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ABSTRACT

The fully developed mixed convection of couple stress fluid in a vertical channel in the presence of heat
generation or absorption is analyzed. The two boundaries of the channel are considered as isothermal-
isothermal, isoflux-isothermal and isothermal-isoflux for the left and right walls and kept either at equal
or at different temperatures. The governing momentum and energy equations are coupled and non linear
due to the viscous effects. The velocity field and the temperature field is obtained by perturbation series
method which employs a perturbation parameter proportional to the Brinkman number. In addition, closed
form expressions for reversal flow conditions at both the left-right channel walls are derived. The results
are represented graphically for different values of perturbation parameter and couple stress parameter on
velocity and temperature distributions. We observe that for purely viscous fluid the flow reversal was at
the hot wall whereas for couple stress fluid there is a flow reversal both at left and right walls. The effect of
the perturbation parameter on the flow for couple stress fluid is dominating compare to viscous fluid both on
velocity and temperature. The profiles of temperature are significant for couple stress fluid for different values
of perturbation parameter whereas the profiles were not sensible for same values for viscous fluid.
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Studies on natural convection in a vertical channel
INTRODUCTION

with non-Newtonian fluid are relatively sparse

The study of non-Newtonian fluids has received much compared to the problem with Newtonian fluid.

attention due to their many practical applications in
medical sciences, engineering and technology, such
as liquid crystals, fluid film lubrication etc. In the
category of non-Newtonian fluids, couple stress fluid
has distinct features such as polar effects in addition
to possessing large viscosity. The consideration of
couple stress in addition to Cauchy stress has led to
the recent development of several theories of fluid

micro-continua.

The effect of couple stresses on peristaltic transport
has been carried out by (Srivstava, 1986) and
(Shehaway and Mecheimer, 1994). However,

the natural convection flow and heat transfer in a
vertical channel with couple stress fluid has not
been studied so far even though the couple stress
fluid is one of the simple and interesting models

of fluid belonging to the class of non-Newtonian
fluids. The theory of (Stokes, 1966) is simplest

generalization of the classical theory of fluids,
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which allows for polar effects such as the presence
of a non-Newtonian symmetric stress tensor, couple
stresses and body couples. Couple stresses may

appear in the flow of liquids that contain additives.

The couple stress fluid model has wide applications
in bio-fluids, colloidal fluids and in engineering for
pumping fluids such as synthetic lubricants. Studies
on natural convection in a vertical channel with non-
Newtonian fluid are relatively sparse compared to
the problem with Newtonian fluid. Malashetty and
Umavathi (1999) analyzed the effects of couple
stresses on free convective flow in a vertical channel
and Umavathi (2000) analyzed the free convection
flow of electrically conducting couple stress fluid
in a vertical channel. Umavathi et al. (2004) also
carried out the convective flow of two immiscible
viscous and couple stress fluids through a vertical

channel in the absence of viscous dissipation.

The theoretical investigations on fully developed
mixed convection in vertical or inclined ducts are
often devoted to a description of the changes on the
velocity profiles induced by buoyancy as well as to
the determination of the conditions for the onset of
flow reversal. Indeed, the flow reversal phenomenon
arises when buoyancy forces are so strong that there
exists a domain within the duct where the local fluid
velocity has a direction opposite to the mean fluid
flow. Theoretical investigations have been devoted
to the analysis of the interplay between the effect

of viscous dissipation and the effect of buoyancy

forces. Barletta (1986; 1998; 1999, 1999a, 2002)
investigated the heat transfer in vertical channel
flow under various flow and boundary conditions
like presence of prescribed wall heat flux (Aung
and Worku, 1986) , mixed convection with viscous
dissipation (Aung and Worku, 1988; Barletta,
1988, Srivastava ,1988), when the boundaries are
isothermal-isoflux (Barletta,1999), again with the
inclusion of viscous dissipation and fully developed
mixed convection with flow reversal in rectangular
duct with uniform wall heat flux (Barletta , 2002).

Cheng et al. (1990) reported flow reversal and heat
transfer of fully developed mixed convection in
vertical channels. (Lavine, 1988) studied the fully
developed opposing mixed convection between
inclined parallel plates. Hamadah and Writz (1991)
discussed the laminar fully developed mixed
convection in a vertical channel with opposing
buoyancy force. In most of the industrial applications
we see that the working fluid is non-Newtonian in
nature in various applications and much work has
not been found in the literature on mixed convection
flows. Hence, the present objective is to study the
problem of mixed convection couple stress fluid in
a vertical channel in the presence of heat generation

or heat absorption.

MATHEMATICAL FORMULATION

Consider steady, laminar, fully developed flow in a
parallel plate vertical channel.

Cartesian coordinate system is chosen with the

transverse coordinate Y and the coordinate in the
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direction parallel to the walls is X. The origin of the axes is such that the channel walls are at position Y=-
L/2 and Y=L/2. The thermal conductivity, the dynamic viscosity and the thermal expansion coefficient

are considered as constant.

_,

The condition of fully developed flow implies that ( e

oV
Then, since the velocity field U is solenoid , one obtains Gy’ =°.

As a consequence, the velocity V is constant in any channel section and is equal to zero at the channel
walls, so that V must be vanishing at any position.

The oberbeck-Boussinesq approximation is assumed to hold good for the evaluation of the
gravitational body force, which is typical in this type of buoyancy driven flows in which the density will



52 S. Narasimha Murthy

depend on temperature according to the equation of state

p=p,(1-8(T-T,)) (1)

The momentum balance equation for couple stress fluid is Stokes (1966).

I 0P ud’U nd'U_

0 (2

The Y-momentum balance equation can be expressed as

oP
“ oo 3
pe 3)

where P=p + p,g X is the difference between the pressure and the hydrostatic pressure. The temperature
is7T,, at the left wallY =—L/2 and the temperature is 7,, at the right wall v= 1 /» with7, >7,. These
conditions are compatible with equation (2) only when # /& is independent of X . Hence, there exists a

constant A4 such that,

o A 4)

Solving the equations (2) and (4), we obtain

aT _,
oX

9

)

which implies that the temperature also depends on Y. By considering the effects of viscous
dissipation, along with heat generation or absorption, the energy balance equation relevant to the present

situation is

T p (@Y, OT-T,)_,
“¥ cl\a )~ pcCc
Po L, P, (6)

Simplifying the equations (2) and (6) allow one to obtain a non-linear differential equation for U , in the form

‘”_U:(ﬁ;gjd“UMQ °U_upfs [w_j}@

¥ \np KJr' Knad* Kp \d) Ku
(7)
The boundary conditions on U are both the no slip conditions
2
Ay @®)

¥ 2
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y 4 77 77
d4U=_£+w atY:£ (9)
y 4 77 77 2

The following quantities are employed for writing equations (6) to (9) in the dimensionless form:

T-T, Y AT D’
=Ly gD g 8PATD 6
U, AT 1% R
T,-T U,D u,’ ?
=g Ul Vg M L (10)
AT 14 a KAT K
n 2 1 ) .
k= ——: @a =; , where D=2L, is the hydraulic
parameter. “D

The reference velocity U, and the reference temperature 7} are,

2
v --2_. ¢ L*L
8 u 2
The temperature difference AT is given by
AT =T, -1, ifT,<T, or by

(11)

2

AT =Y ifT, =T (12)
2 1 2
The dimensiofde& form of equations (6) to (9) are as follows,
d’ 6 du
=B | "= | Tg0 (13)
dy dy
6 4 2 2
; il:(a2$¢):; Tia’ ; ?—/IBra{;—J <8 pa’ (14)
2
u=d’;‘=0aty:iri (15)
d 4
d4u=8 2 R Aa’ ot
a’ 2 =14,
4 R 2
; -8 a’+ A y= 14, (16)

Temperature field can also be obtained while substituting equations (10) and (11) in momentum equation (2)



54 S. Narasimha Murthy

one obtains,
2 4
9=—%[8 +; z‘—iz; i‘j . (17)
a

Equation (14) is highly nonlinear through viscous dissipation term. If the viscous dissipation is

negligible so that B = 0, the dimensionless temperature # and dimensionless velocity u are uncoupled. In

this case, the solution of equation (14) by applying the boundary conditions (15) and (16) becomes

2R, S .
u—3 & _8_2(1 - Coshay ]"‘ Ry [a m\/_y Sinhay ]for the case of heat
gene%atlongémd a Cosha/4) 2(a’ +¢) ¢Sln\/_ /4 Smha/ 4 (18)
= £+ 2R, A _7 2 _8_[1_ Coshay J_I_ AR, 2Sznh\/_y Sinhay
2 (199 g a’\" Coshal4) 2a’ —¢)| ¢Sinh\Jp /4 " Sinha /4

for the case of heat absorption.
The corresponding temperature field for these two cases can be obtained by substituting the expressions (18)
and (19) in equation (17).

2 Sin\/g/4
Q_R_ Sinh\/_y 1)

In the gbse%}é couple stress parameter i.e. a =0 the velocity field becomes,

u_i_g ZARE_ Sin\/_y] (22)

Yy
for the case %f heat generaﬁon nd 4S’"\/_ /4

Sinh
u=3_g y 2N Ly g ] 23)
nd {Sinhyg 14

In the absence of couple stress parameter a and the heat generation or absorption coefficient¢, the

2
for the case of heat absorpgon, re field is similar to the above expressions (20) and (21).

velocity and temperature fields reduces to,

A 2
u:E{Rg V42 j[ﬁi—yj (24)

0=2R.y (25)
which corresponds to the velocity and temperature fields determined by (Aung and Worku, 1986).

In the case of asymmetric heating, when buoyancy forces are dominated i.e.,

when 4 — + o0, equations (18) and (19) for the cases of heat generation or absorption gives

1 (Smhay a’ Sin\/Ey j (26)

u 2
72 67 2 + )| Sinha/4 ¢ 4Sin g /4
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u 1 Sinhay  a’ Sinh\/gy
N - (27)

2

-yt .

¢°  2a’ —¢)\ Sinhal4 ¢ 4Sinh[p /4

In the absence of couple stress parameter the above equations become,

z_z(y _Sinyf$y_ J (28)

A ¢\ 4Sindpi4
u _ 3( - MJ (29)
A ¢\" 4Sinh\p /4

In the absence of source and sink, the above equations for clear viscous fluid reduces to
u_y(1 2
Rl A 30
175 ( 5 7 ) (30)
which is Batchelor’s velocity field for free convection (Batchelor, 1954).

When buoyancy forces are negligible and viscous dissipation is relevant, i.e. 4 =0, so that a purely
forced convection occurs. For this condition, the solutions of velocity and temperature are obtained from
equations (13) and (14) as,

3 , 8 Coshay
u=——424y ——|1-———— 31
2 d az( Cosha/4j G
0= ClCos\/gy + CZSin\/Ey +1,Cosh2a +1,Coshay +[;Sinhay + (32)
1y’ +1,
where,
_ 1152B o 9216B o 4608B
! a’(4a’ + ¢)Cosh’ P, T (a’ + @)’ CoshP, T a(a’ + $)CoshP,
2304B 4608 B 2304B
- ) 15 = 2 t- 50 2T 5o
¢ @ 2a ¢ Cosh” P, 28i
L o L
- [,CoshP; +1,CoshP, +—=SinhP, + —
CosP, 4 o
for the case of heat generation and
0= CICosh\/Ey + CZSinh\/gy +1,Cosh2a +1,Coshay +[;Sinhay + (33) where,
1,y° +1,
3 1152B B 9216B / 4608 B

! a’(4a’ — $)Cosh’ P, ? (a’ — @)’ CoshP, ? a(a’ — ¢)CoshP,
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- @ $ b° az2¢C0ShZP]’b2
1 l; l
C, =——— | [,CoshP, +1,CoshP, + = SinhP, + —+1,
CoshP, 4 )

for the case of heat absorption.
Solutions of equations (13) and (14) for clear viscous fluid in the absence of buoyancy force, viscous

dissipation and source and sink leads to the Hagen-Poiseuille velocity profile

1
(e
b (34)

and temperature profile is given by

0=-192 B y’ +2RTy+3i
! (35)
which agree with the results obtained by (Cheng and Wu, 1976) in the case of forced convection with

asymmetric heating.

Solutions

The solution of nonlinear differential equation (13) can be simplified by employing a perturbation technique

BgD
C

p

e=B A=R P

(36)
The temperature field is obtained in terms of velocity from the equation(17). The solution of equation
(14) using (36) is.

u(y)=u,(v)+e u,(y)+e” u, (p)+ oo =2.e"u,(y) (37)

The second and higher order terms of ¢ give a correction to u, ¢, accounting for the viscous dissipation
effect.

Isothermal-isothermal (7, —7, ) walls
In this case both the walls are maintained at different temperatures.

Substituting equation (37) in equation (14) and equating the coefficients of like powers of & to zero; one

obtains the boundary value problem for n =0 and n =1 as,

d’u
+ 0 +8 da’ 38
'E 'E da (38)

4 4 2 2
U (2 5g) s 2Tt —az(d 0} (39)
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for the case of heat generation and absorption respectively. The boundary conditions of u,and u, by using
the equation (37) simplify to

dZ
u,):ﬂuZO:Oatsz_r—
d’ R Aa’
1/30:8 2 _ T2 aty:_—
d’ R.Aa’
ﬂ”ff:g @’ + T2a atyzé (40)
du, d*
AL (41)
d d 4

Equation (38) is ordinary linear differential equation and hence the exact solution can be solved easily. The
solution of equation (38) obviously coincides with the solution of equation (14) in the case of B =0.

Evaluation of the exact solution for n = 2 becomes tedious and hence neglecting the terms for n = 2, zeroth
and first order solutions are

u,=C,+C,y-12 y’ +C3C0Shay+C4Sinhay+C5C0s\/gy+

(42)
C; Sin\/g y
for the case of heat generation and
u,=C,+C,y—2 y’ +C,Coshay + C,Sinhay + C5C0Sh\/5y + 43)

C, Sinh\Jpy

for the case of heat absorption. The solution of equation (39) by using the equation (41) forn =1 is

u,=C,+Cyy+C,Coshay + C, Sinhay + C, Cos\/ger C, Sin\/ger
[,Cosh2a + IZCOSZ\/E)/ +1,Sinh2a + l4Sin2\/Ey +1,Coshay
Cos\/gy + I6SinhaySin\/5y + l7CoshaySin\/gy + 1, Sinhay
Cos\/gy +1,yCoshay +1, ySinhay +1, y’Coshay +1, y’Sinhay

+1, yZCos\/gy+l, yZSin\/gy+lf yCos\/Ey+lﬁ ySin\/gy
+1, vy + 1y +1, 7

(44)

for the case of heat generation and
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u,=C,+Cyy+C,Coshay + C, Sinhay + C, Cosh\/gerC}_, Sinh\/gyvL
[,Cosh2u +12C0sh2\/5y+l3Sinh2y +l4Sinh2\/Ey+15Coshay

Cosh\/gy + Z6SinhaySinh\/gy + l7C0shaySinh\/5y + 1, Sinhay

Coshy¢y +1,yCoshay + 1, ySinhay +1, y’Coshay +1, y°Sinhay
9 0 1 2

+1, yZCosh\/E)H—ll yZSinh\/EerlJ, yCosh\/Eerlﬁ ySinh\/Ey
+1, vy +1, vy’ +1, y’

(45)

for the case of heat absorption. The dimensionless temperature field is obtained from equation (17) considering

velocity fields defined as in equations (42) to (46) is

>~

P,¢(C;Cosy[gy + C,Sin[py) +

_P5¢(C, COS\/Ey +C, Sin\/gy) +2 a’(l,Cosh2a +1,Sinh2a )
+ P, (Z4Sin2\/$y +1, COSZ\/Zy) + P, CoshayCos\/Zy
+ P8SinhaySin\/$y + P9C0shayCos\/Ey + P, SinhayCos\/Ey

+ P yZSin\/EerP, yCos\/gerPg ySin\/EyﬁLP, Cos\/gy+PB

[
Sin\/gy+2 aL2+2 I, y’ +6l, y+2I,

for the case of heat generation and

> |~

P,¢(C,Cosh\[py) + C,Sinh\[py) +
_P5¢(C, Cosh\/gy +C, Sinh\/gy) +2 a’(I,Cosh2a +1,Sinh2a )
+ P (l4Sinh2\/Ey +1, CoshZ\/Ey) + P, CoshayCosh\/Ey
+ PSSinhaySinh\/Ey + P9C0shayC0sh\/Zy + P, SinhayCosh\/Zy
+ P, yCoshay + P, ySinhay + P, Coshay + P, Sinhay + P, yZCOSh\/Zy
+ P yzSinh\/gy + P, yCosh\/gy + P, ySinh\/Ey + P, Cosh\/gy + P,

I
SinhyJ¢y + 2 a%%—l I, y> +6l, y+2l,

+ P, yCoshay + P, ySinhay + P; Coshay + P, Sinhay + P; yZCOS\/gy

(46)

(47)
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or the case of heat absorption.

Isoflux-isothermal (g, — T, ) walls
In this case the left wall is maintained with a constant heat flux and the right wall is at a uniform
temperature. The thermal boundary condition for the channel walls can be written in the dimensional form

as

ad L
=—-K—atYy =——
q, e 2

T=T, atY:% (48)

It is convenient to non-dimensional the thermal boundary conditions by employing the equation (10) with

AT =q,D/K to give

do 1
—=-1 aty =——
7 4
1
0 =R, aty = 7 (49) where

R, =(T,—T,)/ AT is the thermal ratio parameter. Differentiating the equation (2) with respect toY", we get

the boundary condition of velocity field in dimensional form as,

dSU_QdSUJr,BgE_
¥’ uwua’> v d

=0 (50)

Equation (50) is non-dimensional zed by applying the equation. (10) to give

d’u

5
ﬂ3 d”+/1ﬁ:

d’ d

1
)

0 (51)

Evaluating the equation (51) at the left wall (y = —1/4) yields

3 5
d? %dil:/l at y:—l. (52)
g° a g 4

The other boundary condition at the right wall can be shown to be the same as that given for the

isothermal-isothermal case with R, replaced by R, such that

aty = — 53
y=7 (53)

The integrating constants in equations (42) to (47)are obtained using boundary conditions (52), (53) along
with (40) and (41).

Isothermal-isoflux (7, — g, ) walls
Here, the left wall is kept at a uniform temperature while the right wall is maintained at a uniform heat flux.

The thermal boundary condition for the channel walls can be written in the dimensional form as,
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d Y
=—K—atY =—
q, J P
T=T, atY=—§ (54)
The dimensionless form of the equation (54) can be obtained by using the equation (10) with AT =¢,D/K
to give
49 =—]aty= 1
o 4
1
9=Rq aty:—z (55)

where R, =(T,—T,)/ AT is the thermal ratio parameter for the isothermal-isoflux case. Similar to the
procedure done in the previous case on isoflux-isothermal walls, the dimensionless form of the boundary
conditions obtained from equation (2) and applying equation (55) can be written as

d’u 1d u

1

3 s——=4 a Y=-

i a ¥ 4
The other boundary condition at the right wall can be shown to be the same as that given for the

(56)

isothermal-isothermal case with R, replaced by R, such that

(57)

Using these boundary conditions, the integrating constants are obtained from equations (43) to (46) and (52)

up to 0(81 )

RESULTS AND DISCUSSION

The theory of couple stress fluid due to Stokes is used to formulate a set of boundary layer equations for a
flow of incompressible, couple stress fluid in a vertical channel for mixed convection. Analytical solutions
are obtained using perturbation technique valid for small value of ¢ . Figures 1 and 2 show the effect of & for
A =%£500. When the flow is upward, & and A are positive and on the other hand, the flow is downward when
the & and A are negative. It is very interesting to note that there is a flow reversal at both the boundaries for 4
positive, which is different from the result for viscous fluid where there is a flow reversal for positive 4 only
at cool wall. The phenomena of flow reversal is typical in buoyancy driven flows We observe that for purely
viscous fluid for 4 =—500 the flow reversal was at the hot wall whereas for couple stress fluid there is a flow
reversal both at left and right walls. The effect of ¢ on the flow for couple stress fluid is dominating compare
to viscous fluid both on velocity and temperature. The profile of temperature are significant for couple stress

fluid for different & where as the profiles were not sensible for differente .
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Figures 3 and 4 show the effect of heat generation coefficient ¢ on velocity and temperature. For both
positive and negative values of A, the flow suppresses as ¢ increases, which is opposite, result for viscous
fluid. Figures 5 and 6 show the effect of couple stress parameter on the flow. For positive A4 as 'a' increases
velocity increases and it is notified that the maximum velocity occurs at both left and right walls for small 'a'
and the maximum velocity is in the middle of the channel for large 'a'and also flow reversal occurs as 'a’'
increases. For negative A velocity decreases as 'a' increases and here also the maximum velocity is at both
the walls for small 'a' and moves to the middle of channels as 'a' increases. The temperature decreases as 'a'
for both positive and negative A . It is also noticed that for small values of ¢ the effect of 'a' is insignificant

for upward and downward flows.

Figures 7 illustrate the influence of couple stress parameter 'a' with isoflux-isothermal and isothermal-isoflux
wall conditions for 2 =+500,& =+0.1andR, =R, =1.Itis seen thatas 'a' increases the flow is assisted for
positive A and suppresses for negative A at the reversal side. Also, as 'a' increases temperature decreases
for both+ ¢. The effect of 'a' on velocity and temperature for isoflux-isothermal case is similar to that for

isothermal-isoflux wall conditions as seen in Figure 7.
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Fig. 3 Plots of u versus y in the case of asymmetric heating
for different values of heat generation coefficient ¢ and &



Ethiop. J. Sci. & Technol. 7(1) 49-66, 2014

63

6
£=0,0.1,-0.1
02 BN | U0 U1 02
y
Fig. 4 Plots of 0 versus y in the case of asymmetric heating
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Nomenclature

xO®ww S ODfFA x> g OF

~NoN
o

<k €S oo o= N
°“<

AT

Constant defined in equation (4)
specific heat at constant pressure

= 2L, hydraulic parameter
acceleration due to gravity
dimensionless parameter (Gr/Re) defined in equation (10)

Grashof number defined in equation (10)
Brinkman number defined in equation (10)

thermal conductivity

non-dimensional material parameter

couple stress parameter as defined in equation (10)

channel width

cross Viscosity
pressure

= p + p & ,difference between the pressure and the hydrostatic pressure

Reynolds number defined in equation (10)

temperature difference ratio defined in equation (10)

temperature
prescribed boundary temperatures

reference temperature
dimensionless velocity component in the X- direction

velocity component in the X-direction
reference velocity
velocity component in the Y-direction

space coordinates

dimensionless transverse coordinate

Greek symbols

= K , thermal diffusivity

P . .
thermal expansion coefficient

reference temperature difference defined by equation (12)

dimensionless temperature defined in equation (10)
dynamic viscosity

-2 , kinematic viscosity

Po



66 S. Narasimha Murthy

REFERENCES

Aung, W and Worku, G. (1986). Developing flow and flow reversal in a vertical channel with asymmetric wall
temperature. ASME Journal Heat Transfer.108:299-304.

Aung ,W and Worku, G.(1986a). Theory of fully developed, combined convection including flow reversal.
ASME Journal Heat Transfer. 108: 485—488.

Barletta, A. (1998). Laminar mixed convection with viscous dissipation in a vertical channel. International
Journal of Heat and Mass Transfer: 41: 3501-3513.

Barletta, A. (1999). Heat transfer by fully developed flow and viscous heating in a vertical channel with
prescribed wall heat fluxes. International Journal Heat Mass Transfer. 42: 3873-3885.

Barletta, A. (1999a). Analysis of combined forced and free flow in a vertical channel with viscous dissipation
and isothermal-isoflux boundary conditions. Journal Heat Transfer. 121: 349-356.

Barletta, A. (2002). Fully developed mixed convection and flow reversal in a vertical rectangular duct with
uniform wall heat flux. International Journal Heat Mass Transfer. 45: 641-654.

Batchelor, G.K. (1954). Heat transfer by free convection across a closed cavity between vertical boundaries at
different temperatures. Quarterly of Applied Mathematics. 12: 209-233.

Cheng, C.H., Kou, H.S and Huang W. H. (1990). Flow reversal and heat transfer of fully developed mixed
convection in vertical channels. Journal Thermophysics and Heat Transfer. 4: 375-383.

Cheng, K.C and Wu, R.S. (1976). Viscous dissipation effects on convective instability and heat transfer in
plane Poiseuille flow heated from below. Applied Scientific Research. 32: 327-346.

Hamadah, T.T and Wirtz, R.A. (1991) Analysis of laminar fully developed mixed convection in a vertical
channel with opposing buoyancy. ASME Journal Heat Transfer. 113: 507-510.

Lavine, A.S. (1988). Analysis of fully developed opposing mixed convection between inclined parallel plates.
Warme-und Stoffubetragung: 23: 249-257.

Malashetty, M. S and Umavathi, J. C. (1999). Oberbeck convection flow of couple stress fluid through a
vertical porous stratum. International Journal of Non-Linear Mechanics.34: 1037-1045.

Shehawey, E. F and Mekheimer, K.S. (1994). Couple stresses in peristaltic transport of fluids. Journal of
Physics D: Applied Physics. 27: 1163-1172.

Srivastava, L. M. (1986). Flow of couple stress fluid through stenotic blood vessles. Journal of Biomechanics.18:
479-485.

Stokes, V. K. (1966). Couple stresses in fluids. Physics of Fluids. 9: 1709-1715.

Umavathi, J.C. (2000). Free convection flow of couple stress fluid for radiating medium in a vertical channel.
A. M. S.E. Modelling, Measurement and Control. B Mechanics and Thermics. 69: 1-20.

Umavathi, J.C. Chamkha, A. J., Manjula, M. H. Al-Mudhaf, A. (2004). Flow and heat transfer of couple
stress fluid sandwiched between viscous fluid layers. Canadian Journal of Physics.83:705-720.



