. Ext. advisory service 34.80 

Annual average rainfall  72.10 16.00 47.50 120.00 Remittance 27.10 

Annual average temperature  18.30 3.60 13.20 24.00 Lowland AEZ 26.70 

Rainfall coefficient of variation 0.01 0.01 0.01 0.03 Midland AEZ  37.70 

Temperature Coeff. of variation 5.80 1.70 3.20 8.40 Highland AEZ 35.60 

AEZ is for agro-ecological zone

The remaining 41% had attended formal schooling 

ranging from primary to tertiary level; out of which 33 

% had completed primary school, 7% had completed 

secondary school and only 1% had completed tertiary 

school. 

Soil quality was proxies by an index as an indicator 

for the land-fertility using information on slope type and 

fertility of the plot cultivated by the farmers. The index 

was computed as combination of the values of the 

quality indicators of the slope type and fertility of the 

plots. The average soil quality index was 2.1, ranging 

from one to eight. As to the computational orientation 

of these indices, the closer the index to one, the higher 

the soil quality of the plot, while the closer the index to 

eight, the lower the soil quality. 

Extension participation was represented by extension 

visits per week/month in which the farmers reported 

contact with extension agents. However, a dummy 

variable was used, in which a value of 1 was assigned if 

the farmer got agricultural advisory services. 

Accordingly, a total of 34.8% of the farmers reported 

contact with extension agents seeking agricultural 

advisory service. Agricultural credit plays a crucial role 

in rural crop farming, as it enhances production 

efficiency and productivity if used appropriately, by 

filling the financial gaps of smallholder farmers. In this 

study, 55% of the sampled farmers had access to credit 

from different sources. 
 

3. Results and Discussion  

3.1. Stochastic production frontier parameters 

estimates 

The stochastic production frontier parameters were 

estimated, relying on a trans-log (TL) functional form 

with time trend. The input and output variables were 

scaled by their arithmetic means prior to transformation 

into logarithm values. The estimates of the production 

frontier and the bootstrap standard errors computed 

from the model specification are presented in Table 3. 

The result shows that all first-order parameters are 

significant at 1% level. Hence, an increase in the use of 

these inputs enhanced cereal production. The estimation 

has a strong fit with first-order parameters, all positive 

and values less than one, which satisfies monotonicity 

and diminishing marginal product conditions. 

Moreover, the log-likelihood and wald-χ2 estimates 

showed the results were significant. A number of 

second-order parameters are also significant. For 

example, the second-order parameter estimates are 

positively significant for the inorganic-fertilizer and 

agro-chemicals inputs.  
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Table 3: Parameters from the trans-log production frontier 

Variable  Parameter Estimate 
Bootstrap 

Std. Err. 
Variable  Parameter Estimate 

Bootstrap 

Std. Err. 

Constant β0 0.847** 0.838 ln(IF)∗ln(PA) β16 0.011 0.015 

ln(IF) β1 0.098* 0.071 ln(AC)∗ln(FL) β23 -0.002 0.006 

ln(AC) β2 0.043*** 0.039 ln(AC)∗ln(MI) β24 -0.007** 0.003 

ln(FL) β3 0.15 0.174 ln(AC)∗ln(LH) β25 0.002 0.005 

ln(MI) β4 0.008*** 0.070 ln(AC)∗ln(PA) β26 -0.011 0.009 

ln(LH) β5 0.15*** 0.113 ln(FL)∗ln(MI) β34 0.011* 0.007 

ln(PA) β6 0.925*** 0.222 ln(FL)∗ln(LH) β35 0.026** 0.014 

Mean_IF δ1 0.002*** 0.001 ln(FL)∗ln(PA) β36 -0.099*** 0.034 

Mean_AC δ2 0.013*** 0.011 ln(MI)∗ln(LH) β45 0.005 0.008 

Mean_FL δ3 0.001 0.001 ln(MI)∗ln(SA) β46 0.010 0.013 

Mean_MI δ4 0.001 0.001 ln(LH)∗ln(PA) βx56 -0.002 0.018 

Mean_LH δ5 0.005 0.009 Time∗ln(IF) β1t 0.031* 0.019 

Mean_PA δ6 -0.038*** 0.038 Time∗ln(AC) β2t -0.002 0.009 

ln2(IF) β11 0.023** 0.012 Time∗ln(FL) β3t -0.049 0.038 

ln2(AC) β22 0.017*** 0.007 Time∗ln(MI) β4t -0.019* 0.013 

ln2(FL) β33 -0.003 0.030 Time∗ln(LH) β5t 0.02 0.021 

ln2(MI) β44 0.008 0.012 Time∗ln(PA) β6t 0.009 0.054 

ln2(LH) β55 0.001 0.011 Time βt 3.558*** 0.417 

ln2(PA) β66 -0.11** 0.083 Time*Time βtt -0.766*** 0.125 

ln(IF)∗ln(AC) β12 0.001 0.003 Sigma_u σu 0.124 0.069 

ln(IF)∗ln(FL) β13 0.005 0.010 Sigma_v σv 0.683 0.032 

ln(IF)∗ln(MI) β14 -0.002 0.005     

ln(IF)∗ln(LH) β15 0.001 0.005 Log likelihood    -1081.85 Wald χ2 (41)      3410.32*** 

*, ** and *** indicate significance at the 0.10, 0.05 and 0.001 levels, respectively. Subscripts on β coefficients refer to 

inputs: where, 1 stands for inorganic-fertilizers (IF); 2 for agro-chemicals (AC); 3 for farm-labor (FL); 4 for machinery-

implement (MI); 5 for livestock-holding (LH); and 6 for planted-area (PA). 

  

Estimates of the time-trend and its squared term were 

significant at 1% level. The time-trend is positive, 

showing that the grain crop-farmers experienced 

technical progress for their grain crop production over 

the period, meaning that technology shifted outward. 

Elasticity with respect to cultivated land-area is found to 

be the largest, followed by that of inorganic-fertilizers; 

indicating that grain crop production in central 

highlands of Ethiopia is largely driven by productivity 

of land. This result is consistent with the findings of 

Addo and Salhofer (2022), Oumer et al. (2022) and Lien 

et al. (2018), which were similar studies on crop farms. 

The mean estimate of return to scale (RTS) is 0.64, 

suggesting the grain crop-farmers in the sample 

exhibited decreasing RTS. The 1.08 mean estimate of 

technical change (TC) reveals steady acceleration of TC 

which is progressive at an increasing rate. This may be 

a result of an increase in farming skills, improved input 

quality and skills in the use of modern inputs. These 

findings are quite similar to the TC estimates by 

Kumbhakar et al. (2014) and somewhat lower than those 

found by Lien et al. (2018) in Norwegian crop-

producing farms.  

3.2. Technical efficiency  

The technical efficiency score is presented in Table 

4. The model provides estimates of the persistent and 

transient efficiency components; from which the overall 

technical efficiency was obtained as their product for 

major grain crop-producing farmers in central highlands 

of Ethiopia. The distributions of both types of efficiency 

scores are close. Overall technical efficiency followed a 

similar pattern as transient efficiency in terms of 

dispersion, suggesting that efficiency gains are still 

possible for grain crop farms in the study area. 

Moreover, variability between persistent and transient 
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efficiency scores clearly demonstrated the existence of 

significant unobserved-heterogeneity in the sample and 

it should be considered in efficiency modeling and its 

specifications. Hence, it seems reasonable since the 

Mundlak specification accounts for unobserved farm-

heterogeneity, which is otherwise interpreted as 

persistent inefficiency. The efficiency estimation results 

of Table 4 shows that the persistent efficiency is 

relatively dense around the mean, while the transient 

efficiency scores are more dispersed, suggesting that 

transient inefficiency poses a greater problem for 

Ethiopian crop-producing farmers than the persistent 

component, suggesting priorities should be given to the 

interventions that reduce transient inefficiency. The 

efficiency result shows that significant number of farm-

household have scored a technical efficiency below the 

mean technical efficiency scores, which indicates that 

there was a lot of room for improvement using the 

present state of technology. 

Table 4: Distribution of efficiency scores 

Technical 

efficiency  
Mean Std. Dev. Min Max 

Transient  0.729 0.121 0.048 0.948 

Persistent  0.788 0.071 0.471 0.921 

Overall  0.575 0.110 0.030 0.832 

3.3. Inefficiency effect  

The result concerning the sources of transient and 

persistent inefficiency are presented in Table 5. The data 

was checked for the existence of multicollinearity in the 

hypothesized explanatory variables before estimation 

and the results confirmed that there was no 

multicollinearity problem. Regarding the effect of the 

explanatory variables, a negative sign implies decreases 

in the variance of the inefficiency function and, thus, it 

reveals a positive relationship with efficiency and vice 

versa. That is, a positive coefficient suggests, an 

increase in inefficiency if the corresponding variable 

increases and by contrast, a negative coefficient implies 

that an increase in the factor is in favorable for 

efficiency. From Table 5, transient inefficiency was 

negatively and significantly influenced by the farm 

head’s sex, family size, owing oxen, number of plots, 

land fertility and rainfall, indicating that the variables 

lead to increase in transient efficiency. However, 

transient inefficiency was positively and significantly 

related to age and educational level of the farm-head, 

and annual temperature variations. Hence, an increase in 

the factors reduced transient efficiency ceteris paribus.  

The result on persistent inefficiency shows that 

factors such as having oxen, land quality and mean of 

time-variant factors, such as total farm-size, population 

pressure, average annual rainfall and distance to the 

market center, influenced negatively and significantly 

persistent inefficiency. Hence, an increase in these 

factors raises persistent efficiency ceteris paribus. On 

the other hand, the opposite is true for the age and 

educational level of the farm-head as these variables 

were positively and significantly related to persistent 

inefficiency. Most of the farmer-specific variables have 

significantly affected technical efficiency. 

More specifically, age of farm-head is the proxy for 

the experience of the head in farming is expected to 

affect efficiency positively; however, an adverse effect 

is plausible if older farmers are unable to adapt to new 

and improved production technologies, or make less 

effort in the years before they retire (Madau, 2011). 

Considering the possible tradeoffs between the two 

contrasting effects, literature accounts for the possibility 

of mixed results, for instance negative by Wadud and 

White (2000), but positive by Assefa et al. (2019). For 

this study, age of the farm-head found to have a positive 

significant effect on both persistent and transient 

inefficiency. This indicates that as farmers get older, the 

more they become inefficient both persistently and 

transiently than their younger counterparts in grain crop-

farming. That is, young farmers are becoming relatively 

more efficient over time by improving learning-by-

doing, but this would continue until the relationship 

levelled off and it is expected to decline as the farmer 

gets older. This supports the argument that farmers 

become less efficient as they get much older; older 

farmers are less willing to adopt new practices and 

modern inputs, and they are more risk averse than young 

farmers. This result is supported by the result of the 

descriptive summary, as age of the farmers was between 

17 and 103 years, with a mean of 52 years, indicating 

that the farm-heads were relatively old during the study 

period, a condition that might affect both inefficiency 

components negatively. The finding is consistent with 

results of similar studies (Talie et al., 2019; Anbes, 

2020).  
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Table 5: Parameters of inefficiency factors 

Transient inefficiency factor Coef. Std. Err. Persistent inefficiency factor Coef. Std. Err. 

Farm head’s sex  -0.304* 0.201 Farm head’s sex  -0.018 0.179 

Farm head’s age 0.014** 0.006 Farm head’s age, mean 0.020*** 0.007 

Family size -0.077** 0.041 Family size, mean -0.039 0.054 

Farm head’s Educ. 0.032** 0.013 Farm head’s educ., mean 0.066*** 0.018 

Marital status -0.053 0.056 Marital status 0.055 0.046 

Number of plots -0.094* 0.060 Number of plots, mean 0.045 0.065 

Total farm size -0.009 0.036 Total farm size, mean -0.063* 0.035 

Population pressure 0.001 0.017 Population pressure, mean -0.206*** 0.042 

Soil quality index  -172*** 0.043 Soil quality index -.232*** 0.045 

Credit use -0.166 0.181 Credit use -0.151 0.160 

Own ox  -0.574*** 0.210 Own ox  -0.303* 0.196 

Soil-conservation -0.126 0.174 Soil-conservation -0.009 0.157 

Water-harvesting -0.237 0.212 Water-harvesting -0.251 0.197 

Irrigation  -0.120 0.252 Irrigation  -0.299 0.213 

Remittance -0.289 0.229 Remittance 0.216 0.165 

Off-farm work 0.257 0.188 Off-farm work 0.026 0.160 

Advisory services -0.058 0.183 Advisory services -0.064 0.155 

Distance to market center -0.025 0.021 Distance to market center -0.041** 0.020 

Time  -0.009 0.124 Time, mean 0.509 0.947 

Av. annual rainfall -0.014** 0.006 Av. annual rainfall, mean -0.025*** 0.008 

Av. annual temp 0.001 0.024 Av. annual temperature, mean -0.014 0.034 

RF coef. of variations -16.593 21.746 RF coef. of variations, mean -7.915 55.846 

Temp. coef. of variations 0.221*** 0.081 Temp. coef. of variations, mean 0.108 0.476 

Midland AEZ -0.618 0.476 Midland AEZ -0.308 0.239 

Highland AEZ  -1.058 0.848 Highland AEZ - - 

Constant  -1.638*** 0.090 Constant -1.837*** 0.132 

Log likelihood = -804.96731 Wald χ2  62.31*** Log likelihood = -461.50518 Wald χ2  208.29*** 

*, ** and *** are at p < 0.05, p < 0.01 and p < 0.001, respectively.  

AEZ, Av., coef., RF and temp., refer to agro-ecological zone, average, coefficient, rainfall, temperature, respectively. 
 

On the other hand, the farm-head’s education is one 

of the factors that studies frequently relates to farming 

efficiency, despite the empirical evidence reveals mixed 

results. Some of the studies, such as Bamlaku et al. 

(2009) argued that education is associated with efficient 

management of production systems and hence higher 

farming efficiency levels. In contrast, others argued that 

when a farmer gets access to better education, he or she 

may get better opportunities outside the farm sector to 

pursue other income earning activities, hence resulted in 

negative effect to farming efficiency (Ogada et al., 

2014). Contrarily, Temesgen and Ayalneh (2005) 

argued that in developing countries education do not has 

clear effect on performance of the agricultural 

production. For this study, the empirical result shows 

the level of education of the farm-head to have a positive 

significant effect on both transient and persistent 

inefficiency. It shows that higher levels education has 

adverse effect on farming efficiency, showing farmers 

who have higher levels of education tend to be less 

efficient in grain crop production. This likely reflects 

that farming might be seen a secondary occupation for 

those with higher level of education. Education 

increases the likelihood of non-farm employments as 

some level of education gives the skill to create and 

better manage some small businesses (Ogada et al., 

2014).   

With respect to the effect of household’s family-size 

on crop farming efficiency, the result shows 

household’s family-size has showed negative and 
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significant effect on transient inefficiency. This implies 

that the more the number of economically active 

members in the household’s family the more the 

transient efficiency in crop-farming. Consequently, 

households with less family-size are less efficient 

compared with larger sized households. The possible 

reason for this may be that large household’s size 

enhances the availability of labor which may guarantee 

increased efficiency. The result confirms the importance 

of family labor as a critical input in rural farming, 

specifically, at the peak farming cycle such as 

preparation, planting and harvesting time during which 

the farmer faces the labor bottlenecks. Assefa et al. 

(2019) reported similar result; whereas Essa et al. (2012) 

and Anbes (2020) stated the opposite.  

The variable number of plots cultivated by the 

farmers (included as a proxy to access effect of 

farmland-fragmentation on farm inefficiency) was 

negatively and significantly associated with transient 

inefficiency, suggesting that farmers cultivating on 

more number of plots are technically efficient as 

compared to those cultivating on less number of plots. 

For a given area of cultivated land, the more the 

number of plots is the greater the farm load and 

resource constraint to disbursed all the plots, thus 

increasing technical inefficiency. This positive 

productivity effect may represent the reduced risk that 

different plots provide if the plots are sufficiently far 

apart and disbursed, such that farmers face different 

degrees of weather-induced output variations 

(production loss due to risks related to weather, pests 

and diseases) and soil fertility on the different plots. 

Moreover, the result can be explained in terms of access 

to farm-land and that farmers with more plots are likely 

to adopt innovations because they may be willing and 

able to bear more risks than their counterparts and may 

have preferential access to farm inputs and this will 

enable them to improve the level of their transient 

efficiency. Anbes (2020) and Assefa et al. (2019) 

reported similar results.  

Considering the variable total farm-size under grain 

crop cultivation - created by multiplying the number of 

plots that farmers cultivate with cultivated farmland-

area - encompassed as a proxy to access the effect of 

farm-size (scale) on farm efficiency, there is a negative 

effect of total farm-size on both inefficiency 

components. This reflects the positive effects of 

economies of scale on efficiency, implying large farms 

are more technically efficient than small farms. In 

particular, the result shows positive influence of total 

farm-size on persistent efficiency. Large scale farms 

decrease persistent inefficiency relative to small scale 

farms. This is in line with the findings of Addo and 

Salhofer (2022) and Anbes (2020).  

Another interaction variable, population pressure, 

which is the ratio of number of economically active 

family members (older than 14 years) in the household 

to the cultivated farmland area, was used to investigate 

the claim overcrowded agricultural land holdings 

favorably affect efficiency. In this study, it is found that 

population pressure is influenced persistent inefficiency 

negatively and significantly, implying a desirable effect 

on persistent efficiency. The result implies that for a 

given amount of family farm-labor, increase in the size 

of cultivated-land leads to increase in persistent 

efficiency; households that have lesser land per 

household member are less efficient. Considering the 

small average farm size of Ethiopian farms, one would 

expect that increasing farm size would improve 

technical efficiency through reduced management costs 

and increased flexibility in the use of other inputs 

(Endrias et al., 2013; Tipi et al., 2009).  

The result indicates that an average land quality 

index proxy used to control soil fertility of the plots had 

a negative significant impact on both transient and 

persistent inefficiency. Farmers operating on more 

fertile plots perform significantly better than their 

counterparts, thereby strengthening the fact that 

improvement in soil fertility is a decisive element in 

increasing farm efficiency (Anbes, 2020; Zhang et al., 

2016). Thus, improving soil quality of arable land 

through improved farm-land management technologies 

is necessary. Not only the quantity of land but also its 

quality is crucial to increasing productivity and 

efficiency. The result also showed that possessing an ox 

or oxen, which is used as animal draft power for farming 

activity, has a positive and significant effect on both 

transient and persistent inefficiency. It reveals oxen are 

important factor as the major source of traction power 

in Ethiopia crop farming and indicating lack of it as a 

major constraint to crop-farming efficiency (Bamlak et 

al., 2009 and Oumer et al., 2022).  

https://www.mdpi.com/2227-7099/8/2/34#B51-economies-08-00034
https://www.mdpi.com/2227-7099/8/2/34#B28-economies-08-00034
https://www.mdpi.com/2227-7099/8/2/34#B66-economies-08-00034
file:///C:/Users/Admin/Desktop/Article%20to%20be%20submitted%20to%20EJSSD/Endogeneity%20for%20ASTU.docx%23_bookmark82
file:///C:/Users/Admin/Desktop/Article%20to%20be%20submitted%20to%20EJSSD/Endogeneity%20for%20ASTU.docx%23_bookmark82
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The amount of average annual rainfall also affect 

both transient and persistent inefficiencies significantly 

and negatively. Rainfall enhances crop production as it 

improves the soil moisture content and enables it to use 

the fertilizers and other inputs effectively, hence 

enhancing both transient and persistent efficiencies. The 

result indicates the extent to which subsistence farmers 

relies on rainfall and it explains why crop production in 

Ethiopia is sensitive to variation in the amount of 

rainfall. Similar results were reported by Addo and 

Salhofer (2022) and the result is also in line with studies 

that examined farm efficiency based on classical 

inefficiency effects models, without distinguishing 

between transient and persistent efficiency (Bamlak et 

al., 2009; Madau, 2011).  

On the other hand, a considerable deviation from the 

optimal average value of the extreme quantity, that is, 

its variability, as represented by temperature coefficient 

of variation has significant positive effect on crop-

farming transient inefficiency. When temperature 

diverged from its average value, both upward and 

downward, the level of transient efficiency significantly 

diminished (Ogada et al., 2014). On the other hand, the 

result reveled that distance to market centers has 

negative significant effect on persistent inefficiency. 

The farmers who are closer to the market centers may 

increase the non-farm employment opportunities with 

higher returns than from farming, leading them to 

reallocate their labor and time from farm to non-farm 

activities, tends to be less efficient. Thus, proximity to 

market places diverts farmers from crop-farming 

activity, due to better access to alternative employment 

opportunities. Similar results were reported by Agerie et 

al. (2019) and Tamirat et al. (2020); while, the result of 

the study by Mesfin et al. (2021) was opposite. 

4. Conclusion and Recommendations 

This study estimates persistent and transient 

inefficiencies separated from farm-heterogeneity and 

endogeneity for major grain crop-producing farmers in 

central highlands of Ethiopia. Mundlak–adjusted 

generalized true random effect – four error components 

stochastic frontier panel data model was used to 

disentangle farm-heterogeneity and endogeneity from 

farm inefficiency while estimating persistent and 

transient inefficiencies and also their determinants. The 

study applied modified multi-step procedure in 

estimating the Mundlak-adjusted GTRE–4eCSF model 

using an unbalanced panel data of 1,043 observations 

from 367 farm-households in two major grain crop-

producing regions in central highlands of Ethiopia 

observed over the period 2004 – 2015.  

The study extended the earlier version of 4eCSF 

model to address farm-heterogeneity problem and to 

explain technical inefficiencies. The model was 

extended in three ways: (1) Mundlak–adjustment was 

made to the random effects specification to account for 

unobserved time-invariant farm-heterogeneity which is 

correlated to the random error; (2) factors explaining 

inefficiencies in the Mundlak–adjusted were included in 

GTRE–4eCSF model to accommodate the determinants 

of persistent and transient inefficiencies, assuming the 

variances of time-invariant and time-variant 

inefficiencies are conditioned by a set of determinants 

and (3) the potential endogeneity from different sources 

applying a multi-step estimation were addressed by 

applying non-linear GMM estimator.  

The estimated mean transient, persistent and overall 

efficiency scores were 73, 79 and 58 %, respectively. 

The efficiency result shows that significant number of 

farm-household have scored a technical efficiency 

below the mean scores, which indicates that there was a 

lot of room for improvement using the present state of 

technology. Empirical result from the inefficiency effect 

model shows that transient inefficiency was negatively 

significantly affected by the household’s family size, 

farm head’s sex, number of plots, owing oxen, land 

fertility and average annual rainfall, indicating a unit 

enhancement in these factors raises the transient 

efficiency, ceteris paribus. The transient inefficiency 

was influenced positively and significantly by age and 

educational level of the farm head, and annual 

temperature variations. On the other hand, the empirical 

results show that factors such as having oxen and total 

farm size, population pressure, land fertility, average 

annual rainfall and distance to the market center 

influenced negatively and significantly persistent 

inefficiency; which means that a unit increase in these 

variables could increase the persistent efficiency level 

by the same unit. The opposite is true for age and mean 

educational level of the farm head as these variables 

were influenced positively and significantly persistent 
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inefficiency. The findings exhibit a low overall 

technical efficiency of Ethiopian grain crop-farmers is 

mainly due to the transient part; however, the persistent 

inefficiency is still substantial.  

Hence, these findings are important to initiate 

government policy options to reduce inefficiency 

focusing on factors affecting the long-run and short-run 

inefficiencies distinctly. The current low level of 

efficiency can be addressed by facilitating farmers’ 

access to more arable-land, and modern farming tools 

and machinery, creating targeted support programs for 

female farmers, improving technologies that promote 

soil-fertility and reduce weather adverse effects in 

central highlands of Ethiopia. Hence, with food security 

implications, the study recommends policies that could 

advance improved technologies for soil and land 

management, by investing in research and development 

of technologies that enhance them. It is important to 

implement targeted initiatives that provide support for 

female farmers to enhance their participation in 

agricultural decision-making and production, and to 

encourage the adoption of agro-ecological practices that 

are resilient to climate change impacts while promoting 

the use of climate-smart agriculture practices that 

mitigate adverse weather effects. By focusing on these 

interconnected strategies, Ethiopia can significantly 

enhance the efficiency of its crop-farming sector, 

leading to improved livelihoods for farmers, better food 

security, and greater economic growth. Generally, the 

outputs of this study may also have policy implication 

for the other developing nations, to make clear the 

factors of crop-farming technical inefficiencies and 

possibly help them devise strategies that can contribute 

to the betterment of their national agricultural 

production efficiency.  
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